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Abstract

An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure
sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak,
which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of
zinc ions during storage in the pancreatic b-cell. Due to the transient nature of insulin dimer, direct investigation of this
important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and
function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The
structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer
was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked
dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely
thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance
of oligomerization for insulin stability.
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Introduction

Insulin, a small peptide hormone, is crucial in maintaining

blood glucose homeostasis. Defects in insulin secretion and action

result in diabetes mellitus, a severe metabolic disorder, which

untreated will lead to serious health problems and ultimately death

[1]. Insulin consists of 51 amino acids in two peptide chains, the A-

and the B-chain. It contains six cysteine residues (Cys) forming

three disulfide bonds, two of them link the two chains and one

intra-chain bond is found in the A-chain [2]. Insulin is expressed in

the pancreatic b-cells of the islets of Langerhans [3]. At

micromolar concentrations it self-associates into dimers. This

concentration is found during expression in the b-cells and there

are indications that dimers are formed in the ER during expression

[4,5]. The positions present in the dimer forming surface are all

located in the B-chain and involve residues: B8, B9, B12, B13,

B16, and B23–B28 [2,6]. At millimolar concentration in the

presences of zinc ions, insulin further associates into hexamers [7].

When blood glucose levels are low, insulin is stored as hexamers in

vacuoles of the b-cells. In response to elevation of blood glucose

levels, the hexamers are released into the blood where they

dissociate into dimers and monomers [8]. Insulin mediates its

effect through the insulin receptor [9]. The insulin receptor is

found as a homo-dimer and it is believed that two separate

monomers bind to the receptor. It is believed that the function of

dimer and hexamer formation lies in stabilisation of the molecule

during storage [10,11].

Dimerization using disulfide bonds is a common strategy for

protein stabilisation often found in nature [12–14]. Introduction of

Cys in the dimer forming surface of a protein can lead to the

formation of disulfide-bridged dimers [15–21]. Crystal structures

(ex. PDB code 1mso) of human insulin dimers reveals that residues

in positions B12, B13, B24, B25 and B26 in one monomer are

found in close proximity to their complementary position in the

second monomer (Ca to Ca distance ,10 Å) (Figure S1) but only

the distance between the two B25 residues is below 6.5 Å which is

ideal for disulfide bond formation [22]. We have previously

observed that introduction of a Cys in position B25 results in

exclusive expression of a covalent dimer insulin precursor (see

experimental section) whereas substitution of other positions in the

dimer surface with Cys led to negligible or no expression of insulin

precursors [23]. The B25C position is therefore a unique position

in insulin with respect to dimer formation.

In this article, we report structural and functional properties of

this B25C covalently linked dimer (B25C-dimer) in comparison to

human insulin and discuss the balance between oligomerization

and receptor binding.
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Methods

Plasmids construction and expression
Material, vector, strain and construction were as previously

described [24–27]. Briefly, the mutation to a Cys was introduced

in the insulin coding sequence by overlapping PCRs [28] in the

selected position. The insulin precursor is expressed in Saccharo-

myces cerevisiae and secreted as a proinsulin-like single-chain

consisting of a spacer Glu-Glu-Ala-Glu-Ala-Glu-Ala-Pro-Lys

(EEAEAEAPK) [25] followed by the B-chain (B1–B29) linked

to the A-chain (A1–A21) by a mini C-peptide Ala-Ala-Lys (AAK)

[29]. The expression yield of the insulin precursor were

determined by reversed-phase high-performance liquid chroma-

tography (RP-HPLC) based on peak area using human insulin as

external standard. The was mass determined by liquid chroma-

tography/mass spectrometry (LC/MS) as previous described

[23].

Purification
A 3 L batch of the B25C precursor was fermented in shaking

flasks. The cell-free culture supernatant was acidified and the

precursor was partially purified and concentrated by a capture step

using ion exchange chromatography. The precursor was enzy-

matically digested to remove the spacer and C-peptide, the digest

was stopped after several days and the conversion verified by LC/

MS. The dimer was further purified by RP-HPLC and

lyophilized.

Construction of the B25C alkylated monomer
Partially purified dimer using ion exchange chromatography

was concentrated 10 times by lyophilisation and subsequent

dissolution in water to a concentration of 1.5 mg/ml. Tris(2-

carboxyethyl)phosphine (TCEP) immobilized on agarose gel

(Thermo Scientific) was equilibrated in elution buffer (from cation

exchange chromatography) mixed 1:1 with 1 M NaOAc (sodium

acetate) pH 5.5. The liquid was removed from 3 ml TCEP slurry

and the concentrated solution with the dimer precursor was

added. The sample was incubated over night with slow mixing,

just fast enough to ensure gel suspension. 100 ml 10 mM N-ethyl

maleimide (NEM) in water was added and set to react for 1 hour

with turning. The samples were separated from the TCEP gel by

centrifugation and the two B25C-NEM monomeric isomers were

purified by RP-HPLC. The fractions for each isomer were pooled

and concentrated using a speed vac.

Pulse-chase
The experiment was carried out essentially as described before

[25]. Briefly, cultures with OD600 of approximately 12 in media

without Cys and Met were pulsed with 30 mCi [35S]cysteine(Per-

kinElmer) for 2.5 min followed by removal of the labelled Cys.

Media containing 18.5 mM un-labelled Cys and Met were added

equal to 5.5 min after the start of pulsing and the sample was

taken. Immediately afterwards, protein synthesis was stopped

using 1 ml 5% sodium azide. The cells were spun down and

separated from the supernatant. The samples were then frozen at

220uC until further analyses.

Analyses of the samples were performed by SDS-PAGE. The

cells were lysed and the cell lysate and the supernatant was applied

to a SDS-gel (10% Bis-Tris, Invitrogen) either untreated or

following treatment with PNGase F (Biolabs) for 30 min at 37uC.

The gels were fixed, dried and then exposed to a phosphor screen

and scanned in a phosphor imager (Typhoon 9410, Variable

Mode Imager, GE Healthcare).

Crystal structure
Crystals were grown by the sitting drop vapour diffusion

method. 1 ml of protein solution containing 4.6 mg/ml of the

insulin analogue was mixed with 1 ml of reservoir solution

containing 0.1 M Bis- Tris pH 6.5 and 3.0 M NaCl. Crystals

with dimensions of about 0.1 mm were obtained within 1 week.

The crystal used for data collection was soaked in 15% ethylene

glycol prior to freezing in liquid nitrogen. Data were collected in

house using a rotating anode (Rigaku MicroMax-007HF, Cu/Ka
radiation, l= 1.5418 Å) and a Rayonix SX-165 CCD detector

(Mar Research, Hamburg) at a temperature of 100 K. The data

were indexed and scaled with the HKL2000 package. The

structure was solved by molecular replacement method using

MOLREP [30] with an in house insulin monomer as search

model. The structure was refined in Refmac [31], atom

coordinates were manually adjusted in Coot [32]. Water molecules

were added using the ‘Find water’ algorithm in Coot. Data

collection details and refinement statistics are summarized in

Table 1. Coordinates with structure factors have been deposited to

the Protein Data Bank (PDB) with the accession code 3U4N.PDB

Analytical Ultracentrifugation
Analytical Ultracentrifugation (AUC) experiments were per-

formed with a BeckmanCoulter XL-I analytical ultracentrifuge

(Indianapolis, IN), using the interference optics of the instrument.

Samples were filled in sapphire-capped two-sector Epon-centre-

pieces of 12 mm optical pathlength. The B25C-dimer was

dissolved in and dialysed against buffer containing 50 mM sodium

chloride, 10 mM Tris at pH 7.4. The dialysate was used for

dilution and optical referencing. All experiments were conducted

at 20uC and with multiple concentrations of the peptide, prepared

by 7-fold serial dilution. Sedimentation Velocity (SV) experiments

were performed at 48 krpm and analysed with either the c(s)-

algorithm [33] as implemented in SEDFIT v11.8 or by the time-

derivative method [34], as implemented in DCDT+ v2.3.1.

Sedimentation Equilibrium (SE) experiments were performed at

sequentially 15, 24 and 36 krpm and attainment of apparent

hydrodynamic and thermodynamic equilibrium was ascertained

with MATCH. Water blanks for each cell and speed were

recorded immediately after the experiment and subtracted from

the raw data before analysis. SE data were globally fitted to

multiple models of reversible self-association with NONLIN [35]

and the best-fit model selected based on a minimised variance and

visual inspection of the residuals run pattern. SV experiments of

the B25C-dimer in the presence of Zn2+ were performed at a

constant concentration of peptide of 75 mM and different

concentrations of Zn2+. The ratio of [Zn2+]/[B25C-dimer] was

adjusted to the concentration of insulin monomer normals, i.e. one

mole of B25C-dimer is two normal with respect to insulin

monomers. The partial specific volume v̄ of the B25C-dimer and

the density r of the buffer were measured with a digital

densitometer DMA5000M from AntonPaar (Graz, Austria), the

viscosity g of the buffer was calculated from composition using

SEDNTERP.

Receptor binding assay
Receptor binding was measured by an IR competition binding

assay performed on the A isoform of the insulin receptor in a

scintillation proximity assay (SPA) as previously described [24].

Briefly, binding competition of the B25C-dimer and [125I]TyrA14-

labelled insulin (Novo Nordisk A/S) in the SPA assay was used to

determine binding receptor affinities. A human standard (n = 4)

and the dimer (n = 4) were tested in one plate. The data was

analysed according to a four-parameter logistic model [36] and the

Novel Covalently Linked Insulin Dimer
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affinities were expressed relative to a human insulin standard

[IC50(insulin)/IC50(analogue)6100%].

Metabolic potency determination
The metabolic potency was determined by lipogenesis essentially

as described before [37,38]. Shortly, isolated primary rat

adipocytes were shaken vigorously for 1 h at 37uC. Aliquots of

100 mL were distributed in 96-well PicoPlates and incubated 2 h at

37uC with gentle shaking together with 10 mL glucose solution

containing D-[3-3H]glucose and glucose and 10 mL of increasing

concentration of HI (for reference) or B25C-dimer. The incubation

was stopped with addition of 100 mL MicroScint E (Packard) and

the plates were counted in a TopCount NXT (PerkinElmer Life

Science). The data were analyzed according to a four-parameter

logistic model [36] and the metabolic potency was expressed

relative to a HI standard [EC50(insulin)/EC50(analogue)6100%].

DSC
The differential scanning calorimetry (DSC) measurements

were performed essentially as described before [11]. The insulin

analogues were formulated at 0.2 mM in a 2 mM phosphate

buffer at pH 7.5 which was also used as reference buffer. The

samples were heated from 10uC to 110uC with a scan rate of 60uC
per hour.

ThT fibrillation assay
Samples were prepared freshly before each assay. Thioflavin T

(ThT) (Sigma) was added to each sample from a concentrated

stock solution in water to a final concentration of 1 mM. Four

aliquots of 200 ml from each sample were placed in a 96 well

microtiter plate (Packard OptiPlateTM-96, white polystyrene). The

plate was sealed with Scotch Pad (Qiagen). The assay was

performed using a Fluoroskan Ascent FL fluorescence plate reader

(Thermo). The temperature was adjusted to 37uC and the orbital

shaking was adjusted to 960 rpm (1 mm amplitude). Fluorescence

measurements were done using 444 nm and 485 nm excitation

and emission filters, respectively. The plate was incubated for

10 min without shaking prior to the first measurement and then

measured every 20 minutes for 45 hours. Between each measure-

ment, the plate was continuously shaken and incubated as

described. The background fluorescence emission from ThT in

the absence of amyloid fibrils was negligible and thus no

background correction was done. Each shown time point is the

mean of the four replicas with standard deviation error bars. Only

data obtained in the same experiment (i.e. samples on the same

plate) are presented.

Insulin concentrations were determined by RP-HPLC methods

using an insulin standard as a reference. After completion of the

ThT fibrillation assay pools were made by recollecting 150 ml from

each replica. These pools were centrifuged at 30,000 g for

40 minutes. The supernatant was filtered through a 0.22 mm filter

and the concentration of insulin remaining in solution determined

by RP-HPLC analysis.

Results

Expression of the B25C-dimer
RP-HPLC analyses of HI and the B25C-dimer fermented under

the same conditions showed that the B25C-dimer had an

expression yield of 108% (n = 3, SD = 1.98%) relative to that of

HI (based on UV absorbance of HI). LC/MS analyses of the

fermentations showed that the B25C precursor was present solely

as a dimer, which was observed only for this precursor in the Cys

scan of insulin [23]. A small second peak (,4% of total) with equal

mass to the B25C- dimer precursor was also observed and may

represent another conformation either in form of disulfide

scrambling, alternative folding, etc. (Figure S2).

Pulse-chase experiments were used to investigate the point of

dimer formation. Disulfide bonds are readily formed in the

oxidizing environment found in the cellular compartments of the

secretory pathway [39]. Also, during expression in yeast the

concentration is high enough for dimer formation [40]. Thus, if

the insulin self-associates to dimers bringing the two B25 Cys in

proximity to each other this allows for disulfide bond formation.

The pulse-chase experiments showed the presence of the

covalent dimer in cells demonstrating that the formation occurs

during expression (Figure S3). This gives strong indications that

HI forms dimers during expression in yeast as proposed by

Kjeldsen [40].

Table 1. Data collection and refinement statistics.

Data processing statistics

wavelength (Å) 1.5418

Space group I213

cell axis a, b, c (Å) 77.9

cell angles (deg) a b c 90

temperature (K) 100

diffraction limit (Å) 1.98

no. of observations 38677

unique reflections 5631

highest resolution shell (Å) 2.01-1.98

completeness

all data (%) 99.3

high. resolut. shell (%) 85

Rmerge
a

all data (%) 6.7

high. resolut. shell (%) 25.8

Refinement statistics

resolution range (Å) 31.8-1.98

no. of reflections 5334

R value (%) b 16.7

Rfree value (%)b 21.7

highest resolution shell (Å) 2.03-1.98

no. of reflections 316

completeness (%) 89.8

R value (%)b 18.0

Rfree value (%)b 29.4

r.m.s.d.c

bond length (Å) 0.022

bond angles (deg) 2.417

average B-factor (Å2) 23.1

aRmerge = S|Ii2I|/SI where Ii is an individual intensity measurement and I is the
mean intensity for this reflection.

bR value = crystallographic R-factor = S|Fobs|2|Fcalc|/S|Fobs|, where Fobs and Fcalc
are the observed and calculated structure factors respectively. Rfree value is the
same as R value but calculated on 5% of the data not included in the refinement.

cRoot-mean-square deviations of the parameters from their ideal values.
doi:10.1371/journal.pone.0030882.t001
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Purification of the dimer
The B25C-dimer precursor was fermented, partially purified

and up-concentrated using ion exchange chromatography. Insulin

precursors are quickly converted into mature insulin analogues by

removal of the spacer and C-peptide by enzymatic digestion.

However, as the C-peptide was only slowly removed from the

B25C-dimer, it was necessary to digest for several days. Under

these harsh conditions large amounts of a by-product were also

generated (Figure S4). The B25C-dimer was further purified by

RP-HPLC and lyophilized.

The covalently linked dimer versus non-covalent human
insulin dimer

The structure of the B25C-dimer was determined by X-ray

crystallography and refined to a resolution of 2.0 Å. The crystals

belonged to the cubic space group I213 with cell dimensions

a = b = c = 77.9 Å with one monomer in the asymmetric unit. The

unit cell axes were ,1 Å shorter compared to a typical cubic

insulin crystal [41,42]. The dimeric structure was formed by

applying appropriate symmetry operations. The crystal structure

(Figure 1) reveals that disulfide bonds were formed correctly with

no disulfide scrambling and the two monomers were linked via a

new disulfide bond formed between the introduced Cys in position

B25 of each monomer. The crystal structure of the B25C-dimer

resembled that of porcine insulin (B30TRB30A compared to HI,

PDB code 1B2E) crystallized in the same space group). A

structural alignment of the two structures yields an RMSD of

0.20 Å (all Ca) with the largest deviation found at position B21E.

The backbone of the B-chain C-terminus is slightly shifted relative

to the 1B2E structure. This is most likely caused by a small

difference of the B21E position and its effect on the crystal packing

interaction with the C-terminal part of the B chain in a symmetry

related molecule. The residues close to the additional disulfide

bond (B23–B28) had an RMSD value of 0.39 Å (Ca). The

distance, between adjacent B25 positions in the two monomers

forming a dimer, increased by 0.3 Å in the B25C-dimer. Overall,

no significant conformational perturbations caused by the

introduction of the additional disulfide bond at position B25

could be observed.

Self-association of the B25C-dimer. AUC was used to

investigate the B25C-dimer self-associating abilities and compared

to those of known oligorimization of HI. SV experiments showed

that the B25C-dimer had a typical pattern for a reversible self-

association, qualitatively similar to HI, (Figure S5,A). SV

measured at constant peptide concentration and increasing

[Zn2+]/[B25C-dimer] from 0 to 6 showed formation of larger

oligomers. At [Zn2+]/[B25C-dimer] ratios of 2 and 3, the

oligomers in solution were almost exclusively trimers of the

B25C-dimer (analogous to hexamers of monomeric insulin,

Figure 2,A). This was indicated by an average molar mass of the

macromolecular compound close to that expected for a trimer and

values for the diffusion and sedimentation coefficients are in

agreement with published values for hexameric insulins of various

origins, (Table 2). Increasing the [Zn2+]/[B25C-dimer] ratios

resulted in even higher oligomeric species. This behaviour again

resembles that of HI (Figure S5,B), confirming the high

resemblance of the B25C-dimer to HI in respect to its self-

association ability.

The equilibrium coefficient for the dimer formation of B25C-

dimers was measured by sedimentation equilibrium experiments

and the results indicated monomer-dimer equilibrium with KD1–2

of 1.3261024 [M], (Figure 2,B). This coefficient for the formation

of dimers of the B25C-dimer (corresponding to insulin tetramers)

is of the same order of magnitude as observed for formation of

both the classic dimer surface and dimer formation through the

hexamer surface when calculated based on an indefinite

duoisodesmic association model (indefinite monomer on monomer

association) of insulin [43,44].

In vitro activity. The B25C-dimer was investigated with

regard to its binding affinity to the receptor in a receptor binding

competition assay. The dimer was found to bind with markedly

decreased affinity compared to HI (IC50 = 0.0012% relative to HI

in the same plate, n = 3, SD = 0.00008%), (Figure 3A). The B25

position is important for receptor binding [45,46] and to

investigate if the decrease in binding affinity was caused by the

substitution of Phe in position B25 with Cys a monomeric form of

the analogue was constructed. The B25C-dimer precursor was

reduced using immobilized TCEP and subsequently alkylated with

NEM. The alkylation step was necessary to protect the free thiol

on the B25 Cys from disulfide scrambling during the assay, which

was performed at physiological pH. The introduction of the NEM

moiety resulted in two stereoisomers of B25C-NEM [23], which

gave rise to two isolated peaks in the LC analysis. Both forms of

the monomer were purified and tested separately in the receptor

assay. There was no difference in the binding affinity of the two

Figure 1. Cartoon representation of the crystal structure of the
B25C-dimer. A: The A chain is coloured in green and the B chain is
shown in blue. The additional disulphide bond is shown by stick
representation (yellow). An omit map was calculated by omitting the
Sulphur atom of B25C. The resulting difference electron density Fo-Fc
map is coloured in orange at s-level = 3.0. It is clear from the structure
that the two monomers are linked by a disulfide bond between the two
adjoining B25C. B: Comparison of the B25C structure (blue) with that of
the porcine in-sulin (PDB code 1B2E) (grey). The Ca trace shows that the
two structures have a high resemblance with minor deviations in Ca
positions at residue B21E and B29K.
doi:10.1371/journal.pone.0030882.g001
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isomers (B25C-NEM1:IC50 = 0.35%, SD = 0.015% and B25C-

NEM2:IC50 = 0.34%, SD = 0.029% relative to HI in the same

plate, n = 3), (Figure 3A). The binding of the B25C-monomer was

therefore more than 250 times stronger than that of the B25C-

dimer. We thus concluded that the mutation of the Phe to a Cys

was not the main cause of the low affinity of the dimer.

The ability of the B25C-dimers to elicit a metabolic response

was tested in a lipogenesis assay. The results reflect those seen in

the receptor assay with EC50 values 0.003% (relative to HI in the

same plate, n = 3, SD = 0.0003%), (Figure 3B). This indicates that

the low binding measured in the B25C-dimer assay was not

unspecific as an in vitro response was seen in the same range as the

binding affinity.

Stability. The thermodynamic stability of the B25C-dimer

compared to HI was investigated by DSC. The excess heat

capacity (Cp) of the samples compared to a reference buffer is

shown in the thermograms, (Figure 4A). The transition midpoint

(taken as the maximum of the thermograms) of the melting curve

(Tm) for the B25C-dimer (Tm = 102.8uC) was increased by 38.9uC
when compared to HI (Tm = 63.9uC). Huus et al. [11] have

Figure 2. AUC results for the B25C-dimer. A: SV Analysis of the
B25C-dimer in the presence of 2 Zn2+/hexamer (insulin normals). In the
top part of the figure, open circles represent the g(s*)/s-curve derived
from a dcdt-analysis. For clarity, only every 10th data point is shown. The
solid red line represents the fit to a model of a single ideal species,
resulting in the parameters shown in Tabel 2. The bottom part of the
figure represents the local deviations between the experimental and
simulated data (residuals). Every data point is shown. The rmsd of the
shown fit is 9.8361023. B: Representative data of a SE experiment used
to determine the self-association model of B25C. In the top part of the
figure, open circles represent experimental concentration distributions
at apparent thermo- and hydrodynamic equilibrium for one concen-
tration (out of five) at 15 krpm (black), 24 krpm (red) and 36 krpm
(green). For clarity, only every 10th data point is shown. The solid like-
colored lines represent the global fit to all measured conditions to a
model of a reversible monomer-dimer model, resulting in the
equilibrium coefficient mentioned in the text. The bottom part of the
figure represents the local deviations between the experimental and
simulated data (residuals). Every data point is shown. The molar mass
parameter was fixed to its expected value and the global rmsd of the fit
is 7.461023.
doi:10.1371/journal.pone.0030882.g002

Table 2. The experimental parameters determined from the fit in Figure 2 and results previously determined for hexameric insulin
of human and porcine origin.

Sample
Standard Sedimentation
Coefficient s20,w, [S]

Standard Diffusion Coefficient
D20,w, (61027 [cm2/s])

Molar mass
[kg/mole] Rh [nm]

B25C-dimer 3.24* 9.01* 35.56* 2.38

HI [65]** 3.02* 7.93 34.85 2.75

Bovine insulin [66] 3.12 8.35* 34.4 2.63

Porcine insulin [67] 3.09 8.17* 34.67 2.7

*Measured value., **Probably affected by non-ideality because of high concentration.
doi:10.1371/journal.pone.0030882.t002

Figure 3. Measurements of in vitro activity of the B25C-dimer
compared to HI. A: Representative insulin receptor binding curves for
HI(black), B25C-NEM1 (dark gray) B25C-NEM2(gray)and the B25C
dimer(light gray). B: Representative metabolic dose response curves
for HI(black) and the B25C-dimer (dark gray). Each point on the graph
represents the mean 6 SD, n = 4 within one assay.
doi:10.1371/journal.pone.0030882.g003
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previously shown with a combination of DSC and circular

dichroism that thermal denaturation of the monomer proceeds

through a non-two-state transition with an intermediate, whereas

the insulin hexamer formed in the presence of zinc ions (Zn2+)

proceeds through a two-state transition where the denaturation of

the monomer occurs instantaneously following dissociation of the

hexamer. Addition of zinc ions to HI resulted in hexamer

formation which caused an increase in the Tm of HI to 84.8uC as

demonstrated before [11]. When zinc ions were added to the

B25C-dimer an increase was also observed to even higher extend

with a Tm well above 100uC. Above the transition temperature

rapid aggregation and precipitation was indicated by a steep

exotherm. Denaturation of the dimer was not reversible and it was

not possible to calculate thermodynamic parameters. Acetic acid

(HOAc) has been shown to promote dissociation so that insulin is

found predominantly in its monomeric form [47]. The B25C-

dimer dissolved in 20% HOAc displayed an endothermic peak

with a subsequent baseline making it possible to calculate

thermodynamic parameters. The thermogram for the B25C-

dimer in 20% HOAc fitted well to a non-two-state transition

model which indicates that intermediary states are present. The

calorimetric enthalpies (DH) were obtained for the dimer in 20%

HAc and HI at pH 7.4 with and without zinc. The stability of the

B25C-dimer (132.4 kJ/mol; mol refers insulin normals) was

markedly increased compared to HI (87.8 kJ/mol). With the

addition of zinc ions to HI the enthalpy increases to 145.4 kJ/mol

which is only slightly more than the B25C-dimer at acetic pH. The

Tm of the dimer in 20% HOAc had decreased to 77.9uC
compared to the neutral pH. It is unclear whether the acidic pH

only influences the oligomerization or whether it affects the

thermodynamic stability of the B25C dimer molecule as well. It

has been shown that insulin in 20% HOAc retains a native like

structure [47], but it is likely that the low pH causes changes of

charge states resulting in a decrease in stability.

Even though insulin is a relatively stable protein because of its

tight conformation caused by the three disulfide bonds [2], it still

has flexible areas mainly in the C- and N-terminals of the B-chain.

One of the largest physical stability issues with insulin is fibrillation

which is thought to be initiated by unfolding of the C-terminal end

of the B-chain [48]. The propensity of the B25C-dimer to form

amyloid fibrils was compared to HI in a ThT fibrillation assay,

(Figure 4B). HI fibrillated fast within the first hour of incubation at

37uC with vigorous shaking, but remarkably no fibrillation of the

dimer was observed within 45 hours. Furthermore, after comple-

tion of the ThT fibrillation assay the concentration of B25C-dimer

in solution was unchanged whereas all HI was lost from solution

due to amyloid fibril formation (data not shown).

Discussion

In the crystal structure of HI the two B25 positions are located

in the C-terminal b-sheets of the respective B-chains just opposite

each other with a distance suitable for disulfide bond formation

(Ca to Ca distance ,6.5 Å) [22]. Introduction of a Cys in position

B25 resulted in expression of a dimeric precursor. A disulfide bond

linking the two Cys, one from each insulin molecule, was clearly

visible in the electron density map from the crystal structure

analysis. AUC analyses showed that the B25C-dimer oligomeri-

zation pattern resembled that of HI and that it was capable of

forming analogous hexamers in the presence of zinc ions.

Insulin has a complex oligomerization pattern which stabilizes

the protein during storage. Other proteins favour covalent

dimerization through disulfide formation [12–14]. To assess the

reason for the highly evolved oligomerization pattern of insulin,

the B25C-dimer was used to investigate the effect of the first

oligomeric state on insulin’s activity and stability.

The expression yield of an analogue reflects its stability and the

yeast cells ability to fold it [40,49]. Chaperones are known to play

an important role in nascent protein stabilization and folding [5].

Similar to chaperones, insulin oligomerization during expression

could play an important role for the ability of the yeast cells to

export it into the supernatant [40]. It could be argued that

dimerization also causes higher stabilisation during expression

compared to the monomeric form. It would therefore be expected

that the expression yield of the B25C-dimer be higher than that of

HI if this was present as a monomer during expression. The fact

that the expression yields of both insulin analogues are similar

indicates that HI is present as a dimer during expression in yeast.

Until now it has been speculated that insulin associates into dimers

in the ER, as it was estimated that the concentration is high

enough to allow insulin dimer formation [40]. The requirement

for proper folding of the self-associated dimer prior to B25C

disulfide bond formation is inferred from the results of insulin’s

Figure 4. Assessing the stability of the B25C-dimer compared to HI. A: DSC of HI and the B25C-dimer. B: ThT fibrillation assay of 0.3 mM
B25C-dimer (grey diamonds) and 0.6 mM HI (black diamonds) with incubation at 37uC and vigorous shaking as described in ‘‘Methods’’. Both samples
contained 7 mM phosphate adjusted to pH 7.4.
doi:10.1371/journal.pone.0030882.g004
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cysteine scan. Although cysteine substitutions in 60% of insulin’s

positions resulted in expression in yeast, only B25C substitution led

solely to dimer formation. In fact, the pulse-chase experiment

reported here for the B25C-dimer demonstrated that insulin is

indeed associated into dimers during expression and this

association likely occurs early in the secretory pathway.

It is believed that it is the monomeric form of insulin that binds

to the insulin receptor even though the receptor forms a dimer and

therefore in principle could bind the HI-dimer [9]. In spite of large

efforts the structure of the complex between insulin and its

receptor is as of yet unavailable and many aspects of insulin

binding to its receptor are still unclear. Still much information

about the binding is available from other experiments

[2,24,27,45,50]. It is well known that B25F is important for

binding of insulin to its receptor [46,51] and replacement of Phe

with a Cys could be a factor in loss of binding. The receptor

binding affinity had decreased from picomolar affinity observed

for HI to nanomolar affinity for B25C-NEM confirming the

importance of the B25 position for receptor binding. Remarkably,

affinity for B25C-NEM was still 250 times higher than that of the

B25C-dimer. One possible explanation for the binding observed

for the B25C-dimer is, that small amounts of impurities (below

detection limits) resembling the monomeric form were responsible

for the binding. Another explanation involves alternative binding

of the dimer. One binding theory involves cooperative binding of

two monomeric insulin molecules thus suggesting that two insulin

molecules bind at the same time [50,52]. This theory involves two

binding sites, the classical binding site and the second binding site.

The classical binding site mainly consist of positions in the C-

terminal end of the B-chain and hydrophobic residues located in

the B-chain’s a-helix together with the C-terminal end of the A-

chain buried beneath the C-terminus of the B-chain. The second

binding site with lower binding affinity [50], consisting of A13L and

B17L, is located in the hexamer forming surface. In the B25C-dimer

the classical binding site is not accessible to binding; both because of

the overlap between the dimer forming surface and the binding

surface, but also because it is believed that binding of insulin to the

receptor involves a shift in the C-terminal end of the B-chain

exposing the hydrophobic residues involved in binding. This is not

possible in the dimer form [53–56]. Obstruction of the classical

binding site by removal of the first four amino acids in the A-chain

(desA1-4) was shown to decrease binding affinities to 0.014%

relative to HI [57] and fixation of the C-terminal end of the B-chain

in SCI resulted in a loss of in vivo activity [55]. In contrast, the second

binding site is still fully exposed and available for receptor binding.

To explain B25C-dimer receptor affinity and lipogenesis results by

binding exclusively to the second binding site would necessitate that

binding solely to this binding site leads to receptor activation, and

this has still not been shown. Regardless of which explanation for

the B25C-dimer insulin receptor binding is correct, it is clear that

insulin dimer is not able to bind to the insulin receptor with the same

affinity as the insulin monomer. This supports the hypothesis that it

is the monomeric form of insulin that is responsible for high affinity

interaction with insulin receptor.

The stability of the B25C-dimer became evident during

conversion of the expressed precursor to the mature insulin

analogue. The compact structure achieved during dimer

formation likely prevents proteases from accessing the cleavage

site. The C-terminal of the B-chain is known to be prone to

protease degradation [58]. It is also the only part of insulin

known to form b-strand structure. Comprehensive analysis of

binding motives recognised by proteases based on .1500 3D

structures showed that proteases with a few exceptions recognize

extended b-strand conformations [59]. B25C-dimer hinders the

access to the b-strand structure so the enhanced stability against

ALP will most likely also reflect enhanced stability against other

proteases.

The stability against fibrillation was also markedly improved for

the B25C-dimer compared to HI. It has been suggested that

hexamer formation during storage in secretory granules protects

insulin against fibrillation in vivo [48] and this is often exploited

when formulating insulin analogues for clinical use by addition of

zinc [10]. The ThT assay results with the B25C-dimer supported

that fibrillation only occurs through the monomeric form as no

fibrillation was seen for the dimer. Thus, it is clear that a stable

dimeric form is sufficient to stabilize insulin against fibrillation and

denaturation. This is also supported by the higher stability of the

B25C-dimer compared to HI hexamer as seen in the DSC results.

Thus, it is possible to generate an insulin dimer which is

sufficiently stable against denaturation and fibrillation under

stressed conditions such as high temperature making the

hexameric form redundant in protection against denaturation

and fibrillation. Stabilizing the insulin dimer formation, will

however result in limited receptor binding affinity. The evolu-

tionary solution to this fine balance between stability and receptor

binding is the formation of insulin hexamers. In the insulin

hexamer, the relatively weak insulin dimer interaction is stabilized

by zinc-induced association of three insulin dimers while allowing

for sufficient concentration of insulin monomer at low concentra-

tions without zinc and thus ensuring high affinity receptor binding.

This system has been preserved through evolution of most

vertebrate species. The exception to this rule is found in guinea

pigs insulin that has a mutation in the B10 position from a

histidine residue to an aspartate residue and is therefore not

capable of forming zinc induced hexamers. Its inability to form

dimers was also shown by AUC [60]. It is believed that removal of

the selective constraints associated with the ability to oligomerize

has allowed for additional mutations to compensate for the loss in

stability associated with loss in oligomerization. The monomeric

form of guinea pig insulin is stabilized by replacement of

hydrophobic residues on the surface (involved in oligomerization)

with hydrophilic residues [61]. These introduced mutations,

however, lead to reduced potency [62], which is compensated

by significantly increased level of insulin receptors in guinea pigs

[63].

In this paper, we describe a novel covalent insulin dimer that is

structurally identical to the self-association dimer of human insulin

and further associates into a hexamer in the presence of zinc

similarly to HI. We used this covalent dimer to directly investigate

the structure-function relationships of insulin oligomerization to

stability and receptor binding. This covalent dimer did not bind to

the insulin receptor. However, significant improvements in

stability of B25C-dimer relative to HI were demonstrated by

markedly slower processing of the precursor with ALP, an almost

40uC increase in Tm, more than 44 kJ/mol increase in DH in

DSC measurements and no fibrillation in ThT assay. Our results

underline that the dimerization of insulin is responsible for insulin

stability, while the monomeric form is required for this hormone’s

activity.

Supporting Information Legends

Figure S1 Positions in the dimer forming surface with
Ca to Ca distance ,10 Å. The two B-chains in the dimer from

PDB file 1MSO are shown in grey with the positions B12(purple),

B13(cyan), B24(blue), B25(pink), B26(yellow) shown with the

respective distances between the position in each of the B-chains.

(TIF)
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Figure S2 The UV chromatogram (215 nm) of partially
purified B25C precursor. The LC/MS analyses of the pool

after partial purification of B25C precursors using cation exchange

chromatography showed that two precursors, peak 1 and peak 2,

were found after expression. The masses for both peaks

corresponded to a B25C-dimer linked by a disulfide bond.

(TIF)

Figure S3 Pulse chase experiment of the B25C-dimer.
The covalently linked B25C-dimer is seen as a strong band

between the 14.3 kDa and 21.5 kDa marker. Unprocessed

precursor containing the leader is seen for the dimer as a band

at the 30 kDa marker for the samples treated with PNGase.

(TIF)

Figure S4 Characterization of by-product. A: Total ion

count chromatogram of reduced by-product. B: MS/MS in source

fragmentation spectrum of peak with a mass equal to containing

single chain insulin (A-chain+B-chain-H2O(18 Da)). The b-ions

were identified from all fragments in black. The fragments in gray

were identified by either an a-ion in the N-terminal or y-ions in the

C-terminal. The MS/MS analyses showed the by-product to be a

result of ALP’s transpeptidase activity, where a peptide bond

between B29 and A1 was formed. ALP is known not only to work

as a protease but also as a transpeptidase [64]. Linking of the

B-chain’s C-terminal to the A-chain’s N-terminal by a peptide

bond was also observed before using trypsin another transpepti-

dase [55].

(TIF)

Figure S5 Sedimentation Velocity experiments illustrat-
ing the self-association abilities of the B25C-dimer
compared to HI. A: In the absence of zinc ions. B: In the

presence of increasing amount of zinc ions. The B25C-dimer had

a typical pattern for a reversible self-association, qualitatively

similar to HI both in the absence and presence of zinc ions.

(TIF)
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