Intracellular pH gradients in migrating cells
Martin, Christine; Pedersen, Stine Helene Falsig; Schwab, Albrecht; Stock, Christian

Published in:
American Journal of Physiology: Cell Physiology

DOI:
10.1152/ajpcell.00280.2010

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Intracellular pH gradients in migrating cells
Christine Martin, Stine F. Pedersen, Albrecht Schwab and Christian Stock
doi: 10.1152/ajpcell.00280.2010

You might find this additional info useful...

This article cites 44 articles, 24 of which you can access for free at:
http://ajpcell.physiology.org/content/300/3/C490.full#ref-list-1

This article has been cited by 1 other HighWire-hosted articles:
http://ajpcell.physiology.org/content/300/3/C490#cited-by

Updated information and services including high resolution figures, can be found at:
http://ajpcell.physiology.org/content/300/3/C490.full

Additional material and information about American Journal of Physiology - Cell Physiology can be found at:
http://www.the-aps.org/publications/ajpcell

This information is current as of November 22, 2012.
Intracellular pH gradients in migrating cells

Christine Martin,1 Stine F. Pedersen,2 Albrecht Schwab,1 and Christian Stock1

1Institute of Physiology II, University of Muenster, Muenster, Germany; and 2Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark

Submitted 20 July 2010; accepted in final form 6 December 2010

Intracellular pH (pHi) gradients contribute to cell migration, e.g., in fibroblasts (4, 29) and tumor cells (39). NHE1, which accumulates at the leading edge (16) and expels Na+/H+ exchanger proton gradients to flatten or disappear. In conclusion, pH i gradients are essential for cell migration and accumulate at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pHi was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH between the front and the rear end (ΔpHi, front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na+ caused the pH gradient to flatten or disappear. In conclusion, pHi gradients established by NHE1 activity exist along the axis of movement.

CELL MIGRATION IS A MULTISTEP process and requires the precise coordination of adhesion to the matrix and cell protrusion at the leading edge as opposed to detachment from the matrix and cell retraction at the rear end. Hence, one essential characteristic of migrating cells is their polarization along the direction of movement (27). This morphological and functional polarization is based on an uneven distribution of adhesion proteins (23), ion channels and transporters (30), and signaling molecules (27). The importance of spatial asymmetry in migrating cells has been shown for small GTPases (Rho, Rac, and Cdc42) (27). The importance of spatial asymmetry in migrating cells is their polarization along the direction of movement (27). This morphological and functional polarization is based on an uneven distribution of adhesion proteins (23), ion channels and transporters (30), and signaling molecules (27). The importance of spatial asymmetry in migrating cells has been shown for small GTPases (Rho, Rac, and Cdc42) (27).

The pH of 7.0 was chosen because both the human (MV3) and the murine (B16) melanoma cells show their maximum migratory activity (36, 42) at this extracellular pH. Moreover, B16 cells are most invasive at pH 7.0 (42). And in tumors, the extracellular pH is acidic (4, 11). However, so far the postulated pHi gradient has not been demonstrated experimentally in migrating cells.

MATERIALS AND METHODS

Cells and Cell Culture

All cells were grown at 37°C in a humidified atmosphere of 5% CO2-95% air. A human cell line [MV3 (43)] and a murine [B16V (8)] melanoma cell line were grown in bicarbonate-buffered RPMI 1640 (Sigma, Taufkirchen, Germany), transformed Madin-Darby canine kidney epithelial (MDCK-F) cells (21) in Earle’s MEM (PAW), and the EA.hy926 human endothelial cell line (7) and NIH3T3 mouse fibroblasts (14) in DMEM 41965 (GIBCO). All media were supplemented with 10% fetal bovine serum.

The five cell lines were chosen since, although of completely different origin, all of them share the ability to polarize and to feature intrinsic migratory activity without being in need of additional stimuli or specific directional cues. Under subconfluent conditions, the typical migration speeds in single, unstimulated, randomly migrating cells come to (μm/min) ~0.7 in MV3 (36), ~0.4 in B16V (n = 25 cells from N = 4 experiments, unpublished observations; in B16-F10 up to 1 μm/min (20)), 0.8 in MDCK-F (5, 33), ~0.49 in EA.hy926 cells (n = 16 cells from N = 4 experiments; unpublished observations; 44) and to ~0.7 μm/min in NIH3T3 fibroblasts (32).

Experimental Solutions

Measurements of pHi were performed using HEPES-buffered Ringer solutions of pH 7.0 containing (in mmol/l) 122.5 NaCl, 5.4 KCl, 0.8 MgCl2, 1.2 CaCl2, 1.0 Na2HPO4, 2H2O, 5.0 glucose, and 10.0 HEPES. Ringer pH was adjusted by adding 1 M NaOH. For inhibition of NHE1, either HOE642 (Cariporide; 10 μmol/l) was added or the cells were superfused with a Na+/H+ free Ringer solution containing N-methyl-D-glucamine (NMDG) instead of Na+.

To check the contribution of bicarbonate (HCO3-), the local, cytosolic pH, one set of experiments on MV3 cells was performed in HCO3-/buffered Ringer solution of pH 7.0 containing (in mmol/l) 106.0 NaCl, 5.4 KCl, 0.8 MgCl2, 1.2 CaCl2, 0.8 Na2HPO4 × 2H2O, 0.2 NaH2PO4 × H2O, 24.0 NaHCO3, and 5.5 glucose. pH was kept at 7.0 by continuous CO2-gassing during the measurements [11.7% CO2; Pco2 in the experimental solution was 89 mmHg as determined by a blood gas analyzer (model ABL5, Radiometer, Brønshøj, Denmark)].

The pH of 7.0 was chosen because both the human (MV3) and the murine (B16) melanoma cells show their maximum migratory activity (36, 42) at this extracellular pH. Moreover, B16 cells are most invasive at pH 7.0 (42). And in tumors, the extracellular pH is generally more acidic than 7.4. For these reasons it is quite relevant to assess the motility at a lower pH.

Immunofluorescence of NHE1

Murine melanoma cells. B16V cells seeded on coverslips coated with a basement membrane-like matrix (in mg/ml: 0.4 collagen type IV, 0.003 laminin, 0.03 fibronectin in HEPES-buffered RPMI, pH 7.4) were treated with cold 0.2% Triton X-100 in phosphate-buffered saline (PBS) for 10 min before fixation. They were then fixed in 3.5% paraformaldehyde in PBS for 45 min at 4°C. Nonspecific binding sites were blocked with 2% BSA (wt/vol) and 0.2% (wt/vol) gelatine in

http://ajpcell.physiology.org/ Downloaded from http://ajpcell.physiology.org/ at Copenhagen University Library on November 22, 2012

Address for reprint requests and other correspondence: C. Stock, Institute of Physiology II, Robert-Koch-Str. 27b, D-48149 Münster, Germany (e-mail: cstock@uni-muenster.de).
PBS. After the cells were stained with the primary antibody (NHE1-mAb, BD Biosciences Pharmingen) for 1 h and a Cy3-conjugated secondary antibody for 45 min, the slide preparations were fixed once again, washed in PBS, and covered with Vectashield (Vector Laboratories, Burlingame, CA). Images were taken using an inverted microscope (Axiovert200, Carl Zeiss, Göttingen, Germany), a digital camera (model 9.0, RT-SE-Spot, Visitron Systems), and MetaVue software.

Marine fibroblasts. Immunofluorescence labeling of NHE1 in NIH3T3 cells was carried out essentially as previously described (26). Cells were fixed in 2% paraformaldehyde (15 min room temperature, 30 min on ice), washed in Tris-buffered saline (TBS), permeabilized for 10 min in 0.2% Triton X-100 in TBS, blocked for 30 min in 5% BSA in TBST (TBS + 0.1% Triton), incubated with rabbit polyclonal NHE1 antibody (a kind gift from Mark Musch, University of Chicago) 1:100 in TBST + 1% BSA (TBST-BSA) overnight at 4°C, washed in TBST-BSA, and incubated with AlexaFluor488-conjugated anti-rabbit secondary antibody (Invitrogen, 1:400 in TBST-BSA, 1 h), followed by further washes in TBST-BSA and mounting in N-propylgallate mounting medium (2% wt/vol in PBS-glycerine). Cells were visualized using ×100/1.4 numerical aperture plan-apochromat objectives and the 488 nm Ar/Kr and 365 UV laser lines of a Leica DMR-IRB/E microscope with a Leica TSC-NT confocal laser-scanning unit (Leica, Heidelberg, Germany). Optical slice thickness was 1 μm and pinhole size was 1 airy disc. Images were collected and frame-averaged using Leica software and processed (overlays and brightness/contrast adjustment only) using Adobe Photoshop.

Essentially, no labeling was detectable in the absence of primary antibody (not shown).

Measuring pH

\(\text{pH} \), was measured using video imaging techniques and the fluorescent pH indicator BCECF (Molecular Probes, Eugene, OR). MV3, MDCK-F, and NIH3T3 cells were plated onto coverslips coated with collagen type I (Biochrom, Berlin, Germany). B16V cells were plated onto coverslips coated with a basement membrane-like matrix (see above). Before polymerization, \(\text{pH} \) of this mixture was adjusted to 7.4 by adding 1 M NaOH. Cells were allowed to adapt for 3 h and were then incubated in the respective, HEPES- or HCO\(_3\)-buffered, control solution containing 5 μg/ml BCECF-AM for 5 min. The coverslips were placed on the stage of an inverted microscope (Axiovert 200; Carl Zeiss) and continuously superfused with prewarmed (37°C) HEPES- or HCO\(_3\)-buffered Ringer solution. Before ratiometric \(\text{pH} \)-measurement, the direction of migration, i.e., cell polarity, was checked by observing morphological changes in the moving cells, while during the actual \(\text{pH} \)-measurement the migratory activity was not further assessed. The excitation wavelengths were 440 nm and 490 nm, and the emitted fluorescence was monitored at 500 nm using a Photometrics camera (CoolSnapfx, Visitron Systems, Puchheim, Germany). The different wavelengths were generated by a high-speed polychromator system (VisiChrome, Visitron Systems). Polychromator and data acquisition were controlled by Metaflour software (Visitron Systems). Fluorescence intensities were measured at 37°C in 35-s intervals and corrected for background fluorescence by subtracting intensities obtained from adjacent, extracellular regions. Exposure times were 100 and 250 ms for the 490- and the 440-nm image, respectively, and the camera gain used was 2. Flat field correction was not needed because the illumination across the visual field was uniform. At the end of each experiment, the \(\text{pH} \) measurements were calibrated by successively superfusing the cells with modified, high-K\(^+\) Ringer solutions of pH 7.5, 7.0, and 6.5 containing (in mmol/l) 125 KCl, 1 MgCl\(_2\), 1 CaCl\(_2\), 20 HEPES, and 10 μmol/l nigericin (Sigma) (6).

To quantify \(\text{pH} \) along the direction of movement, the image of each cell was divided into three segments that represented the functionally different regions of a migrating cell: the lamellipodium, the middle segment containing the nucleus, and the uropodium (Fig. 1).

Statistical Analysis

All experiments were repeated at least eight times except for the migration experiments mentioned above (\(N = 4 \)). Data are presented as means ± SE and were tested for significance employing Wilcoxon signed-rank test for paired samples, Mann-Whitney \(U \)-test for independent samples, and Friedman test when more than two groups were compared with each other. If normal distribution could be verified, Student’s unpaired \(t \)-test was applied. The level of significance was set at \(p < 0.05 \) unless otherwise stated.

RESULTS

Immunolocalization of NHE1

As shown for various other cell lines including MV3, MDCK-F, and endothelial cells (3, 11, 16, 37), NHE1 also accumulated at the leading edge of migrating murine melanoma cells and NIH3T3 fibroblasts (Fig. 2).

Intracellular pH

Local \(\text{pH} \) measurements revealed significant differences in \(\text{pH} \) between the front and the rear end (\(\Delta \text{pH} \), front-rear) in all

Fig. 1. Measurement of intracellular \(\text{pH} \) (pHi) gradients. A sample cell (MV3) is loaded with the proton-sensitive fluorescent conjugate BCECF. For analysis, the images are divided into three segments (1-3; front, middle, rear). Each segment contains at least three defined regions of interest placed over the cytosol while explicitly excluding the nucleus region. A mean value of the three regions of interest is calculated for each segment. See text for further details.
investigated cell lines (Fig. 3). Measured in HEPES-buffered Ringer solution, the mean ΔpH front-rear averaged 0.16 ± 0.02 pH units in MV3, 0.15 ± 0.05 pH units in B16V, 0.05 ± 0.02 pH units in both NIH3T3 and MDCK-F, and 0.07 ± 0.02 pH units in EA.hy926 cells. Except in the NIH3T3 cells, the pH value of the middle segment was always found between the pH values of the front and rear segment, indicating that the measured differences in cytosolic pH mirror a pH gradient along the longitudinal axis of the cell body. To exclude that the gradient is caused or enhanced by the absence of HCO₃⁻ in the experimental solution, pH of MV3 cells was measured also in HCO₃⁻-buffered Ringer solution. Under these conditions, pH front-rear averaged 0.18 ± 0.04 pH units, underlining the physiological significance of the gradient.

NHE1 Dependence of the pH Gradient in MV3 and B16V Cells

Because pH gradients were most distinct in the two melanoma cell lines, these cells were used to investigate whether NHE1 activity contributes to the generation of the pH gradients. Upon inhibition of NHE1 by applying either the specific NHE1 inhibitor HOE642 or a Na⁺-free Ringer solution, the cells acidified. Acidification of the cytosol was most prominent at the leading edge corresponding to the localization of NHE1 at the cell front. In MV3 cells the ΔpH front-rear decreased from 0.16 ± 0.02 pH units to 0.08 ± 0.03 pH units when exposed to HOE642 and to 0.09 ± 0.02 pH units when exposed to a Na⁺-free solution. In B16V cells exposed to HOE642, no differences in pH between the front and the rear end were detectable (Fig. 4). Thus, inhibition of NHE1 caused the pH gradient to flatten or disappear, accompanied by a general decline in pH, demonstrating that the establishment of pH gradients to a great extent depends on NHE1 activity.

Subcellular Distribution of NHE1 Activity in MV3 and NIH3T3 Cells

Since pH gradients depended on NHE1, an NHE1 activity gradient seemed supposable. Applying the NH₄⁺-prepulse technique and using the same arrangement of regions as for the pH measurements, NHE1 activity was quantified along the longitudinal axis of the cell. Corresponding to the NHE1 accumulation at the leading edge, its activity was found to be the highest at the cell front (Fig. 5B). After an acid load, MV3 cells recovered at a rate of 0.37 ± 0.07 pH units/min at their
front, 0.32 ± 0.06 pH units/min in the middle segment, and 0.3 ± 0.06 pH units/min at their rear. NIH3T3 cells recovered at a rate of 0.29 ± 0.06 pH units/min in the middle segment, and 0.26 ± 0.06 pH units/min at their trailing end. In addition to immunofluorescence analysis of NHE1 distribution, both the NHE1 inhibition experiments and the subcellular activity measurements provide physiological evidence for the uneven NHE1 distribution in migrating cells and its contribution to the establishment of an intracellular pH gradient.

DISCUSSION

The hypothesis that NHE1 activity may generate small but still important pH gradients either extracellularly or intracellularly has been around for some time (11, 34). The presence of an extracellular pH gradient at the cell surface and its functional importance in facilitating cell migration has already been shown for human melanoma cells (37, 40). Cells that do not express a functional NHE1 or whose NHE1 is inhibited do not establish a pH gradient at the cell surface nor do they migrate. In human melanoma cells that exhibit normal NHE1 activity, partial removal of the glycocalyx causes the extracellular pH gradient to collapse and the migratory activity to decrease considerably (18). In these cells, however, the cell surface pH gradient as well as the migratory activity can be restored by stimulating NHE1 activity (18). Here, we demonstrate a complementary, NHE1-dependent, intracellular pH gradient not only present in melanoma but also in other migrating cells. Upon inhibition of NHE1, both the pH gradient (this study) and the cell surface pH gradient (37) flatten and melanoma cell migration is hindered (36). Changes in the overall extracellular pH cannot compensate for the loss of the cell surface pH gradient (40). Correspondingly, Tominaga and Barber (41) found that, in the absence of NHE1 activity, cell adhesion and spreading were impaired and pH decreased. An overall alkalization of the cytosol did not rescue the delay in cell adhesion or spreading (41). These results demonstrate the importance of local pH regulation in facilitating cell migration. Since both the extracellular pH-sensitive cell surface/matrix interaction (18, 19) and many components of the intracellular migratory machinery are regulated in a pH-dependent manner, the existence of both pH gradients seems to be most advantageous for migrating cells.

After adhering to the surrounding matrix, migrating cells polarize, defining the direction of movement. As a major regulator of this polarization, the small GTPase Cdc42 accumulates at the cell front (27), where it induces actin polymerization via the Wiskott-Aldrich syndrome protein (WASP) and the Arp 2/3 complex (12, 25) as well as through the Rac/Cdc42 effector IQ-motif-containing GTPase-activating protein 1 (IQGAP1) (2). As shown for migrating fibroblasts, activation of Cdc42 requires H⁺ efflux by NHE1 (10), which implies a fundamental role of pH in positive feedback loops at the leading edge necessary for enduring cell polarization and directed movement.

Furthermore, the polymerization and depolymerization of actin filaments are coordinated pH-dependently. The generation of free barbed filament ends by the activity of the actin-severing protein cofilin promotes dynamic actin polymerization (45) and membrane protrusion at the cell front. The ability
of gelsolin at the leading edge. Those are only two of several examples of how migratory events depend on an optimal pH environment (13, 35, 38).

Thus, the pH gradient appears to be a prerequisite for cell migration, and the question arises as to whether its slope might function as a “cruise control system.” As a matter of fact, H-ras-transfected NIH3T3 migrate faster than wild-type NIH3T3 (28), show an increased net acid extrusion (15), and tend to establish a steeper pH gradient \[\Delta p \text{H} \text{ front-rear: } 0.07 \pm 0.01 \text{ for NIH3T3-ras } (n = 9) \text{ vs. } 0.05 \pm 0.02 \text{ for wild-type NIH3T3 } (n = 10; \ P = 0.14). \] On the other hand, a comparison of the five investigated migration.

In conclusion, we demonstrate here that unevenly distributed NHE1 activity establishes a pH gradient along the axis of movement in migrating cells of multiple different origins. We hypothesize that the establishment of this pH gradient represents one mechanism by which NHE1 activity promotes cell migration.

ACKNOWLEDGMENTS

Mark Musch, University of Chicago, is gratefully acknowledged for the kind gift of NHE1 antibody, and Jürgen Pünter at Sanofi Aventis for the kind gift of Cariporide.

GRANTS

This work was supported by the Deutsche Forschungsgemeinschaft (STO-654/3-2), the Rolf-Dierichs-Stiftung, a scholarship to C. Martin awarded by the Danish Council for Independent Research (SFP).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

