Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types
Hof, Christian; Brändle, Martin; Brandl, Roland

Published in:
Global Ecology and Biogeography

DOI:
10.1111/j.1466-8238.2008.00394.x

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types

Christian Hof1,3*, Martin Brändle1,2 and Roland Brandl1,2

ABSTRACT

Aim We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types.

Location Europe.

Methods We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea. Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity.

Results Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes.

Main conclusions The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.

Keywords β-Diversity, dispersal, Europe, freshwater, glaciations, history, latitude, species richness.

INTRODUCTION

Although it has been known about for more than 200 years, the decrease of species richness with latitude is still poorly understood (Fischer, 1960; for recent reviews see Willig et al., 2003; Hillebrand, 2004; Mittelbach et al., 2007). Besides the mid-domain effect (Colwell & Lees, 2000), three classes of hypotheses have been proposed to explain this pattern: (1) the species–energy hypothesis, which states that species richness is determined by energy availability (Currie, 1991; Hawkins et al., 2003); (2) the species–area hypothesis, which points to the importance of space for species richness (Terborgh, 1973; Rosenzweig, 1995); and (3) the historical hypothesis which emphasizes the importance of history, in particular climatic fluctuations (Fischer, 1960; Dynesius & Jansson, 2000; Graham et al., 2006). In Europe the climatic fluctuations during the Pleistocene had dramatic impacts on diversity patterns, since the east–west orientation of the major mountain ranges impeded rearrangements of distributional areas in response to climatic fluctuations (see, e.g., Whittaker et al., 2007, and references therein).

Habitat is an important template for the evolution of speciﬁc traits, in particular for dispersal ability (Southwood, 1962; 1977). For freshwater ecosystems, studies initiated by I. Ribera and co-workers highlighted the importance of interactions between...
habitat stability, dispersal ability and patterns of species distributions (Ribera & Vogler, 2000; Ribera et al., 2001, 2003; see also Hof et al., 2006; Marten et al., 2006; Ribera, 2008). Our study is an extension of this work covering a broader range of taxonomic groups and habitat types and analyzing \(\beta \)-diversity among biogeographical regions. It is, like the foregoing investigations, based on the following hypothetical framework: On geological time-scales lentic habitats (standing waters) are less stable than lotic (running waters) or groundwater habitats (Gilbert et al., 1994; Dobson & Frid, 1998; Griebler & Mösslacher, 2003; Ribera, 2008). The majority of the larger lakes in Europe, for instance, date back to the Pleistocene (Schwoerbel, 1999). On the contrary, several European river systems originated in the Mesozoic (Hantke, 1993). Depending on size, lentic waters may even disappear within decades as sediments accumulate in the basins (Hutchinson, 1957; Harper, 1992). Overall, lentic habitats are likely to vanish within shorter periods of time than lotic habitats. Hence, one would expect species living in lentic habitats to be characterized by a higher propensity for dispersal than species living in lotic or groundwater habitats (Dobson & Frid, 1998; Ribera & Vogler, 2000; Ribera et al., 2003; Marten et al., 2006; Ribera, 2008).

From this, we deduce two predictions concerning latitudinal patterns of species richness and \(\beta \)-diversity in European freshwater animals. Firstly, if lentic species have a higher propensity for dispersal, they should have more rapidly recolonized central and northern regions. Hence we expect that species richness of lentic habitats should decrease with latitude at a lower rate compared with lotic or groundwater habitats. This implies also that the proportion of lentic species increases with latitude. Furthermore, dispersal influences species turnover (\(\beta \)-diversity) (Soininen et al., 2007a,b). Therefore, we secondly expect lower levels of \(\beta \)-diversity among regions for lentic compared with lotic and groundwater species.

METHODS

The data for the present analyses were extracted from the *Limnofauna Europaea* (Illies, 1978). The biogeographical regions of Europe outlined in this book were used for all analyses (Table 1). For each region, data on latitude (northern and southern boundary), longitude (western and eastern boundary) and maximum altitude were compiled from http://earth.google.com/. From this information we calculated the mean latitude and longitude of each region. Areas of regions were estimated by weighing pieces of paper cut from a copied map. Note that four of the 25 regions are open at their eastern border, which may

| Region code |
|-------------|
| IBE | Ibero-Macaronesian region | 38.23 | –12.24 | 3717 | 560,736 | 2543 | 99 | 633 | 741 | PYR | Pyrenees | 42.53 | 0.54 | 3404 | 49,548 | 1684 | 82 | 510 | 395 | ITA | Italy, Corsica and Malta | 40.98 | 12.97 | 3380 | 264,311 | 3284 | 135 | 709 | 1018 | ALP | Alps | 45.81 | 10.82 | 4808 | 210,580 | 4479 | 96 | 989 | 1426 | DIN | Dinaric western Balkans | 44.37 | 17.71 | 2636 | 161,032 | 2543 | 170 | 683 | 682 | HEL | Hellenic western Balkans | 39.13 | 23.76 | 2917 | 173,419 | 2258 | 100 | 566 | 729 | EAB | Eastern Balkans | 41.73 | 25.07 | 2925 | 177,548 | 2161 | 74 | 564 | 623 | WEH | Western highlands | 47.36 | 5.53 | 1886 | 156,903 | 2776 | 101 | 706 | 888 | CEH | Central highlands | 49.74 | 12.50 | 1602 | 260,129 | 4922 | 133 | 927 | 1717 | CAR | Carpathians | 47.15 | 22.07 | 2655 | 185,806 | 3842 | 130 | 884 | 1112 | HUN | Hungarian lowlands | 46.48 | 19.72 | 500 | 169,290 | 3187 | 67 | 421 | 1098 | PON | Pontic province | 45.83 | 30.18 | 1545 | 264,258 | 2819 | 50 | 345 | 939 | WEP | Western plains | 46.90 | 0.61 | 1000 | 400,425 | 4349 | 106 | 609 | 1280 | CEP | Central plains | 55.17 | 9.27 | 2500 | 540,902 | 5465 | 77 | 627 | 2213 | BAP | Baltic province | 56.93 | 24.23 | 318 | 210,580 | 3163 | 13 | 347 | 1263 | EAP | Eastern plains | 53.48 | 38.66 | 1000 | 2,320,511 | 3792 | 27 | 445 | 1442 | IRE | Ireland and Northern Ireland | 53.39 | –8.01 | 1041 | 82,580 | 1669 | 9 | 249 | 691 | GBR | Great Britain | 56.16 | –3.44 | 1344 | 235,354 | 3490 | 33 | 492 | 1350 | ICE | Iceland | 64.91 | –19.02 | 2110 | 103,226 | 475 | 2 | 28 | 204 | BOR | Borealic uplands | 64.13 | 13.06 | 2469 | 309,677 | 2153 | 4 | 276 | 1004 | TUN | Tundra | 71.53 | 44.68 | 1590 | 330,219 | 1365 | 6 | 193 | 540 | NSW | Northern Sweden | 64.60 | 17.44 | 1200 | 231,225 | 1954 | 12 | 254 | 849 | TAI | Taiga | 63.03 | 39.71 | 1000 | 1,606,190 | 2896 | 9 | 312 | 1221 | CAU | Caspian depression | 42.12 | 44.07 | 5642 | 363,354 | 2089 | 65 | 391 | 606 | CAS | Caspian depression | 48.08 | 47.03 | 500 | 627,612 | 1591 | 5 | 144 | 532 |
introduce some bias due to the distribution of singletons or the calculation of areas. All these areas are located in the European part of Russia. Therefore, we used the Ural Mountain chain as the eastern boundary of these regions. It is well known that the Ural Mountains act as a biogeographical boundary, which is not crossed by most of the species occurring in central Asia or Siberia.

For each region we compiled species presences or absences. The taxonomy as well as recent changes in species names were updated using the Fauna Europaea Web Service (2004). Our initial compilation listed 14,457 species, and after considering taxonomic changes and uncertain species the final list comprised 14,020 species of fish, annelids, water mites, crustaceans, insects, molluscs, nematodes, rotifers, flatworms and several taxa of fewer than 150 species (for an overview on species numbers of these major taxonomic groups, see Table S1 in Supplementary Material). The Limnfauna Europaea provides information of the habitat requirements for most of the species listed. From the more than 40 habitat categories given in the Limnfauna we grouped species into three major habitat types: groundwater, lotic (running waters from springs to large streams) and lentic habitats (standing waters from phytotelmata to large lakes). For a number of reasons we had to exclude 46% of the total species pool: (1) we had to exclude the 2663 species for which no habitat preferences where available; (2) we excluded 1958 generalists for which a habitat assignment was impossible; (3) we excluded 1025 parasitic species, as they rather rely on a specific host than on a certain type of habitat; (4) we excluded the 476 species occurring in brackish waters or with very special habitat requirements (e.g. leaf miners of aquatic plants, species living in mosses like tardigrades etc.).

Geographical variables and species richness of the different habitat types were tested for normality using the Kolmogorov–Smirnov test (StatSoft Inc., 2002). All variables except area approximated a normal distribution. Area was log10-transformed in all analyses, after which it also attained normality. We calculated simple linear regressions to test for the effect of area on species richness across the 25 regions. To analyse the relationship between species richness and latitude, we used multiple linear regressions. We always tested for the effect of latitude on species richness after correcting for all other geographical variables (for a visual inspection of the relationships between species richness and latitude, longitude, altitude and area see Fig. S1). The plot of species richness vs. latitude suggested a hump-shaped relationship. Therefore, we also included squared latitude as an independent variable in some analyses. To investigate the relationship between the proportion of lentic species and latitude, we used a multiple generalized linear model (binomial error term, logit link function, forward selection; Crawley, 2002). Patterns of β-diversity among regions were investigated by means of additive partitioning of species diversity (Crist et al., 2003) for each of the three habitats. For this analysis, regions were grouped into four latitudinal bands according to their latitudinal centres (< 45° N, between 45° N and 50° N, between 50° N and 60° N, > 60° N; see Fig. 2). Areas of regions were used as weights.

RESULTS

We found a significant species–area relationship only for lentic habitats (Table 2). The relationship of species richness and latitude differed between lentic habitats compared with lotic and groundwater habitats. In the latter species groups, species richness declined monotonically with latitude, whereas lentic species exhibited a hump-shaped relationship (Table 3, Fig. 1, Fig. S2). Species richness of lentic species peaked in central Europe, within a region covering the Netherlands, the northern part of Germany, the southern part of Scandinavia and parts of Poland (region CEP, see Table 1 and Fig. 2). The proportion of lentic species increased significantly from southern to northern latitudes (deviance = 647.2, $P < 0.0001$; Fig. 3). Even after considering the other geographical variables this pattern remained significant (Table 4). Additive partitioning of species diversity revealed a decline of β-diversity from groundwater to lotic to lentic species (Fig. 2). Furthermore, for each of the three habitat types, β-diversity decreased from southern to northern latitudes (Fig. 2).

Table 2 Slope and correlation coefficients for the relationship between species richness and area (log$_{10}$-transformed) for the three different habitat types (simple linear regressions, $n = 25$).

<table>
<thead>
<tr>
<th>Habitat type</th>
<th>Slope</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater habitats</td>
<td>-29.16</td>
<td>0.044</td>
<td>0.32</td>
</tr>
<tr>
<td>Lotic habitats</td>
<td>-48.58</td>
<td>0.0050</td>
<td>0.74</td>
</tr>
<tr>
<td>Lentic habitats</td>
<td>+537.4</td>
<td>0.19</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Figure 1 Relationship between latitude and species richness for freshwater species occurring within three different habitat types: (a) groundwater habitats, (b) lotic habitats, (c) lentic habitats. Each point represents the number of species occurring in the respective habitat within one of the 25 regions shown in Fig. 2.
DISCUSSION

Our analyses showed (1) a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats; (2) an increase in the proportion of lentic species with increasing latitude; and (3) a decline in β-diversity from groundwater to lotic to lentic habitats and from southern to northern latitudes.

The observed patterns in species richness might be caused by a variation in the sampling effort among regions (Bardgett et al., 2005; Moerman & Estabrook, 2006). As many, if not most, ecologists and taxonomists reside in central Europe, the fauna of this region is very well known (Illies, 1966; Bardgett et al., 2005). We argue that this bias does not sufficiently explain the observed variation of richness. First, since the fauna of groundwater habitats is not very well known (Gibert et al., 1994; Griebler &...
species richness for species adapted to lotic and groundwater habitats (Table 1), area was a poor predictor of singletons; and (2) that there is also a hump-shaped relationship between the number of singletons and latitude. However, the surprising difference in the latitudinal variation of species richness among species adapted to different habitats rejects the energy-availability hypothesis as a general explanation.

We are aware of four possible explanations for the observed differences in diversity patterns among habitats: (1) evolutionary idiosyncrasies; (2) differences in habitat availability; (3) differences in the location of refugia; and (4) differences in the dispersal propensity of species among habitats. These are discussed in turn below.

(1) We pooled a wide variety of taxa with very different phylogenetic backgrounds. This could lead to differences in diversity patterns between habitats if certain taxa of species adapted to a particular habitat dominate certain regions. To investigate if such evolutionary idiosyncrasies are responsible for the decrease of species richness with latitude in lotic and groundwater habitats, we tested whether the observed correlations are expected by chance, i.e. whether the phylogenetic assignment drives the pattern. For this, we randomized habitat preference across species and calculated the correlation coefficient for the relationship between species richness and latitude (for a detailed explanation see Fig. S4). For both lotic and groundwater habitats, the correlation coefficient expected by chance was negative, but all simulated coefficients were larger than the observed coefficients. Consequently, evolutionary idiosyncrasies are not sufficient to explain the decrease of species richness with latitude.

(2) The availability of the habitat types across the 25 biogeographical regions might also explain the observed differences in the latitudinal variation of species richness. This argument is partly related to our discussion of the species–area relationship. For groundwater habitats, terrestrial area approximates the available

\[y = e^{-1.93 + 0.026 \times \text{latitude}} (1 + e^{-1.93 + 0.026 \times \text{latitude}})^{-1}. \]

Table 4 Relationships between the proportion of lentic species within 25 biogeographical regions of Europe vs. geographical variables (multiple generalized linear model, binomial error term, logit link function, forward selection, Crawley, 2002, \(n = 25 \)).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Deviance</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>0.13</td>
<td>134</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Longitude</td>
<td>-0.0029</td>
<td>16.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Altitude</td>
<td>-0.000028</td>
<td>238</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Latitude</td>
<td>0.037</td>
<td>324</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Latitude²</td>
<td>-0.00013</td>
<td>1.03</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Figure 3 Proportion of lentic species in relation to latitude. Each point represents the proportion of species occurring in lentic habitats of the 25 regions shown in Fig. 2. The curve visualizes a generalized linear model (deviance = 647.2; \(P < 0.0001 \); \(y = e^{-1.93 + 0.026 \times \text{latitude}} (1 + e^{-1.93 + 0.026 \times \text{latitude}})^{-1} \)).

Although the areas of the biogeographical regions differed by almost everywhere below the surface (Gibert et al., 1994; Griebler & Mösslacher, 2003). However, for groundwater species, the relationship between species richness and area was negative (Table 2). If one accepts that our failure to find a species–area relationship for groundwater or lotic habitats is not due to a bias, the difference in the significance between lotic and lentic habitats becomes interesting. A non-significant relationship between area and species richness may be due to non-equilibrium conditions (MacArthur & Wilson, 1963; Ricklefs & Bermingham, 2004), which points to differences in the equilibrium conditions between groundwater and lotic vs. lentic biota. We will return to this point below.

Many papers have documented that species richness increases with several surrogates of energy available to the communities of plants or animals (Wright, 1983; Currie, 1991; Badgley & Fox, 2000; Hawkins et al., 2003). Even if the geographical resolution of our data is not sufficient for a meaningful evaluation of the energy-availability hypothesis, the monotonic decline of species richness with latitude that was observed for lotic and groundwater habitats is consistent with a latitudinal decline of energy availability. Nevertheless, the surprising difference in the latitudinal variation of species richness among species adapted to different habitats rejects the energy-availability hypothesis as a general explanation.

The latter is an indication of the sampling effort. If the hump-shaped pattern is a consequence of the extensive sampling in central Europe, then we would expect: (1) that species groups with a hump-shaped relationship have a high proportion of singletons; and (2) that there is also a hump-shaped relationship between the number of singletons and latitude. However, the hump-shaped relationship occurs in species adapted to lentic habitats (Table 3, Fig. 1c), which have a rather low proportion of singletons compared with lotic and groundwater species (Table S2). Furthermore, for all three species groups the number of singletons declines with increasing latitude (Fig. S3).

The latter is an indication of the sampling effort. If the hump-shaped pattern is a consequence of the extensive sampling in central Europe, then we would expect: (1) that species groups with a hump-shaped relationship have a high proportion of singletons; and (2) that there is also a hump-shaped relationship between the number of singletons and latitude. However, the hump-shaped relationship occurs in species adapted to lentic habitats (Table 3, Fig. 1c), which have a rather low proportion of singletons compared with lotic and groundwater species (Table S2). Furthermore, for all three species groups the number of singletons declines with increasing latitude (Fig. S3).

The latter is an indication of the sampling effort. If the hump-shaped pattern is a consequence of the extensive sampling in central Europe, then we would expect: (1) that species groups with a hump-shaped relationship have a high proportion of singletons; and (2) that there is also a hump-shaped relationship between the number of singletons and latitude. However, the hump-shaped relationship occurs in species adapted to lentic habitats (Table 3, Fig. 1c), which have a rather low proportion of singletons compared with lotic and groundwater species (Table S2). Furthermore, for all three species groups the number of singletons declines with increasing latitude (Fig. S3).

The latter is an indication of the sampling effort. If the hump-shaped pattern is a consequence of the extensive sampling in central Europe, then we would expect: (1) that species groups with a hump-shaped relationship have a high proportion of singletons; and (2) that there is also a hump-shaped relationship between the number of singletons and latitude. However, the hump-shaped relationship occurs in species adapted to lentic habitats (Table 3, Fig. 1c), which have a rather low proportion of singletons compared with lotic and groundwater species (Table S2). Furthermore, for all three species groups the number of singletons declines with increasing latitude (Fig. S3).

The latter is an indication of the sampling effort. If the hump-shaped pattern is a consequence of the extensive sampling in central Europe, then we would expect: (1) that species groups with a hump-shaped relationship have a high proportion of singletons; and (2) that there is also a hump-shaped relationship between the number of singletons and latitude. However, the hump-shaped relationship occurs in species adapted to lentic habitats (Table 3, Fig. 1c), which have a rather low proportion of singletons compared with lotic and groundwater species (Table S2). Furthermore, for all three species groups the number of singletons declines with increasing latitude (Fig. S3).
habitats. Our failure to find a species–area relationship for this habitat type suggests that the availability of habitats is not sufficient to explain the diversity patterns of freshwater species. Ribera et al. (2003) also argued consistently against this habitat-availability hypothesis. Nevertheless, further investigations are needed for a convincing test of this hypothesis.

(3) After the last glaciation many species recolonized central Europe from Mediterranean refugia (de Lattin, 1957; Hewitt, 1999). However, recent studies have demonstrated the existence of glacial refugia north of the Alps (Stewart & Lister, 2001; Pauls et al., 2006; Kristjánsson & Savavarsson, 2007). Furthermore, a considerable number of species may have colonized central Europe from eastern regions (e.g. Banarescu, 1990; Kodik et al., 2004). Irrespective of the location of the refugia, the recolonization of Europe should be biased towards species with a high dispersal propensity. The decrease in dispersal propensity of species associated with these habitats, are perfectly consistent with the proposed differences in the speciation rate among species adapted to groundwater, lotic and lentic habitats (1999; 2000).

(4) Lentic species are assumed to show a higher propensity for dispersal than lotic species. The differences in β-diversity among species adapted to groundwater, lotic and lentic habitats are perfectly consistent with the proposed differences in the dispersal propensity of species associated with these habitats, because with an increasing propensity for dispersal one expects a decrease in β-diversity (Soininen et al., 2007a,b). From this, in turn, one may deduce the hypothesis that the decrease of species richness with latitude in lotic as well as groundwater habitats is due to a low recolonization rate. The increase in the proportion of lentic species with latitude supports this argument. Consequently one might argue that the communities of lotic and groundwater habitats have not yet reached equilibrium in central and northern Europe. In contrast, lentic species may have reached equilibrium, which is also suggested by a significant species–area relationship (see above). Furthermore, low dispersal rates facilitate speciation (Bohonak, 1999; Marten et al., 2006), which should lead to a higher speciation rate in lotic as well as groundwater species compared to lentic species (Ribera & Vogler, 2004). The rugged topographic relief of the Mediterranean regions may have further contributed to a higher speciation rate (Mayr, 1942; Hewitt, 1999). The high levels of β-diversity in southern Europe are concordant with a higher speciation rate in the Mediterranean. However, we found this difference in lotic and lentic species. Therefore, differences in the speciation rate of lentic and lotic species do not sufficiently explain the observed difference in the relationship between species richness and latitude among lentic and lotic species.

None of these four factors that may have influenced the difference in the relationship between species richness and latitude among the different habitat types can account for the hump in species richness of lentic freshwater animals in central Europe. We propose three possible processes that might have generated this pattern. First, a considerable number of lentic species could have gone extinct in the southern refugia after the last glaciation, when the Mediterranean climate shifted to semi-arid conditions (Salinas et al., 2000; Oliva-Paterna et al., 2003). Note that this argument is not consistent with the foregoing, that habitat availability is not supposed to drive the observed patterns. Second, if lentic species are stronger dispersers, more species from eastern refugia may have reached central Europe. At the end of the last Ice Age, huge proglacial lakes provided pathways of recolonization for lentic species (e.g. Schäfer, 1997). However, our data indicate a decrease in the proportion of lentic species from west to east (Table 4). Consequently, this explanation also seems to be rather unlikely. Third, the mid-domain effect predicts a hump in species richness in the centre of a geographical domain (Colwell & Lees, 2000). This model places geographical ranges of species randomly across the available space. Furthermore, it assumes that biota are close to equilibrium. Indeed, due to their higher dispersal ability, lentic species should be near equilibrium conditions (see also above), so the mid-domain effect might be useful to approach an explanation of the species richness peak in lentic species in central Europe.

With our study, we underline that to understand differences in the spatial variation of biological diversity among taxa one has to consider the history of regions and lineages (Graham et al., 2006; Rahbek et al., 2007; Reyjol et al., 2007; Svenning & Skov, 2007) as well as the ecological traits of species (Ribera et al., 2003; Vogler & Ribera, 2003; Hof et al., 2006; Marten et al., 2006; McPherson & Jetz, 2007; Ribera, 2008). Furthermore, our analyses support previous studies which document that various European groups of plants and animals are not in equilibrium with current climate (Svenning & Skov, 2004; Araújo & Pearson, 2005; Araújo et al., 2008).

ACKNOWLEDGEMENTS
We thank, in particular, David G. Jenkins for comments on an earlier draft of this manuscript. Thanks to Miguel B. Araújo, Carsten Rahbek and Andreas Marten for inspiring discussions. Yorick Reyjol, Katrin Böhning-Gaese and two anonymous referees provided helpful remarks on the submitted manuscript. The Cusanuswerk – the German Catholic Scholarship Foundation – provided financial support for C.H. Finally, we are particularly grateful to the freshwater biologists who compiled the data for the Limnofauna Europaea.

REFERENCES

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this article:

Table S1 Taxonomic groups included in the analyses.

Table S2 Habitat types used in the *Limnofauna Europaea*.

Figure S1 Relationships between species richness and geographical variables.

Figure S2 Relationships between latitude and residuals of the regression of species richness and area.

Figure S3 Relationships between number of singletons and latitude.

Figure S4 Distribution of simulated correlation coefficients of the relationship between species richness and latitude for randomized habitat preference.

This material is available as part of the online article from: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1466-8238.2008.00394.x

(This link will take you to the article abstract).

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

BIOSKETCHES

Christian Hof is broadly interested in biodiversity research, particularly in the fields of macroecology, biogeography and conservation biology. Parts of this study were part of his MSc thesis at the Department of Animal Ecology of the University of Marburg. He is now a PhD student at the Center for Macroecology of the University Copenhagen, where he investigates the impacts of climate change on global biodiversity.

Martin Brändle works in the fields of biogeography, macroecology and population genetics. His recent research focuses on genetic diversity of freshwater invertebrates and diversity patterns of phytophagous insects on trees.

Roland Brandl has broad interests in ecology, particularly in large-scale patterns of genetic and species diversity.

Editor: Katrin Böhning-Gaese