Communication routes in ARID domains between distal residues in Helix 5 and the DNA-binding loops
Invernizzi, Gaetano; Tiberti, Matteo; Lambrughi, Matteo; Lindorff-Larsen, Kresten; Papaleo, Elena

Published in:
P L o S Computational Biology (Online)

DOI:
10.1371/journal.pcbi.1003744

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Invernizzi, G., Tiberti, M., Lambrughi, M., Lindorff-Larsen, K., & Papaleo, E. (2014). Communication routes in ARID domains between distal residues in Helix 5 and the DNA-binding loops. P L o S Computational Biology (Online), 10(9), [e1003744]. https://doi.org/10.1371/journal.pcbi.1003744
Communication Routes in ARID Domains between Distal Residues in Helix 5 and the DNA-Binding Loops

Gaetano Invernizzi1, Matteo Tiberti1,2, Matteo Lambrughi1,2, Kresten Lindorff-Larsen1, Elena Papaleo1

1 Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark, 2 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy

Abstract

ARID is a DNA-binding domain involved in several transcriptional regulatory processes, including cell-cycle regulation and embryonic development. ARID domains are also targets of the Human Cancer Protein Interaction Network. Little is known about the molecular mechanisms related to conformational changes in the family of ARID domains. Thus, we have examined their structural dynamics to enrich the knowledge on this important family of regulatory proteins. In particular, we used an approach that integrates atomistic simulations and methods inspired by graph theory. To relate these properties to protein function we studied both the free and DNA-bound forms. The interaction with DNA not only stabilizes the conformations of the DNA-binding loops, but also strengthens pre-existing paths in the native ARID ensemble for long-range communication to those loops. Residues in helix 5 are identified as critical mediators for intramolecular communication to the DNA-binding regions. In particular, we identified a distal tyrosine that plays a key role in long-range communication to the DNA-binding loops and that is experimentally known to impair DNA-binding. Mutations at this tyrosine and in other residues of helix 5 are also demonstrated, by our approach, to affect the paths of communication to the DNA-binding loops and alter their native dynamics. Overall, our results are in agreement with a scenario in which ARID domains exist as an ensemble of substates, which are shifted by external perturbation, such as the interaction with DNA. Conformational changes at the DNA-binding loops are transmitted long-range by intramolecular paths, which have their heart in helix 5.

Introduction

ARID3A is a member of the ARID (AT-rich interactive domain) family of transcription factors and is also known as “dead ringer-like protein 1” (Dril), “B-cell regulator of IgH transcription” (Bright) and “E2F-binding protein 1” (E2FBP1). The ARID family is a family of DNA-binding proteins with a wide range of cellular functions and participates in different regulatory processes, including embryonic development, gene expression during cell growth, differentiation and development as well as cell cycle control and chromatin remodeling [1–4]. human ARID3A is also one of the targets of the broad Human Cancer Protein Interaction Network (HCPIN) database, which aims to provide structure-function annotations of key proteins related to cancer diseases and developmental biology [5]. ARID domains have been identified in the genomes of higher eukaryotes and feature a common all-$

ARID3A, B and C are the closest paralogs (more than 75% of sequence identity) of the Drosophila “dead ringer” protein Dril [1].

The structures of the free ARID3A [6] and of both the free and DNA-bound Drosophila paralog [7,8] were recently solved by NMR spectroscopy and X-ray crystallography. Indeed, despite their biological importance ARID domains are still relatively poorly characterized from the structural and dynamical point of view. Considering their importance for DNA interaction and the involvement in a large range of biological functions, ARID domains are suitable targets for Molecular Dynamics (MD) investigations with attention to both dynamic fingerprints and structural communication mechanisms. In addition to providing basic information on the dynamics of ARID proteins such analyses may shed light on the structural effects induced by mutations.

Here, we have studied intramolecular communication in two members of the ARID family, both in the free and DNA-bound states, with particular attention to the effects induced by distal residues on the DNA-binding loops. We used an approach that integrates atomistic, explicit solvent simulations, prediction of the effects induced by mutations on protein stability and methods inspired by graph theory. In particular, we found that the interaction with the DNA strengthens pre-existing paths from...
Intramolecular Communication in ARID Domains

Author Summary

Regulation of DNA transcription is a key element for the cell to finely regulate its physiological processes. This is acquired by the use of a special class of proteins that bind to DNA and function as transcriptional regulators. ARID domains are responsible for many of these DNA-protein interactions in proteins involved in important physiological functions, including cell-cycle regulation and embryonic development. Nevertheless, the structural effects and the conformational changes induced by DNA-binding on the ARID structure have been poorly characterized so far. Here, we provide the first characterization of long-range effects induced by DNA-binding on ARID domains. In particular, we identified routes of communications from DNA-binding loops to distal residues in helix-5. These routes pre-exist in the free protein and are strengthened by DNA interaction. We also investigated mutations that experimentally impair DNA-binding. Our results show that these mutations perturb wild-type routes of communication, allowing to link their effect on structure and dynamics to function. We have also found a region that might be used for recruitment of biological partners. We predicted the effects induced by mutations at other crucial sites for ARID dynamics. Our results are thus likely to boost the future experimental and structural research on ARID domains.

distal sites in helix a5 to the DNA-binding loops. In addition to the residues directly involved in the DNA binding, a distal tyrosine (Y119) was identified. This residue affects DNA-binding as attested by experimental mutagenesis and a Electrophoretic Mobility Shift Assay (EMSA) [9]. We here show that Y119 plays a key role in promoting long-range communication to the loops at the interface with DNA. Other residues, mostly in helix a5, are also identified with a key role in intramolecular communication and we show that their mutations can impair the native paths to the DNA-binding regions. The surroundings of Y119 are also predicted as hotspots for protein-protein interaction, suggesting that paths identified in our study may also be an important element to propagate effects long-range from the DNA-binding site to a region for the recruitment of other biological partners, or vice versa.

Results

The target proteins

A short description of the target proteins is reported in the following (Figure 1). The ARID domain of ARID3A and Dri consists of eight α-helices (α0–α7) and a very short β-harpin. We here refer to the numbering of ARID3A NMR structure (2KK0) in the Protein Data Bank (PDB) for sake of clarity. A sequence alignment is also provided with the corresponding numbering in ARID3A and Dri, (Figure S1). Loop L2 and the β-harpin Loop L1 of Dri interact with the DNA major groove and regions outside the major groove, respectively [1,7]. These residues are also conserved in ARID3A, suggesting a common binding mode to the DNA [6]. The results are also in agreement with the recent experimental finding that L1 of human JARID1B ARID domain is crucial for DNA binding [10]. Therefore, we here used the X-ray structure of Dri bound to DNA as a reference for the DNA-bound ARID domains.

Figure 1. Target proteins and structural features. The 3D structures of ARID3AFREE (PDB entry 2KK0), DriFREE (PDB entry 1C20) and Dri-DNA (PDB entry 1KQQ) are shown as yellow, light grey and magenta cartoons, respectively. In the figure at the bottom on the left the structure is colored with different shade of colors from the N- (blue) to the C-terminal extremity (red) and the secondary structural elements are labelled according to ref. [6]. In particular, α0–α7 (residues 231–234, 239–254, 272–282, 285–291, 294–300, 310–321, 324–329, 335–346 in ARID3A or according to the PDB entry 2KK0 numbering 25–28, 32–36, 37–40, 46–48, 65–66, 76–79, 88–94, 118–123, 139–140) and a very short β-harpin consisting of antiparallel strands β1 and β2 (residues 264–265 and 268–269 in ARID3A or according to the PDB entry 2KK0 numbering 58–59 and 62–63) are shown.

doi:10.1371/journal.pcbi.1003744.g001

Evaluation of the simulated ensembles and comparison to the experimental data

The MD simulations collected in this study are summarized in Table 1. At first, we carried out ten independent simulations for ARID3AFREE and DRI FREE of 100 ns each to assess the reproducibility of the results. One of the DRI FREE simulations was also extended up to one microsecond (Dri FREE-1 µs). The Dri DNA-bound conformation (PDB entry 1KQQ) was employed as starting structure for four 100-ns MD replicates of Dri in complex with DNA (DriDNA). All the simulations have been performed with CHARMM22*, a new generation force field, which was validated against NMR data [11].

To verify that our simulations do not encounter issues related to force-field deterioration or low stability of the sampled structures, chemical shift predictions of backbone and Cα atoms were calculated by PPM [12] and compared to the experimental values (Table 2, Figure S2). Indeed, we need to sample conformations that do not deviate from the experimental data to avoid artifact arising from the analyses of the MD ensemble. The average root mean square deviation (rmsd) between experimental and predicted chemical shifts was then calculated for the MD ensemble [12] and compared to the results obtained for the starting experimental structures (Table 2). The data obtained for all the five chemical shift classes show that the rmsd values are within or near the expected deviations recorded for the protein test sets and substantially lower than the rmsd values calculated on the starting structures (PDB entries 2KK0 and 1C20). Moreover, the time-evolution of the backbone and Cβ chemical shifts was evaluated
for DriFREE-1 μs (Figure S2). The one-μs trajectory has rmsd values comparable to the single 100-ns replicates (Table 2). Further, the evolution of the chemical shift rmsd over the simulation time (Figure S2) reveals a stabilization or improvement of those values after the first 100 ns of simulation. Overall, these results indicate that the trajectories analyzed are stable and with rmsd values.

Table 1. Summary of the MD simulations.

<table>
<thead>
<tr>
<th>Simulated system</th>
<th>Starting Structure</th>
<th>Duration of each replicate (ns)</th>
<th># replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>DriFREE</td>
<td>Dri NMR structure (1C20 –conformer 1)</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>DriFREE-1 μs</td>
<td>Dri NMR structure (1C20 –conformer 1)</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>DriDNA</td>
<td>Dri in complex with DNA NMR structure (1KQQ)</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>DriFREE-Q101N</td>
<td>Dri NMR structure (1C20 –conformer 1) – in-silico mutation Q101N</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>DriFREE-Q101A</td>
<td>Dri NMR structure (1C20 –conformer 1) – in-silico mutation Q101N</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>DriFREE-Y109A</td>
<td>Dri NMR structure (1C20 –conformer 1) – in-silico mutation Y109A</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>DriDNA-Y109A</td>
<td>Dri in complex with DNA NMR structure (1KQQ) – in-silico mutation Y109A</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>ARID3Afree</td>
<td>Human ARID3A NMR structure (2KK0 – conformer 1)</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>ARID3Afree unfolding simulation at 500 K</td>
<td>Human ARID3A NMR structure (2KK0 – conformer 1)</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>DriFREE unfolding simulation at 500 K</td>
<td>Dri NMR structure (1C20 –conformer 1)</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>ARID3A-Q111N</td>
<td>Human ARID3A NMR structure (2KK0 – conformer 1) – in-silico mutation Q111N</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>ARID3A-Q111A</td>
<td>Human ARID3A NMR structure (2KK0 – conformer 1) – in-silico mutation Q111A</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>ARID3A-Y119A</td>
<td>Human ARID3A NMR structure (2KK0 – conformer 1) – in-silico mutation Y119A</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

All the simulations were performed with CHARMM22* force field. doi:10.1371/journal.pcbi.1003744.t001

Table 2. Prediction of backbone chemical shifts by PPM in ARID3Afree and DriFREE simulations.

<table>
<thead>
<tr>
<th>MD</th>
<th>PPM-Cα</th>
<th>PPM-Cβ</th>
<th>PPM-C</th>
<th>PPM-HN</th>
<th>PPM-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPM-test set*</td>
<td>1.06</td>
<td>1.23</td>
<td>1.32</td>
<td>0.53</td>
<td>2.91</td>
</tr>
<tr>
<td>ARID3Afree-r1</td>
<td>1.17</td>
<td>0.99</td>
<td>1.29</td>
<td>0.54</td>
<td>2.87</td>
</tr>
<tr>
<td>ARID3Afree-r2</td>
<td>1.23</td>
<td>1.01</td>
<td>1.28</td>
<td>0.53</td>
<td>2.97</td>
</tr>
<tr>
<td>ARID3Afree-r3</td>
<td>1.20</td>
<td>1.01</td>
<td>1.23</td>
<td>0.55</td>
<td>2.86</td>
</tr>
<tr>
<td>ARID3Afree-r4</td>
<td>1.23</td>
<td>0.93</td>
<td>1.27</td>
<td>0.55</td>
<td>2.93</td>
</tr>
<tr>
<td>DriFREE</td>
<td>1.20</td>
<td>1.22</td>
<td>1.25</td>
<td>0.56</td>
<td>3.12</td>
</tr>
<tr>
<td>Drifree-r2</td>
<td>1.46</td>
<td>1.34</td>
<td>1.35</td>
<td>0.56</td>
<td>3.77</td>
</tr>
<tr>
<td>Drifree-r3</td>
<td>1.41</td>
<td>1.38</td>
<td>1.28</td>
<td>0.54</td>
<td>3.51</td>
</tr>
<tr>
<td>Drifree-r4</td>
<td>1.22</td>
<td>1.31</td>
<td>1.26</td>
<td>0.59</td>
<td>3.34</td>
</tr>
<tr>
<td>Drifree-r5</td>
<td>1.28</td>
<td>1.27</td>
<td>1.31</td>
<td>0.54</td>
<td>3.23</td>
</tr>
<tr>
<td>Drifree-r6</td>
<td>1.37</td>
<td>1.43</td>
<td>1.31</td>
<td>0.57</td>
<td>3.3</td>
</tr>
<tr>
<td>Drifree-1 μs</td>
<td>1.33</td>
<td>1.17</td>
<td>1.3</td>
<td>0.52</td>
<td>3.31</td>
</tr>
<tr>
<td>2KK0</td>
<td>1.36</td>
<td>1.36</td>
<td>1.42</td>
<td>0.48</td>
<td>2.76</td>
</tr>
<tr>
<td>1C20</td>
<td>1.87</td>
<td>2.20</td>
<td>1.56</td>
<td>0.75</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Rmsd between calculated and experimental backbone chemical shifts are reported. In particular, chemical shifts were calculated for C, N, HN, Cβ, and Cα atoms on structures from the equilibrium trajectories collected every 100 ps.

*For comparison, the deviations between experimental and PPM-predicted chemical shifts for protein test sets are provided as reported in ref. [12].

doi:10.1371/journal.pcbi.1003744.t002
substantially lower than those calculated from the PDB starting structure (green lines in Figure S2) when at least 100 ns of MD ensemble are collected. Moreover, a ten-fold increase of the simulation time does not lead to a concrete improvement of the rmsd values suggesting that 100 ns is an adequate timeframe for our analysis.

We can thus post-process the MD ensembles by methods inspired by graph theory to derive paths of communications, other important properties of the network (as for example hub residues) and to understand how and if those paths are affected by the interaction with DNA and by mutations. The availability of one μs simulation for DriFREE also allowed us to assess the influence, on the PSN description, of simulating the system over a longer timescale.

Correlated motions in the MD ensemble

We here employed a method inspired by graph-theory, the so-called Protein Structure Network (PSN)-MD approach [13–15] to detect the paths of communication in the MD ensembles of ARID3A and Dri. This method is based on the observation that structural effects can be transmitted at distal sites through communication paths involving side-chain contacts between residues that feature correlated motions [13–15]. The PSN calculation is thus integrated to metrics that estimate coupled motions from the MD ensemble. We here employed Linear Mutual Information (LMI) [16] as a metrics of correlated motions. To assess the consistency of the results, we compared LMI matrices from each independent replicate. In particular, LMI matrices were calculated as average matrices over time-windows of five ns (Figure S3). The correlated motions are similarly and consistently described. The maximum differences observed for the LMI matrices are always below 0.35 and are generally restricted to the N- and C-terminal residues. To better quantify the differences among LMI matrices of the same system, we also calculated the Frobenius norm between them (Figure 2). If the description of the correlated motions is similar in all the replicates, we expect low values of Frobenius norm when they are compared pairwise. The wild-type LMI matrices of ARID3AFREE and DriFREE simulations were also compared to the LMI matrices calculated from 100-ns unfolding simulations at 500 K of the same proteins. Indeed, if the different LMI matrices of the wild-type protein are really consistent in describing the correlated motions of the protein, the Frobenius norm obtained from their pairwise comparison should be at least lower than the ones achieved when each of the wild-type LMI matrices is compared to the LMI matrix from the unfolding simulation, in which the native structure is not preserved. All the replicates of the same system feature lower Frobenius norm values when compared each other than when compared to the corresponding unfolding simulation (illustrated in Figure 2 for DriFREE) and they are always within the range of values of the LMI Frobenius norm calculated between the two halves of the same target trajectory (average value of 6.30, bottom insert in Figure 2). Indeed, as expected, the LMI matrix from the unfolding simulation largely deviates from the LMI of the folded proteins (average Frobenius norm of 22.13).

In summary, LMI matrices calculated from the different replicates of the same system and averaged over different time-windows consistently describe the same pattern of correlated motions and can thus be used, coupled to network analysis, to disclose paths of long-range communication in the MD ensembles.

PSN analysis and definition of the Interaction strength (I) cutoff

We then calculated the PSN from each MD replicate. In this network the residues are the nodes of the graph and are connected by edges weighted according to a defined Interaction strength (I) value [17]. In the PSNs, the calculated edges are retained only if their I is greater than a defined cut-off value (minimum Interaction Strength, I_{min}). Generally, a PSN at the so-called I_{crit} value is calculated for further analysis, where the I_{crit} is the I_{min} corresponding to the main transition in the size of the largest cluster (cluster 1) of the network [17].

Both to define the I_{min} value for the analysis and to verify the congruency of the results from our simulations, we calculated the evolution of the size of cluster 1 as a function of different I_{min} values. We thus calculated several PSNs for each replicate, varying the I_{min} value from 0 to 40 by steps of 0.2 (Figure 3). Independently of the system (ARID3A or Dri), presence of mutations, DNA and differences in the timescales, all the MD ensembles feature similar profiles with a first very sharp transition in a narrow range of I_{min} values. It was previously observed that in PSNs of experimental protein structures collected from the PDB, this transition occurs in the same range of I_{min} for proteins of different size and fold [17]. Our simulations confirm this finding also for protein structures simulated within a classical force-field description, even if the I_{crit} (∼7 in our study) is shifted to slightly larger values than what observed in the previous study on single PDB structures [17]. We can thus employ a common I_{crit} value for all the systems and we here shown the robustness of PSN I_{crit} even in MD ensembles of not identical proteins.

Hub residues in ARID domains in their DNA-unbound and-bound states

Hubs of a PSN are highly connected residues in the network, i.e. nodes connected by more than three edges. They can play a role in protein structural stability, function or allow a proper flux of information to distal sites [17–20]. We calculated the PSN hubs for free and DNA-bound ARID domains (Figure 4 and S4). In particular, we calculated the node degree (i.e. the number of edges in which the hub is involved) of each hub for each simulation. Overall, both the hub localization on the structure and their connectivity degree in the network are very similar for the different replicates of the same system even if the PSN is calculated on a longer timescale (i.e. one μs).

Interaction with DNA promotes higher connections not only in the DNA-binding loops, but also for the nodes that are not in direct contact with the DNA (Figure 4 and S4). In particular, the connectivity degree of each hub and the hub number itself increase in the central helix of the ARID domain upon DNA interaction. These are sites that may play a role in long-range communication to distal sites, as detailed in the next Sections.

Hubs in ARID3AFREE and DriFREE are generally placed at identical positions and most of them are also strictly conserved in terms of primary sequence, enforcing the notion of common dynamic patterns in these two proteins.

Y119 is conserved as a hub residue in most of ARID3A and Dri simulations independently of the presence or absence of DNA, but DNA interaction increases its connectivity degree (Figure 4, S4). The Y119 in ARID3A (Y109 in Dri) is known to affect DNA binding capability when mutated to alanine [9] even if according to the 3D structure Y119 is not in direct contact with the DNA molecule. It is indeed placed at the C-terminal region of χ5 more than 20 Å of distance from the DNA binding site (Figure S5). In the same study, the authors identified, by alanine scanning mutagenesis, three other residues that are crucial for DNA binding: P57, W88 and F106 (Figure S5). P47, W78 and P96 in Dri, F106/F96 has a minor interest for our work since it is in direct contact with the DNA and is not conserved in all the ARID family members, as attested by a low conservation score of this
position in a multiple sequence alignment of 100 sequences homologous to ARID3A by CCRXP server [21]. Both P57/P47 and W88/W78 hub-properties are also modulated by the DNA interaction, as observed for Y119 (Figure 4, S4). Another interesting hub of interest is Q111/Q101. It is placed in a position suitable as “mediator” for communication paths and it is a hub residue with higher connectivity upon DNA interaction.

We then evaluated by using Fold-X [22] the effects that the experimentally investigated mutations [9], as well as R109A and Q111A or Q111N mutations (see below), may have on the structural stability. All these mutations (Y119A, F106A, R109A, Q111A and Q111N) have only modest effects on protein stability (average ΔΔG values between 0.2 and 0.6 kcal/mol) with the exception of W88A and P57A mutations that have more destabilizing effects (average ΔΔG values of 4.4 and 2.5 kcal/mol, respectively). These two residues (P57 and W88) are also conserved in the multiple sequence alignment of ARID homologs carried out by the CCRXP server [21], with conservation scores of 0.889 and 0.850, respectively.

In our MD simulations, most of the experimental mutation sites (P57, Y119 and W88) [9] act as hubs with or without the DNA and their connectivity within the graph is modulated by the DNA. This observation alone might suggest a central role exerted by...
Figure 4. Hub residues and their location on the 3D structure of ARID domains. The connectivity degree for each PSN hub of Dri_FREE (A) and Dri_DNA (B) simulations are shown as a function of the protein residue in the left panels. Since in a PSN a hub is defined as a residue connected by at least three edges, all the residues with node degree lower than three are set at zero. Black triangles indicate the position of the residues experimentally known to impair DNA-binding [9], whereas a gray triangle indicates Q101/Q111 position. The right panels show the location of these hubs on a reference 3D structure of the corresponding target protein. The structure is depicted as ribbon with rainbow shade of colors according to the node degree. The corresponding figures for ARID3A_FREE and 1 μs Dri_FREE simulations are shown in Figure S4. The residue numbering is referred to Dri in the figure where P47, W78, F96, Q101 and Y109 correspond to P57, W88, F106, Q111 and Y119 in ARID3A.
doi:10.1371/journal.pcbi.1003744.g004
these residues that are not in direct contact with the DNA in mediating long-range communication to the DNA-binding interface. Nevertheless, in the case of P57 and W88, the alanine mutations by Fold-X are predicted to remarkably affect protein stability of the ARID domains. In this scenario we can conclude that the effects observed in the experiments upon P57A and W88A mutations are more likely to be related to a destabilization of the protein fold rather than due to distal communication to the L1 and L2 DNA-binding loops. P57 is indeed a residue with a structural role devoted to maintain the local conformation of the L1 β-hairpin and the correct position of K61 for DNA interaction [7]. Y119 instead appears as an important mediator for distal communication and its mutation should not compromise structural stability of the ARID domains.

Paths of long-range communication to L1 and L2 loops

To better investigate the long-range communication from distal sites of ARID domains to the DNA-binding loops L1 and L2, we then employed a PSN/LMI approach [15,23–24]. In particular, we calculated the shortest paths of long-range communication from each protein residue to the DNA-binding loops L1 and L2. Indeed, the shortest paths of communication are likely to be the paths that more efficiently transmit a “signal” over long distances within the protein structure [20]. The paths were then ranked according to their probability of occurrence and length. The shortest paths with highest occurrence probability that connected two end-residues by a series of non-covalent interactions with highly correlated motions were selected. Particular attention was devoted to the pairs of residues connected by a path with a probability of occurrence higher than 15% to discard paths that are too poorly populated in the conformational ensemble and may thus increase the noise of the analysis. Moreover, to focus our attention on long-range communication, only the paths of length greater than three were analyzed in details.

Comparing the DriFREE and DriDNA simulations (dark green vs. gray histograms in Figure 5, upper panel), we noticed that long-range paths (from 7 to 10 residues in length) are increased by the DNA interaction, whereas the shorter-range paths (4–5 residues) are decreased. The presence of DNA not only promotes longer paths of communications to L1 and L2 (Figure 5, lower panel). Indeed, if we used the same PSN/LMI approach to calculate the shortest paths from each residue to other protein sites, with the exception of the DNA binding loops, we observed a 28% decrease of long-range paths directed to sites different from the DNA-binding region. The two results together suggest that DNA promotes a well-channeled communication toward the DNA-binding sites.

The long-range paths of length higher than 8 were compared in DriDNA and DriFREE simulations and the differences between them mapped on the 3D structure (Figure 5 upper panel). We noticed that the presence of DNA promotes a larger number of long-range paths to L2 and L1. Among those paths, Y119 (Y109 in Dri) plays a crucial role being involved in one of the major route of communication to the DNA-binding loops, along with L116 (L106 in Dri). In fact, they belong to the paths from K113 to both L56 at the base of L1 (K113→Y109→L32→L106→F28→L56) and L87-I91-P88 in L2 (K113→Y109→L32→L106→L59→L98→L87→I91→P88, Dri numbering) are highlighted by different shades of colors from red to blue/black. K113, L56 and P88 are shown as sticks.

For each system, all the paths to L1 and L2 identified above were joined in one single graph. Then, the nodes belonging to this graph were connected by edges whose thickness is proportional to the probability to find in the graph the same connection in different communication paths, providing the final graphs reported in Figure 6 for ARID3A and Dri. The analysis provides an overview of the residues and the connections that are more represented in the paths from distal sites of ARID domains to the DNA-binding loops.

We found that the residues that were experimentally investigated [9] and for which alanine mutations have a direct or indirect effects on DNA-binding capabilities (i.e. Y119, P57 and W88) are highly represented in the paths of communication, as well as R109 and Q111. There are also other residues interested by highly abundant edges as M59, L66, L108 and L116 in suitable positions to be mediator of the communication. Most of these residues are
located in helix α5. M59A, L66A, L108A and L116A mutations are also predicted as destabilizing the 3D structure (ΔΔG values in the range of 3.24-4.17 kcal/mol) by FoldX, as the W88A mutation discussed above. Thus, they are likely to be not only important residues for long-range communication but also in maintaining the correct 3D architecture.

In summary, Y119 and Q111 are suggested as important hubs for structural communication within the ARID domains. They can be modulated by DNA-interaction and are also among the most represented nodes in the long-range paths from protein distal sites to the DNA-binding loops, and alanine mutations of these residues are also predicted not to affect the protein stability. They are thus suitable candidate to verify their role as important mediators of communication to the DNA-binding loops.

Y119 and Q111 are crucial residues for long-range communication to the DNA-binding interface

Experimental mutagenesis pointed out that Y119A mutation can affect DNA-binding capability of ARID3A [9]. Y119 is not in direct contact with the DNA molecule since it is more than 20 Å far from the DNA-binding interface and partially solvent exposed (average solvent accessibility of the side chain in the simulations higher than 15%). It has therefore to exert its effect long-range. It thus represents a good candidate to further investigate the communication to the DNA-binding loops, as well as to probe if the paths identified by the PSN/LMI approaches can modulate long-range the conformation and dynamics of the DNA-binding loops. In particular, we compared the wild type MD simulations of ARID3A and Dri with simulations of Y119A/Y109A mutants (ARID3AY119A, DriFREE-Y109A and DriDNA-Y109A) with the same approaches described in the previous Sections. We also include mutations in Q111/Q101, which can also be a mediator of long-range communication to the DNA interface and for which mutations at Asn or Ala are predicted to have neutral effects on protein stability by FoldX. In particular, we included Q111N mutation as a control in our simulations since it is a conservative mutation that we did not expect to affect the overall dynamics. Moreover, since the only relevant difference between Asn and Gln residues is the side-chain length, we can also use this mutant to verify if even subtle changes in the side chains of crucial nodes for structural communication can affect the communication paths.

We thus compare wild-type ARID domain dynamics to the different mutant variants by Full Correlation Analysis (FCA) analysis of L1 and L2 loops in a common reference subspace. FCA analysis of the L1 and L2 loops only shows that those mutations affect the dynamic properties of the DNA-binding loops when compared to the wt (Figure 7 upper panels). In particular, Y119A has the most prominent effects on the native dynamics of both the DNA-binding loops, whereas Q111A and Q111N have a major effect mainly on L1 and more native-like patterns for L2.

It can be argued that the effects induced upon these mutations are less detrimental if DNA is present. Therefore, to further verify that the effects induced by those mutations can be identified also in DNA-bound form, we carried out also MD simulations of DriDNA mutant variants at the position corresponding to the ARID3A mutation sites (i.e. Q101A, Q101N and Y109A). The FCA analysis of L1 and L2 was carried out also for wild-type DriDNA and its mutant variant confirming the picture described above for Y119A mutant (Figure 7 bottom panels). On the contrary, mutations at the 101 site in Dri (Q111 in ARID3A) feature less detrimental effects on the native dynamics in presence of the DNA. This result suggests that the DNA can partially rescue the structural effects induced by Q111 mutations.

To investigate the role of those residues in the communication routes to the DNA-binding loops, all the shortest paths with occurrence probability higher than 15% identified by PSN-LMI, which starts by Y119 (Figure 8 left panel) or Q111 (Figure 9 left panel) and are directed toward other residues are considered with respect to their location on the 3D structure of ARID3AFREE and compared to the ones identified for the same residues in the mutants Y119A (Figure 8 right panel), Q111N (Figure 9 middle panel) and Q111A (Figure 9 right panel).

In the wt dynamics, it turns out that part of the paths from Y119 and Q111 are directed toward L1 and L2 and other regions close to the interface for DNA interaction, including the highly interconnected intermediate node L64 (showed as a yellow sphere in Figures 8 and 9).

Alanine mutations at both 119 and 111 sites dramatically affect the communication in ARID3A. Indeed, the mutations perturb the long-range paths, especially the ones of length greater than 7. They either decrease the probability of occurrence of the paths or weaken the communication so that the paths are preserved but shorter in length and they cannot successfully reach the DNA-binding loops. Moreover, there are cases in which the mutations...
Figure 7. FCA modes of L1 and L2 in wt ARID3A\textsubscript{FREE} or Dri\textsubscript{DNA} and their mutants. Upper panels) The two panels show the projection along FCA mode 1 and FCA mode 2 for L1 and L2 in ARID3A\textsubscript{FREE} and its mutants. ARID3A\textsubscript{FREE}, ARID3AY119A, ARID3AQ111A and ARID3AQ111N are shown with different shade of colors. Bottom panels) The two panels show the projection along FCA mode 1 and FCA mode 2 for L1 and L2 in Dri\textsubscript{DNA} and its mutants. Dri\textsubscript{DNA}, DriY119A, DriQ111A and DriQ111N are shown with different shade of colors. The projections report one replicate of each system, for sake of clarity. The same analysis was carried out for each combination of replicates of wild type and mutant variants and it provides similar results, as also expected by the high overlap in the essential subspace between individual replicates of the same system (root mean square inner product larger than 0.8).

doi:10.1371/journal.pcbi.1003744.g007

Figure 8. Paths of long-range communication mediated by Y119 in wt and Y119A ARID3A. The shortest paths of communications mediated by Y119 in ARID3A\textsubscript{FREE} (left panel) and ARID3A\textsubscript{Y119A} (right panel) simulations as identified by the PSN-LMI approach are shown as cylinders of thickness proportional to the probability of occurrence. The Y119 C\alpha and the L64 C\alpha are also indicated by orange and yellow spheres, respectively. L1 and L2 are highlighted in yellow.

doi:10.1371/journal.pcbi.1003744.g008
cause a major perturbation in the native paths, re-directing the communication toward other regions of the protein (Figure 8 and 9) and in particular affecting L1.

The Q111N mutation is more similar to the wild type (Figure 9 middle panel). Nevertheless, even the subtle replacement of the Gln with a shorter side-chain residue (as Asn) decreases the probability of occurrence of some of the paths directed to the DNA-binding loops. The mutation indeed causes a weakening of the communication to L1.

Discussion

Methods inspired to graph theory are widely used to study protein structure-function relationships [13–15,17–19,24–25] and they have also been applied to the study of complex biological phenomena such as long-range intra- and intermolecular communication [13–15,17–19,24–32].

Here, we integrated graph theory and MD simulations to describe the structural dynamics and intramolecular communication in the ARID family of DNA-binding domains, which have been so far poorly structurally characterized. Our simulated ensembles were also first evaluated for consistency with the available experimental information from NMR. The crucial cutoffs for PSN analyses have been evaluated comparing different replicates for each system, along with simulations of different lengths. We have then examined how dynamical properties of ARID domains are influenced by the interaction with DNA or by mutations at critical sites in the communication paths to the DNA-binding loops.

We are aware that our approach is mainly protein-centered, even if simulations are carried out in explicit solvent and thus the dynamics we are describing and the related paths are ultimately influenced by the solvent dynamics too. A network description of the clusters of water molecules around the protein surface or in protein cavities, as recently investigated by other techniques [33–36] may complement the PSN information and it can be considered for future applications.

The PSN/MD approaches here employed provide also a global description of the dynamical communication within the ARID domain, which might be difficult to obtain by other means. More generally, we thus hope that these approaches can be an useful starting point in cases where little experimental information is available to guide further experimental characterization. The definition of the nodes and their edges that more frequently populate the paths of long-range communication in the PSN/LMI approach can also be a complementary tool for the identification of important residues in the dynamic networks, i.e. they for example complement the information from hub detection in PSN. This technique can be employed to identify hot-spot residues for protein function and stability, as we here showed integrating them with Fold-X calculations of mutations in the hubs. Indeed, the edges with high occurrence probability in the communication paths have the potential to act as fundamental signal transmitters to allow the information flow throughout the protein structure.

On the biological side, our results show that structural communication in ARID domains can pass through a subset of conserved hubs, among which Y119 and W88 are found. Y119 and W88 were also experimentally investigated in ARID3A and are known to affect the protein function and interaction with DNA [9]. Other relevant residues to provide the native communication flow are suggested to be Q111, L116, L108, L66 and M59. We also evaluated in our MD framework Y119A, Q111A and Q111N mutations that turned out to affect the communication routes of the native protein to the DNA-binding loops at different extent. Most of those residues are located in the helix α5 that we thus found to be a central region for the long-range communication to the DNA-binding loops.

In our MD ensembles, pre-existing communication paths in the DNA-unbound states are directed toward L1 and L2 at the DNA-binding interface in the free proteins and they are strengthened by the interaction with DNA. Y119, Q111 and the other residues mentioned above turned out to be critical nodes for the long-range communication to the DNA-binding loop.

Interestingly, the region including Y119 and its surrounding (F38, F67, M68, Y70, V71, L72 and T74) is predicted as a hotspot for protein-protein interaction by InterProtSurf [37]. Our results can thus boost future research in the field of ARID domains to characterize protein-protein interaction mapping at this region and modulated by DNA-binding.

It appears that the ARID domains may exist as an ensemble of substates in solution, which can be shifted by external perturbation, such as the interaction with DNA in our study. L1 and L2 DNA-binding loops play an important role in determining the conformational changes between the different ARID substates and their dynamical properties are directly influenced by DNA interaction, but the effect can also be transmitted long-range by intramolecular paths, which have their heart in the helix α5.
Materials and Methods

Starting structures for MD simulations

The known NMR structures of human ARID3A (ARID3A-FREE, PDB entry 2KK0, [6]) and Drosophila melanogaster Dri (DriFREE, PDB entry 1C20, [8]) domains free in solution were used as starting structures for MD simulations (Table 1). In particular, from the PDB entry 2KK0 only the atomic coordinates referred to the ARID3A protein were considered, excluding the N-terminal His-tag construct and the residues belonging to the disordered N-terminal tail. Several 100 ns independent simulations of ARID3A-FREE (four replicates) and DriFREE (six replicates) were carried out using as initial structure the first conformer observed by NMR spectroscopy. One of the DriFREE simulations was extended to 1 μs. Simulations (four replicates) were also carried out for Dri in complex with the DNA (DriDNA), starting from the first NMR conformer in the PDB entry 1KQQ [7] (Table 1). The availability of independent simulations of the two homologous proteins and over different timescales allowed a better assessment of the reproducibility of the results and the robustness of the PSN-MD approach. Two replicates for each mutant (Y119A, Q111A and Q111N) ARID3A and Dri variants, with and without DNA, were also carried out upon in-silico mutations with PyMol (www.pymol.org). Unfolding simulations at 500 K of 100 ns were also performed for both DriFREE and ARID3AFREE to employ as a control in the evaluation of the correlated motions.

Molecular dynamics (MD) simulations

Explicit solvent MD simulations were performed using the 4.5.3 version of the GROMACS software [38] with the CHARMM22* force field [11]. The initial structures were embedded in a dodecahedral box of TIP3P water molecules [39]. Periodic boundary conditions were employed. All the protein atoms were at a distance equal or greater than 1.0 nm from the box edges. To neutralize the overall charge of the system, a number of water molecules equal to the protein net charge were replaced by counter-ions.

Each system was initially relaxed by 10000 steps of energy minimization by the steepest descent method. The optimization step was followed by 50 ps of solvent equilibration at 300K, while restraining the protein atomic positions using a harmonic potential. Each system was then slowly equilibrated to the target temperature (300 K) and pressure (1 bar) through thermalization and a series of pressurization simulations of 100 ps each.

Productive MD simulations were performed in the isothermal-isobaric (NPT) ensemble at 300K and 1 bar, using an external Berendsen bath with thermal and pressure coupling of 0.1 and 1 ps respectively. The LINCS algorithm [40] was used to constrain heavy-atom bonds, allowing for a 2 fs time-step. Long-range electrostatic interactions were calculated using the Particle-Mesh Ewald (PME) summation scheme [41]. Van der Waals and short-range Coulomb interactions were truncated at 0.9 nm. The non-bonded pair list was updated every 10 steps and conformations were stored every 4 ps.

The main chain root mean square deviation (rmsd), which is a parameter used to evaluate the stability of MD trajectories, was computed using the corresponding NMR structure as a reference. The first 10 ns of each trajectory were discarded as initial equilibration for each simulation. Indeed, upon 10 ns the trajectories were generally characterized by average main chain rmsd lower than 0.29±0.07 nm.

Full Correlation Analysis (FCA)

FCA is based on the calculation of Mutual Information (MI), which quantifies any kind of correlations including linear, non-linear or higher-order contributions. It has been showed that FCA lead to better-resolved conformational substates or modes than classical Principal Component Analysis (PCA) [42–44] and that these are more often aligned with the actual transition pathways in the structural ensembles [45]. Here, the FCA analyses were carried out for the Cα atoms only and using the first 25 eigenvectors from Cα PCA, as suggested in ref. [45].

Linear Mutual Information matrices (LMI)

LMI was employed to quantify correlated motions from MD simulations since it has the advantage of not depending on the relative orientations of the fluctuations [16], making it possible to identify correlated motions unregard of the differences concerning their orientations in space. LMI can range from 0 (uncorrelated motions) to 1 (fully correlated motions). LMI matrices including the correlated motion between pairs of residues were obtained computing Cα LMI using non over-lapping averaging windows of five ns (Figure S3). A cutoff of 0.5 was selected to reduce noise and to identify significant correlations, aiming to exclude from the analyses the pairs of residues that are poorly communicating with each other and likely to be characterized by almost uncoupled motions. To identify a suitable cutoff for significant correlation, differences between average LMI matrices calculated with one-ns and five-ns averaging windows for the same MD run, as well as between average LMI matrices calculated for the different replicates of the same protein (i.e. different force-field descriptions or different starting structures) were calculated. The probability density function for the difference values was then calculated, along with the maximum value of the difference and the pairs of residues, which were identified by the highest differences for each protein. In particular, no differences were identified higher than 0.35 and related to just few pairs involving the C- and N-terminal residues.

Moreover, the Frobenius norm between the different LMI matrices have been calculated to quantify the similarity between the LMI matrices from different replicates of the same system.

In particular, given two matrices of the same size, it is possible to evaluate their degree of similarity by calculating the Frobenius norm of the difference between them. The Frobenius norm for two LMI square matrices of order m, LMI₁ and LMI₂, is calculated as follows

$$\|LMI₁ - LMI₂\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} (a_{ij} - b_{ij})^2}$$

where a_{ij} and b_{ij} are elements of respectively LMI₁ and LMI₂ and the matrix order m is equal to the number of residues of the target protein.

Protein Structure Network (PSN) and shortest correlated path of communication

The PSN approach was integrated to the LMI matrices of correlated motions (PSN/LMI) [13–15] to identify the most relevant communication paths in ARID3A and Dri simulations. The PSN method employs the graph formalism to define a network of interacting residues in a given protein from the number of non-covalent interacting atoms, using a calculated Ι_ij interaction strength value as the edge weight, where i and j are residue identifiers. This value is calculated on the basis of the number of distinct atom pairs (n_ij) between residues i and j within a distance cutoff of 0.45 nm
Intramolecular Communication in ARID Domains

References

