The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by rot dependent and independent pathways

Jelsbak, Lotte; Ingmer, Hanne; Valihrach, Lukáš; Cohn, Marianne Thorup; Christiansen, Mie H.G.; Kallipolitis, Birgitte H.; Frees, Dorte

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0012752

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
The Chaperone ClpX Stimulates Expression of *Staphylococcus aureus* Protein A by Rot Dependent and Independent Pathways

Lotte Jelsbak¹, Hanne Ingmer¹, Lukáš Valihrach¹, Marianne Thorup Cohn¹, Mie H. G. Christiansen², Birgitte H. Kallipolitis², Dorte Frees¹*

¹ Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark, ²Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark

Abstract

The Clp ATPases (Hsp100) constitute a family of closely related proteins that have protein reactivating and remodelling activities typical of molecular chaperones. In *Staphylococcus aureus* the ClpX chaperone is essential for virulence and for transcription of spa encoding Protein A. The present study was undertaken to elucidate the mechanism by which ClpX stimulates expression of Protein A. For this purpose, we prepared antibodies directed against Rot, an activator of spa transcription, and demonstrated that cells devoid of ClpX contain three-fold less Rot than wild-type cells. By varying Rot expression from an inducible promoter we showed that expression of Protein A requires a threshold level of Rot. In the absence of ClpX the Rot content is reduced below this threshold level, hence, explaining the substantially reduced Protein A expression in the clpX mutant. Experiments addressed at pinpointing the role of ClpX in Rot synthesis revealed that ClpX is required for translation of Rot. Interestingly, translation of the spa mRNA was, like the rot mRNA, enhanced by ClpX. These data demonstrate that ClpX performs dual roles in regulating Protein A expression, as ClpX stimulates transcription of spa by enhancing translation of Rot, and that Rot expression is additionally required for full translation of the spa mRNA. The current findings emphasize that ClpX has a central role in fine-tuning virulence regulation in *S. aureus*.

Editor: Frank R. DeLeo, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America

Received January 20, 2010; **Accepted** August 20, 2010; **Published** September 14, 2010

Copyright: © 2010 Jelsbak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fundings: This work was supported by grants from the Danish Research Council on Technology and Production to Hanne Ingmer and Dorte Frees. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: df@life.ku.dk

Current address: Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Czech Republic

Introduction

Staphylococcus aureus is an opportunistic pathogen capable of causing a variety of diseases in humans, ranging from localized infections of skin and soft tissue to life-threatening systemic infections [1]. The pathogenicity of *S. aureus* relies on a wide array of surface-bound and secreted virulence factors that provide the bacterium with the ability of tissue binding, tissue destruction, and immune evasion [2]. These virulence factors are coordinately produced in a growth phase dependent manner. The cell-surface associated factors are primarily expressed during exponential growth phase, whereas expression of the secreted factors is induced upon transition to stationary phase. For this regulation is the quorum sensing agr locus [3].

Protein A is a major surface bound virulence factor found in all examined strains of *S. aureus* [4]. It is well-known for its ability to bind the Fc-region of IgG from several mammalian species [5]. Additionally, Protein A can bind von Willebrand factor, and is capable of inducing inflammatory responses in the host [5,6]. Accordingly, the importance of Protein A in infections has been demonstrated in several animal models [7–9].

Expression of Protein A is regulated by growth phase and is controlled by complex regulatory networks acting at both the transcriptional, translational and post-translational levels [10–13]. The complex regulation of Protein A expression has been schematically depicted in Fig. 1. At the pinnacle of this regulatory network is the Agr quorum sensing system reviewed in [14]. The effector molecule of the agr quorum sensing system is RNAIII, a small regulatory RNA that is strongly induced in the post-exponential growth phase [14]. RNAIII is 514 nucleotides long and folds into a complex secondary structure comprising 14 distinct stem-loops [15]. Recent evidence supports that RNAIII fulfills its role as a global virulence regulator primarily by controlling translation of target genes [12,16–18]. In regard to Protein A expression, RNAIII acts both directly and indirectly to reduce synthesis of the protein. Directly, RNAIII down regulates expression of Protein A by binding to the *spa* mRNA [12]. This binding reduces Protein A synthesis at two levels, as it both inhibits translation and promotes degradation of the *spa* mRNA [12]. Indirectly, RNAIII reduces transcription of *spa* by inhibiting translation of Rot [17]. As illustrated in Fig. 1, Rot activates *spa* transcription directly by binding to the *spa* promoter, and additionally, by enhancing transcription of sarS, encoded directly upstream of *spa* [11,13]. Similar to Rot, SarS activates *spa* transcription through direct interactions with the *spa* promoter region [10,11,13,19]. The activator activities of Rot and SarS are counterbalanced by the
Bacterial strains and growth conditions

Bacterial strains and plasmids are listed in Table 1. *S. aureus* 8325-4 and SA564 were used as wild-type strains. As primary recipient for plasmids the restriction deficient strain *S. aureus* RN4220 [29,30] was used. *S. aureus* strains were grown in Tryptic Soy Broth media (TSB; Oxoid) under vigorous agitation (200 rpm) at 37°C. Usually 20 ml of medium was inoculated in 200 ml flasks to allow efficient aeration of the medium. For solid medium, 1.5% agar was added to give TSA plates. Erythromycin (5 µg ml⁻¹), chloramphenicol (5 µg ml⁻¹), or tetracycline (5 µg ml⁻¹) was added as required. Upon receipt of the low-passage isolate SA564 (from G. Somerville) the strain was cultured once and stored frozen at −80°C. In all experiments we used SA564 streaked freshly from this stock. *Escherichia coli* strains Top10, Top10F’ or StrataClone Solopack Competent Cells were used for DNA cloning and were grown in Luria–Bertani (LB; Oxoid) broth or on LB agar plates at 37°C. Tetracycline (10 µg ml⁻¹), kanamycin (50 µg ml⁻¹), chloramphenicol (35 µg ml⁻¹) or ampicillin (50 µg ml⁻¹) was added as required.

Plasmid and strain construction

SA564ΔclpX. For construction of SA564ΔclpX, pSaΔclpX from RN4220 [21] was electroporated into competent SA564 cells at 30°C as described in [31]. A strain containing a 655 bp in frame deletion in the clpX gene was obtained by allelic replacement as described in [21], except that the final plasmid-loss was performed at 37°C. Verification of the chromosomal clpX deletion was done as described in [21].

Restoration of the chromosomal clpX locus in 8325-4ΔclpX and SA564 ΔclpX

As we were unable to clone an error-less clpX gene in *E. coli* an alternative strategy was employed to complement the clpX deletion in 8325-4 and SA564:

In the course of attempting to create a clpX deletion in the strain Newman following the same procedure as described in the present manuscript and in [21], we obtained the desired chromosomal deletion of *clpX* (D. Frees, unpublished data). However, following replacement recombination these colonies

Materials and Methods

Bacterial strains and growth conditions

Bacterial strains and plasmids are listed in Table 1. *S. aureus* 8325-4 and SA564 were used as wild-type strains. As primary recipient for plasmids the restriction deficient strain *S. aureus* RN4220 [29,30] was used. *S. aureus* strains were grown in Tryptic Soy Broth media (TSB; Oxoid) under vigorous agitation (200 rpm) at 37°C. Usually 20 ml of medium was inoculated in 200 ml flasks to allow efficient aeration of the medium. For solid medium, 1.5% agar was added to give TSA plates. Erythromycin (5 µg ml⁻¹), chloramphenicol (5 µg ml⁻¹), or tetracycline (5 µg ml⁻¹) was added as required. Upon receipt of the low-passage isolate SA564 (from G. Somerville) the strain was culturedonce and stored frozen at −80°C. In all experiments we used SA564 streaked freshly from this stock. *Escherichia coli* strains Top10, Top10F’ or StrataClone Solopack Competent Cells were used for DNA cloning and were grown in Luria–Bertani (LB; Oxoid) broth or on LB agar plates at 37°C. Tetracycline (10 µg ml⁻¹), kanamycin (50 µg ml⁻¹), chloramphenicol (35 µg ml⁻¹) or ampicillin (50 µg ml⁻¹) was added as required.

Plasmid and strain construction

SA564ΔclpX. For construction of SA564ΔclpX, pSaΔclpX from RN4220 [21] was electroporated into competent SA564 cells at 30°C as described in [31]. A strain containing a 655 bp inframe deletion in the clpX gene was obtained by allelic replacement as described in [21], except that the final plasmid-loss was performed at 37°C. Verification of the chromosomal clpX deletion was done as described in [21].

Restoration of the chromosomal clpX locus in 8325-4ΔclpX and SA564 ΔclpX

As we were unable to clone an error-less clpX gene in *E. coli* an alternative strategy was employed to complement the clpX deletion in 8325-4 and SA564:

In the course of attempting to create a clpX deletion in the strain Newman following the same procedure as described in the present manuscript and in [21], we obtained the desired chromosomal deletion of *clpX* (D. Frees, unpublished data). However, following replacement recombination these colonies

Figure 1. Model depicting the regulatory network controlling Protein A expression. Transcription of *spa* is positively regulated by the transcriptional activators Rot and SarS and negatively regulated by SarA [10,11,13,41]. Translation of *spa* and *rot* mRNAs is inhibited by RNAIII [12]. We hypothesized that ClpX stimulates Protein A expression by stimulating either synthesis or activity of Rot (indicated by the dotted arrow). See text for further details. Solid arrows indicate activation, while solid T-bars indicate repression. Proteins are indicated by spheres. mRNAs are indicated by wavy lines. Promoters are indicated by bent arrows. doi:10.1371/journal.pone.0012752.g001

Materials and Methods

Bacterial strains and growth conditions

Bacterial strains and plasmids are listed in Table 1. *S. aureus* 8325-4 and SA564 were used as wild-type strains. As primary recipient for plasmids the restriction deficient strain *S. aureus* RN4220 [29,30] was used. *S. aureus* strains were grown in Tryptic Soy Broth media (TSB; Oxoid) under vigorous agitation (200 rpm) at 37°C. Usually 20 ml of medium was inoculated in 200 ml flasks to allow efficient aeration of the medium. For solid medium, 1.5% agar was added to give TSA plates. Erythromycin (5 µg ml⁻¹), chloramphenicol (5 µg ml⁻¹), or tetracycline (5 µg ml⁻¹) was added as required. Upon receipt of the low-passage isolate SA564 (from G. Somerville) the strain was cultured once and stored frozen at −80°C. In all experiments we used SA564 streaked freshly from this stock. *Escherichia coli* strains Top10, Top10F’ or StrataClone Solopack Competent Cells were used for DNA cloning and were grown in Luria–Bertani (LB; Oxoid) broth or on LB agar plates at 37°C. Tetracycline (10 µg ml⁻¹), kanamycin (50 µg ml⁻¹), chloramphenicol (35 µg ml⁻¹) or ampicillin (50 µg ml⁻¹) was added as required.

Plasmid and strain construction

SA564ΔclpX. For construction of SA564ΔclpX, pSaΔclpX from RN4220 [21] was electroporated into competent SA564 cells at 30°C as described in [31]. A strain containing a 655 bp inframe deletion in the clpX gene was obtained by allelic replacement as described in [21], except that the final plasmid-loss was performed at 37°C. Verification of the chromosomal clpX deletion was done as described in [21].

Restoration of the chromosomal clpX locus in 8325-4ΔclpX and SA564 ΔclpX

As we were unable to clone an error-less clpX gene in *E. coli* an alternative strategy was employed to complement the clpX deletion in 8325-4 and SA564:

In the course of attempting to create a clpX deletion in the strain Newman following the same procedure as described in the present manuscript and in [21], we obtained the desired chromosomal deletion of *clpX* (D. Frees, unpublished data). However, following replacement recombination these colonies
still maintained a plasmid-borne copy of the intact clpX gene (and its promoter). This plasmid was transformed into SA564 and 8325-4, and used to restore the chromosomal clpX locus by doing the same double cross-over procedure as initially used to create the clpX deletion [21]. Colonies containing an intact chromosomal copy of the clpX gene were identified by colony PCR using the primers SaclpX385f (5'-GACGATGCAGAACAACGTG) and SaclpX2447r (5'-CCATACCCTGGAACATCCAC), and subsequently plasmid loss was achieved by growing at the non-permissive temperature.

Table 1. Bacterial strains and plasmids used.

<table>
<thead>
<tr>
<th>S. aureus strains</th>
<th>Relevant genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>8325-4</td>
<td>Reference strain</td>
<td>[29]</td>
</tr>
<tr>
<td>RN4220</td>
<td>Restriction-deficient mutant of 8325-4</td>
<td>[30]</td>
</tr>
<tr>
<td>RN6911</td>
<td>8325-4, agr:tetM (Tet<sup>R</sup>)</td>
<td>[46]</td>
</tr>
<tr>
<td>HI2209</td>
<td>8325-4: ΔclpX</td>
<td>[21]</td>
</tr>
<tr>
<td>HI2433</td>
<td>8325-4, rot:TN917</td>
<td>[47]</td>
</tr>
<tr>
<td>DF2269</td>
<td>8325-4: ΔclpX, agr:tetM (Tet<sup>R</sup>)</td>
<td>[20]</td>
</tr>
<tr>
<td>LJ93</td>
<td>8325-4/pLOJ132, (Erm<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ97</td>
<td>agr/pLOJ132, (Erm<sup>R</sup>) (Tet<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ94</td>
<td>ΔclpX/pLOJ132, (Erm<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ135</td>
<td>ΔclpX; agr/pLOJ132, (Erm<sup>R</sup>) (Tet<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ98</td>
<td>8325-4/pLOJ133, (Erm<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ102</td>
<td>agr/pLOJ133, (Erm<sup>R</sup>) (Tet<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ99</td>
<td>ΔclpX/pLOJ133, (Erm<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ133</td>
<td>ΔclpX; agr/pLOJ133, (Erm<sup>R</sup>) (Tet<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ113</td>
<td>8325-4/pUG520, (Erm<sup>R</sup>)</td>
<td>[12]</td>
</tr>
<tr>
<td>LJ117</td>
<td>agr/pUG520, (Erm<sup>R</sup>) (Tet<sup>R</sup>)</td>
<td>[12]</td>
</tr>
<tr>
<td>LJ115</td>
<td>ΔclpX/pUG520, (Erm<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ121</td>
<td>ΔclpX; agr/pUG520, (Erm<sup>R</sup>) (Tet<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>HI2438</td>
<td>8325-4, hfq mutant (Cam<sup>R</sup>)</td>
<td>This work.</td>
</tr>
<tr>
<td>LJ118</td>
<td>WA525/pWA163.</td>
<td>This work.</td>
</tr>
<tr>
<td>SA564</td>
<td>Clinical isolate</td>
<td>[37]</td>
</tr>
<tr>
<td>HI2781</td>
<td>SA564:: ΔclpX</td>
<td>This work.</td>
</tr>
<tr>
<td>HI2870</td>
<td>8325-4: ΔclpX-clpX</td>
<td>This work.</td>
</tr>
<tr>
<td>HI2871</td>
<td>SA564:: ΔclpX-clpX</td>
<td>This work.</td>
</tr>
</tbody>
</table>

E. coli strains

- Top10: Cloning strain Invitrogen
- Top10F*: Cloning strain Invitrogen
- ER2566: Protein expression strain NEB
- Stratagene cells: Cloning strain Stratagene

Plasmids

- pET28a⁺: Histag vector (Kan^R) Novagen
- pET100/D: Histag vector (Amp^R) Invitrogen
- pRM2C: shuttle-vector with tet-inducible promoter (Cam^R) [32]
- pLOJ104: pET28⁺ derivative with rot -his6 (Kan^R) This work.
- pET100clpX: pET100/D-derivative with clpX-his6, (Amp^R) This work.
- pLUG520: Prop8:spa lacZ translational fusion, (Erm^R) [12]
- pLOJ132: Prop8:rot lacZ translational fusion, (Erm^R) This work.
- pLOJ133: Prop8: lacZ transcriptional fusion, (Erm^R) This work.
- pUC19: E. coli cloning vector (Amp^R) This work.
- pLOJ131: Prop8:rot lacZ fusion in pUC19 (Amp^R) This work.
- pWA163: PstI:rot (Tet^R) [11]
- pASrot: PstI:rot (anti-sense) (Cam^R) This work.

doi:10.1371/journal.pone.0012752.t001
Construction of pASrot expressing anti-sense rot from an inducible promoter

To vary the Rot content in SA564 we used the expression vector pRMC2 [32]. This plasmid harbors an improved copy of the tetO promoter in pALC2073 that ensures complete repression when non-induced and high expression when induced by anhydrotetracycline. The rot gene was PCR-amplified from 3825-4 chromosomal DNA using the primers KpmI-rotF (5' - TTACCATGGTACACCAATGGGAGATGTTTAGCATG-3') and PsporRev (5'-AGCTC CCAACGTAATCATGCTCCAT) which, except for the added restriction sites (underlined), are the same primers that J. Oscarsson used to clone rot in pWA163 [11]. The PCR-fragment was TOPO-cloned (Invitrogen), and after confirming that the resulting plasmid contained an error-less rot-gene, it was cloned into pRMC2 in the anti-sense orientation using SacI and EcoRI. The plasmid was first introduced into RN4220, purified from this strain using the Qiagen Plasmid Midi prep kit and then introduced into SA564 by electroporation as described by [31].

pLOJ132. A fragment containing the rpoB-promoter region, the first part of the rpoB-leader, but leaving out the Shine-Dalgarno and startcodon was PCR amplified using the primers Ppsofwd and Ppsorev (5'- ATATGAATCTGTAAAAGGAAAGTGATGC-3') and PpsofRev (5'-TCAGGTACAAAAATTTATGTTGCGCTTTAGG-3'), digested with EcoRI and Kpnl and inserted into pUC19 generating pLOJ130. A fragment containing part of the rpoB-leader [33] and the first 3 aa codons was PCR amplified using the primers rpoB-rotmF (5'-GGATTTCCATATGAA-3') and rpoB-rotrev (5'-GCGGA TCCT-3'), digested with EcoRI and BamHI and inserted into pLOJ130 generating pLOJ131. Subsequently, an EcoRI–BamHI–fragment from pLOJ131 containing the Ppsof-rpoB-leader was gel purified (GFX) and ligated into pLUG520 where the Ppsof-rpoB-fragment had been excised using the same enzymes. This resulted in pLOJ132; Ppsof-rpoB-leader translationally fused to lacZ in a pLUG520 derivative.

pLOJ133. A fragment containing the rpoB-promoter region, the rpoB-leader, and the Shine-Dalgarno and startcodon was PCR amplified using the primers Ppsofwd and Ppsofrev (5'- GCAGTCTGTAAAAGGAAAGTGATGC-3') and PpsofRev (5'-GGATTTCCATATGAA-3'), digested with EcoRI and BamHI and ligated into pLUG520 where the Ppsof-rpoB-fragment had been removed using the same enzymes. This resulted in pLOJ133; Ppsof translationally fused to lacZ in a pLUG520 derivative. The plasmids were introduced into S. aureus strain RN4220 by electroporation and purified using the miniprep kit from Omega. The plasmid isolation procedure was modified by incubating the cell suspension in solution I containing 50 µg ml⁻¹ lysostaphin (Sigma) for 1 h at 37°C. The purified plasmids were subsequently introduced into other S. aureus strains by electroporation. Transductions were performed as described by [34] using Φ11.

Overexpression and purification of Rot and ClpX Has-tagged fusion proteins and generation of anti-Rot- and anti-ClpX antibodies

A fragment containing the full-length rot gene was generated by PCR using primers o-loj-rot7 (5'-GGATTTCCATATGAAAAAAATGAATACGACACTG-3') and o-loj-rot10 (5'-GGGGATTCTTACACAGAATATCGTTTACTAATTGC-3'), digested with NdeI and EcoRI and cloned in-frame with six N-terminal histidine codons downstream of the IPTG-inducible T7 promoter of pET28a+ (Novagen) resulting in plasmid pLOJ104. DNA sequence analysis was performed to verify the construction and the absence of mutations. However, we were unable to recover error-less clones and for the purpose of antibody production we chose to continue with a clone containing a mutation leading to an Ala129→Arg substitution.

A fragment containing the full-length clpX gene was generated by PCR using primers ClpX100fwd (5'-TTACCATGGTACACCAATGGGAGATGTTTAGCATG-3') and ClpX100rev (5'-TTAACGCGATGTTTACATTAAATGAATTGC-3'), TOPO-cloned into pET100/D/TOPO (Invitrogen) in-frame with six N-terminal histidine codons downstream of the IPTG-inducible T7 promoter resulting in plasmid pET100clpX. DNA sequence analysis was performed to verify the construction and the absence of mutations. However, we were unable to recover error-less clones and for the purpose of antibody production we chose to continue with a clone containing a single amino substitution.

To induce synthesis of the His-tagged Rot and ClpX proteins in E. coli ER2566/pLOJ104 and ER2566/pET100clpX were grown in 2xLB to an OD600 of 1.0 and then induced by adding IPTG to a final concentration of 1.0 mM for 2 h. The overexpressed proteins were purified on a Nickel NTA resin as described by the manufacturer (Qiagen) and 200 µg of pure protein was used to immunize a rabbit (antibodies were produced by CovalAB Company) using standard procedures (Sambrook et al., 1989).

Overexpression and purification of Hfq protein and generation of anti-Hfq-antibodies

For purification of Hfq, the intein system (Impact-CN; New England Biolabs) was used. Protein purification was performed as described previously [35]. Anti-Hfq-antibodies were produced by Charles River Laboratories by immunizing rabbits with purified Hfq protein. The specificity of the antibody was tested by Western blot analysis on purified Hfq protein and protein extracts.

Western blotting

S. aureus strains were grown in TSB as specified above. Exponential cells were harvested at OD600 = 1.0 (+/-0.1), and post-exponential samples at OD600 = 2.0 (+/-0.1), or OD600 = 3.0 (+/-0.1), and used for isolation of intracellular proteins. One ml aliquots were harvested and kept at -80°C until all samples were collected. The cell pellets were thawed on ice, resuspended in 50 mM TrisHCl, pH 7.4 to a calculated OD600 of 10.0. PMSF, Dnase, Rnase and lysostaphin were added to the samples, and they were incubated at room-temperature for 15 min. Cellular debris was removed by centrifugation and the protein concentration of each sample was measured using the Bradford dye-binding procedure from Bio-Rad. For immunoblotting a total of 5 µg (or 10 µg for Hfq-immunoblotting) of each sample was loaded on NuPAGE® 4–12% Bis-Tris gels (Invitrogen) using MOPS-Buffer (Invitrogen). The proteins were blotted onto a polyvinylidene difluoride membrane using the XCell II blotting module (Invitrogen). The membranes were pre-blocked with IgG. The Rot and ClpX proteins were probed using Rabbit-anti-Rot-antibody or Rabbit-anti-ClpX-antibody at a 1:2000 dilution. Protein A was probed using monoclonal Mouse-anti-Protein-A-antibodies (Sigma) at a 1:10000 dilution. The Hfq protein was probed using anti-Hfq antibodies at a 1:2500 dilution. Bound antibody was detected with the WesternBreeze Chemiluminescent Anti-Rabbit kit or Anti-mouse kit (Invitrogen). All Western blots were repeated at least three times with similar results.

RNA extraction and Northern blot analysis

Cells were grown in TSB at 37°C with shaking to the indicated OD600. 1 ml aliquots were harvested and immediately frozen and
stored at -80°C. Cells were lysed mechanically using the FastPrep system (Bio101; Q-biogene), and RNA was isolated using the RNeasy mini kit (QIAGEN, Valencia, Calif.) according to the manufacturer’s instructions. Total RNA was quantified by spectrophotometric analysis (λ = 260 nm), and 5 μg of RNA of each preparation was loaded onto a 1% agarose gel and separated in 10 mM sodium phosphate buffer as described previously [20].

RNA was transferred to a positively charged nylon membrane (Boehringer Mannheim) by capillary blotting as described by Sambrook et al. Hybridization was performed according to [20] using gene-specific probes that had been labeled with [32P]dCTP using the Ready-to-Go DNA-labeling beads from Amersham Biosciences. Internal fragments of the rot gene (amplified with the primers o-loj-rot-7 and o-loj-rot-10), spa (amplified with the primers described in [20]) or the mali gene (amplified with the primers 5'-GATCAGAGAGTTATGG + 3'-CATGAGTCCAGG) were used as template in the labeling reactions. All steps were repeated in three independent experiments giving similar results.

Measurements of β-galactosidase activity

Cells were grown in TSB as described above to the indicated OD600. 1 ml aliquots were harvested and immediately frozen and stored at -20°C. Cell pellets were resuspended in 300 μl 0.9% NaCl containing 5 μg/ml lysostaphin and incubated at 37°C for 15 min until the samples became clear indicating lysis was complete. Cellular debris was removed by centrifugation and the samples were transferred to fresh tubes. The protein concentration of each sample was measured using the Bradford dye-binding procedure from Bio-Rad. Expression of β-galactosidase was quantified by adding 400 μl Z-buffer containing 1 mg/ml ONPG to 100 μl of each sample as described previously [36]. Samples were incubated at 37°C until the solution had become yellow or not longer than 180 min. The reaction was stopped by adding 500 μl 1 M NaCO3 and β-galactosidase activity was measured at OD420 and the specific activity (1 unit = 1 nmole o-nitrophenol produced per min per mg protein) was calculated. All steps were repeated in three independent experiments giving similar results.

Statistical analysis. All significant values were determined using the 2 sample t-test with unequal variances. Error bars represent standard deviations.

Results

Cells lacking ClpX contain reduced levels of the Rot transcriptional regulator

Similar to the transcriptional regulator Rot, ClpX is required for transcription of the spa gene, encoding Protein A [20,21]. Based on this observation we proposed that the chaperone activity of ClpX is required either to activate Rot, or, to control expression of Rot [20]. To estimate the level of Rot protein in the clpX mutant cells, we prepared polyclonal antibodies against Rot. The Rot antibodies were used to determine the relative amount of Rot protein in wild-type cells and in cells carrying deletions in clpX, clpP, or agr. As translation of the rot mRNA is inhibited by RNAIII [17], the Rot level was assayed both in exponential growth phase (prior to induction of RNAIII) and in post-exponential growth phase (RNAIII induced) (Fig. 2). The anti-Rot antibodies recognized a protein of the expected 16 kDa that was absent in protein extracts derived from the rot mutant (Fig. 2A). In wild-type cells the Rot protein was most abundant during exponential growth phase (Fig. 2A), which is consistent with the inhibitory role of RNAIII on rot translation [17,18]. In post-exponential cells the Rot level was gradually reduced, reaching 75% and 50% of the exponential level at OD600 = 2.0 and 3.0, respectively. In accordance with the proposed model, the down regulation of Rot was clearly dependent on agr. Interestingly, cells lacking ClpX contained 2–3 fold less Rot protein than wild type-cells at all assayed time-points (Fig. 2A). As restoration of the chromosomal clpX locus, resulted in wild-type expression of both Rot and Protein A we conclude that ClpX indeed has a stimulatory effect on Rot synthesis (Fig. 2B and data not shown).

Figure 2. Expression of Rot is decreased in cells lacking ClpX. Proteins from wild-type, and clpX, rot, or agr mutant cells, (A), wt, clpX mutant cells and clpX complemented clpX mutant cells (ΔclpX+clpX) (B), and wild-type and clpP mutant cells (C) were extracted from exponential (OD600 = 1.0 (+/- 0.1) or post-exponential cells (OD600 = 2.0 (+/- 0.1) and OD600 = 3.0 (+/- 0.1) as indicated. In each blot extracted proteins were separated by SDS-PAGE, blotted onto a PVDF membrane and probed with Rot antibody (A, B, central panel and, C) and ClpX antibody (B, upper panel). To visualize equal loading, signals detected from non-specific binding of the Rot antibody to an unknown cellular protein are shown. The Rot protein levels in (A) and (C) were quantified relative to the wild-type Rot in exponential cells (100%) using NIH image 1.40. The ClpX protein, Rot protein and loading control protein levels in (B) were quantified relative to the wt level (100%) using Gene-snap from Perkin Elmer. The Western blots were repeated in at least 4 independent experiments giving similar results.

doi:10.1371/journal.pone.0012752.g002
The post-exponential down regulation of Rot was still observed in the clpX mutant, indicating that the effect of ClpX and RNAIII on Rot expression is mediated by different pathways. Moreover, cells lacking clpP contained wild-type levels of Rot protein at all assayed time-points (Fig. 2C), signifying that ClpX enhances Rot expression independently of ClpP.

Expression of spa is activated above a threshold level of Rot

After confirming that ClpX is required for full expression of Rot, we examined whether the 2–3 fold reduction of the Rot level can explain the dramatically reduced Protein A level of the clpX mutant [20]. To control the Rot-level, we employed a rot mutant that harbours a plasmid carrying the rot gene transcribed from a xylose inducible promoter [11]. Protein samples were derived from exponential cultures grown with varying amounts of xylose, and were used for Western blot detection of Rot and Protein A. As seen in Fig. 3, upper panel, Rot expression increased with increasing concentrations of xylose, and with 4% added xylose the Rot level approached the wild-type level. The experiment clearly demonstrated that Protein A synthesis was dependent on the Rot levels (Fig. 3, central panel). Specifically, Protein A expression remained low until the level of Rot protein constituted approximately 75% of the wild-type level. As Rot controls Protein A synthesis at the level of transcription, this finding indicates that a threshold concentration of Rot must be exceeded to obtain induction of spa transcription. Importantly, in the clpX mutant, the Rot level was below this threshold level (the level was comparable to the Rot level in cells grown in the presence of 0.5–1% xylose). Hence, this experiment confirms that the reduced level of Rot in the clpX mutant can explain the severely reduced spa transcription in this strain [20]. Additionally, our results suggest that Protein A expression is regulated by a threshold mechanism.

rot transcription is slightly reduced in clpX and clpP mutant cells

We next attempted to pin-point the level at which ClpX mediates its affect on Rot synthesis. We first examined if ClpX controls Rot synthesis at the level of transcription. To this end, Northern blot analysis was performed to determine the level of rot transcript in exponential and post-exponential wild-type, clpX, and clpP mutant cells (Fig. 6). The Northern blot revealed that both clpX and clpP mutant cells contained rot-transcript levels that were slightly reduced compared to wild-type levels. As described above, the Rot protein level in the clpP mutant strain was comparable to the wild-type level, suggesting that the reduced rot transcription in clpX and clpP mutant strains is not reflected at the protein level. The Northern blot also revealed that in all strains transcription of rot increased in the post-exponential growth phase, as also reported by others [18]. The post-exponential induction of rot transcription occurs concomitantly with the down-regulation of Rot at the protein level emphasizing the significance of posttranscriptional regulation in Rot expression. From this experiment, we conclude that ClpX controls Rot synthesis mainly at the post-transcriptional level.

C1pX does not control Rot expression by stimulating transcription of RNAIII

Next, we addressed if ClpX controls Rot expression by enhancing expression of RNAIII that is an inhibitor of Rot translation [17]. To this notion, the level of RNAIII in wild-type,
and clpX mutant cells in exponential and post-exponential growth phase was determined by Northern blot analysis (Fig. 7). The experiment demonstrated that the RNAIII level in the clpX mutant does not deviate from the wild-type levels. Hence, we ruled out that the reduced Rot level in the clpX mutant is accomplished through an increase in RNAIII synthesis.

ClpX stimulates translation of rot mRNA

To investigate directly whether ClpX regulates Rot translation, a translational fusion between the 5′-rot-leader and lacZ was constructed as depicted in Fig. 8A. This construct encompasses the RNAIII interacting region, the ribosome binding site, and the first three amino acid codons of the rot leader translationally fused to lacZ [17,33]. Transcription of the fusion is driven by the constitutive promoter P\textsubscript{rpoB}. The plasmid harbouring the rot-translational fusion was introduced into wild-type, and agr, clpX, clpP, and agr;clpX mutant strains, and β-galactosidase activity was assayed in samples derived from post-exponential cultures (Fig. 8B). The assay revealed that β-galactosidase activity was almost five fold higher in the agr mutant than in the wild-type (Fig. 8B). This suppressive effect of RNAIII on rot-translation is in the same range as observed by others and, thus, validates the constructs [17].

While samples derived from clpP mutant cells expressed wild-type levels of β-galactosidase (data not shown), β-galactosidase activity was reduced approximately two fold compared to wild-type in clpX mutant cells. This two-fold difference was statistically significant (wild-type different from clpX; P-value = 0.008), indicating that ClpX indeed has a positive effect on translation of rot. Interestingly, β-galactosidase activity in the agr, clpX double mutant was substantially reduced compared to the activity measured in the agr single mutant strain. This suggests that even though the inhibitory effect of RNAIII is relieved by a deletion of the agr locus, translation of Rot still depends on ClpX. Taken
together; these results specify that ClpX stimulates translation, and that the role of ClpX in translation is not linked to the RNAIII mediated inhibition of translation.

ClpX stimulates translation of spa mRNA but not of rpoB mRNA

Huntzinger et al. showed that translation of spa (Protein A), similar to translation of Rot, is inhibited by RNAIII [12]. To examine if ClpX has a role in translation of Protein A, the plasmid, pLUG520, carrying the P_rpoB-spa-lacZ translational fusion used by Huntzinger et al. [12] was introduced into wild-type and mutant strains. This construct encompasses the constitutive rpoB promoter and the first 63 nucleotides of the spa mRNA (including the sites for RNAIII interaction) fused in frame with lacZ deleted of its ribosomal binding site, and thus specifically measures the translational activity of the spa-leader. In samples derived from post-exponential cultures, β-galactosidase activity was approximately 1.5 fold higher in the agr background than in the wild-type background, in accordance with previous results obtained by Huntzinger et al. [12] (Fig. 8C). Importantly, the absence of ClpX reduced β-galactosidase activity expressed from the spa-lacZ translational fusion approximately 5 fold, both in wild-type and in cells devoid of agr/RNAIII. We conclude that translation of spa mRNA, similar to translation of rot mRNA, is positively affected by ClpX and that the positive effect of ClpX on spa and rot translation occurs independently of RNAIII.

To investigate if ClpX also contributes to translation of mRNAs not interacting with RNAIII, we examined expression of the house-keeping gene rpoB in the clpX mutant by using a translational fusion between the rpoB promoter and lacZ (pLOJ133). With this plasmid, β-galactosidase activity was similar in samples derived from all strains demonstrating that neither RNAIII nor ClpX regulates expression of RpoB (Fig. 8D).

Discussion

Protein A is an abundant surface protein that by its ability to bind the Fc fragment of immunoglobulins from mammalian species is believed to be important for immune evasion of S. aureus [5]. Previously, we have shown that ClpX (but not ClpP), similar to the transcriptional regulator Rot, is essential for transcription of the spa gene encoding Protein A, and therefore we hypothesized that the chaperone activity of ClpX is required for either synthesis or activity of Rot [20]. In the present study we confirm that ClpX is indeed required for full expression of Rot, as cells devoid of ClpX contain approximately 2–3 fold less Rot protein than wild-type cells. This finding raised the question whether the relatively modest 2–3 fold reduction in the cellular Rot level is sufficient to abolish spa transcription. We confirmed this by varying Rot expression from an inducible promoter and demonstrated that a 2 fold reduction in Rot expression causes a dramatic 90% reduction in Protein A expression in both 8325-4 and the low-passage clinical isolate SA564 [40]. This finding emphasizes that major changes in Protein A expression may be achieved by small reductions in the Rot level and suggests that a threshold level of Rot is needed for synthesis of protein A.

Rot stimulates Protein A transcription both directly, by binding to the spa promoter, and indirectly by enhancing transcription of...
Figure 8. Translation of Rot and Protein A is decreased in the absence of ClpX. (A) Schematic drawing of the lacZ translational fusion points in pLOJ132 and pLOJ133. pLOJ132 is a P_{ppb}-rot-lacZ translational fusion. Transcription is driven from the constitutive P_{ppb} promoter. The rot-leader encompassing the RNAIII interacting region from +162 to +250 (numbered with respect to the transcriptional start site) is translationally fused to the lacZ gene. pLOJ133 is a P_{ppb}-lacZ translational fusion. (B) β-Galactosidase activity measured in post-exponential (OD_{600} = 2.0) wild-type- and, clpX, agr, and agr;clpX mutant strains harbouring pLOJ133. The specific activities are presented as a percentage of the wild-type activity (100%). P-values were calculated using the two-sample t-test with unequal variances: wild-type different than clpX: P-value = 0.008; agr different than agr;clpX: P-value = 0.0004. The statistical calculations were based on five independent experiments. (C) Protein A translation was measured as β-Galactosidase activity expressed from pLUG520 in wild-type- and clpX, agr, and agr;clpX mutant cells in the post-exponential growth phase (OD_{600} = 2.0). Specific
activities are presented relative to the wild-type level (100%). (D) β-Galactosidase activity measured in post-exponential (OD600 = 2.0) wild-type and mutant cells that harbour plOJ133 carrying a translational fusion between rpoB and lacZ. The specific activities have been calculated relative to the wild-type level (100%). Each experiment was performed at least four independent times with similar results.

doi:10.1371/journal.pone.0012752.g008

Figure S1 Hfq could not be detected in Western blot analysis. Cells were harvested in early stationary phase or late stationary phase. Cells were lysed as described in materials and methods and total protein extract were separated on an SDS-gel. 10 μg protein was loaded (0.5 μg purified S. aureus Hfq protein) and samples were heated to 95°C for 20 min prior to loading. For comparison of protein sizes, the PageRulerTM Plus Prestained Protein Ladder (Fermentas) was included (not shown). The Hfq antibody specifically recognizes the monomeric and multimeric species of protein A. Secondary structure determinations of the spa- and rot-mRNAs reveal that the translational signals are partially obscured in the stem-loop structures, also when not bound to RNAIII [12,17]. Consequently, it is possible that the structures of the spa and rot transcripts required for interactions with RNAIII could hamper interactions with the ribosomes even in the absence of RNAIII. Hence, one way ClpX may promote translation of the spa and rot mRNAs is by, directly or indirectly, unfolding the stem-loop structures to facilitate interaction of these mRNAs with the translational apparatus.

In S. ecal, the abundant RNA chaperone Hfq has a central role in translational stimulation of specific mRNAs [42]. Hfq is the only RNA chaperone yet identified in S. aureus. Accordingly, Hfq could be a candidate through which ClpX mediates its function in translational stimulation. However, recently the biological significance of Hfq in S. aureus was questioned by the lack of phenotypes of an hfg mutant and by the lack of detection of the hfg mRNA [18,40]. Consistent with this finding we were not able to detect Hfq in our strains when performing Western blot analysis using anti-Hfq polyclonal antibodies (raised against Hfq purified from S. aureus, see Materials and Methods, Supplemental Fig. S1). Furthermore, as both expression of Protein A and Rot did not change in strains lacking Hfq [40], it seems unlikely that the stimulatory effect of ClpX on translation of the rot- and spa transcripts is mediated through Hfq. Rather, S. aureus may harbour a yet unidentified RNA chaperone that is subject to regulation by ClpX.

An intriguing alternative possibility is that ClpX could affect translation through direct binding to specific mRNAs. The ClpX family of proteins contains a C4 zinc-binding domain in the N-terminal region and this type of domain has been implicated in nucleic acid binding in both eukaryotic and prokaryotic organisms [43,44]. In addition, a eukaryotic relative of ClpX, the HSP101 heat shock protein of plants specifically binds to and stimulates translation of the A-rich 5’ un-translated leader of the tobacco mosaic virus [45]. Inspection of the three-dimensional structure of ClpX, furthermore, reveals a striking resemblance to the RNA binding protein Hfq as both proteins form homo-hexameric ring-structures with similar sizes of the central pores. Further experiments are underway to determine the mechanisms of ClpX mediated translational stimulation.

In conclusion, we have shown that ClpX has a dual role in stimulating Protein A synthesis, as ClpX enhances both transcription (through enhancing synthesis of Rot), and translation of spa. Our findings emphasize that ClpX through its role in fine-tuning the level of the central regulator Rot holds an important role in controlling global expression of virulence factors in S. aureus.
References