Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells
Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte; Haridoss, Srividameena; Nowak-Imialek, Monika; Buchholz, Thomas; Streeck, Miriam; Grebe, Antonia; Grabundzija, Ivana; Merkert, Sylvia; Martin, Ulrich; Hall, Vanessa Jane; Rasmussen, Mikkel Aabech; Ivics, Zoltan; Hyttel, Poul; Niemann, Heiner
Published in:
Stem Cells and Development
DOI:
10.1089/scd.2012.0382
Publication date:
2013
Document Version
Early version, also known as pre-print
Citation for published version (APA):
Derivation and Characterization of Sleeping Beauty Transposon-Mediated Porcine Induced Pluripotent Stem Cells

Wilfried A. Kues,1 Doris Herrmann,1 Brigitte Barg-Kues,1 Srividameena Haridoss,2 Monika Nowak-Imialek,1 Thomas Buchholz,1 Miriam Streeck,1 Antonia Grebe,1 Ivana Grabundzija,3 Sylvia Merkert,2,4 Ulrich Martin,2,4 Vanessa J. Hall,5 Mikkel A. Rasmussen,5 Zoltan Ivics,6 Poul Hyttel,5 and Heiner Niemann1,2

The domestic pig is an important large animal model for preclinical testing of novel cell therapies. Recently, we produced pluripotency reporter pigs in which the Oct4 promoter drives expression of the enhanced green fluorescent protein (EGFP). Here, we reprogrammed Oct4-EGFP fibroblasts employing the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (iPS) cells showed long-term proliferation in vitro over >40 passages, expressed transcription factors typical of embryonic stem cells, including OCT4, NANOG, SOX2, REX1, ESRRB, DPPA5, and UTF1 and surface markers of pluripotency, including SSEA-1 and TRA-1-60. In vitro differentiation resulted in derivatives of the 3 germ layers. Upon injection of putative iPS cells under the skin of immunodeficient mice, we observed teratomas in 3 of 6 cases. These results form the basis for in-depth studies toward the derivation of porcine iPS cells, which hold great promise for preclinical testing of novel cell therapies in the pig model.

Introduction

The seminal discovery of induced pluripotent stem (iPS) cells in the mouse using 4 exogenous transcription factors paved the way for a novel source for stem cells with a significant potential for cell therapies [1]. Subsequently, human iPS cells were produced by using viral vectors carrying Oct4, Sox2, Klf4, and cMyc [2–5] or OCT4, SOX2, NANOG, and LIN28 as reprogramming factors [6]. Successful gene therapy experiments in mouse models of sickle cell thalassemia disease, muscular dystrophy, and tyrosinemia demonstrate the great potential of iPS cell-derived therapeutic treatments [7–9].

However, the use of retro- or lentiviral vectors for reprogramming prohibits the use of these cells for therapeutic applications in human patients, attributed to risks of insertional mutagenesis and potential oncogene activation [10]. Reprogramming methods, which avoid integration of the vectors into the host genome have been assessed in murine and human cells, including nonintegrating adenoviruses [11,12], episomal DNAs [13–15], or substitution of reprogramming factors by small molecules [16,17].

A limitation of murine models for preclinical assessments of potential cell therapies is the short life span, small size, and the high level of inbreeding in this species. The pig is an attractive large animal model for preclinical testing of safety and efficacy of iPS-based cell therapies. Porcine organs are largely similar in size and physiology to their human counterparts rendering the domestic pig a suitable model in transplantation, immunology, and surgery [18–23]. The availability of pluripotent porcine cells would be invaluable for preclinical testing of novel cell therapies. Despite numerous attempts, the derivation of authentic pluripotent porcine cells has been met with limited success [24]. Only recently, putative porcine iPS cells fulfilling several criteria of true pluripotent cells were reported after reprogramming

1Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany.
2Rebirth Excellence Cluster, Medical University Hannover, Hannover, Germany.
3Max Delbrück Center for Molecular Medicine, Berlin, Germany.
4Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Medical University Hannover, Hannover, Germany.
5Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
6Paul-Ehrlich-Institute, Langen, Germany.
fibroblasts with viral vectors [25–28]. Notably, in one study, chimeric offspring were reported [28]. After breeding of chimeric pigs, 2 out of 43 F1 offspring carried some of the reprogramming factors in their genome, suggesting germ line transmission [29]. However, current data indicate that reprogramming and in vitro culture conditions are deficient for induction and maintenance of pluripotency in porcine iPS cells [24,30–32]. In contrast to other species, in the pig, the continuous expression of the exogenous transgenic transcription factors is still necessary to maintain the pluripotent phenotype of presumptive porcine iPS cells [25–28]. Porcine iPS cells in which the exogenous reprogramming factors are silenced and pluripotency is maintained by the endogenous pluripotency factors have not yet been reported.

Here, we have applied the Sleeping Beauty (SB) transposon system for induction of pluripotency in porcine somatic cells. Recently, we have shown that the SB system, employing a hyperactive transposase variant [33], is an efficient nonviral tool for transgenesis in the pig [34,35]. An apparent advantage of SB-catalyzed transgenesis is the preferential integration into transcriptionally permissive genomic loci [36]. In contrast, random transgenesis frequently resulted in silenced transgenes in the pig [37]. Importantly, the SB transposase has a close-to-random insertion profile in mammalian genomes [33]. The majority of SB insertions occurs in intergenic regions, unlike retro- and lentiviral integrations, which favor promoter and exonic regions [10,12,13]. Thus, the SB-catalyzed DNA integration reduces the risk of insertional mutagenesis and represents a rather safe method of gene delivery [33,36].

Here, fibroblasts of Oct4-enhanced green fluorescent protein (EGFP) transgenic pigs were applied to monitor the reprogramming process. The Oct4-EGFP pigs carry the entire 18 kb genomic locus of the murine Oct4, which is one of the best characterized genes involved in pluripotency, controlling expression of an EGFP reporter [38–40]. In Oct4-EGFP pigs, the EGFP expression was found to be restricted to pluripotent cells of the germ line [41]. Importantly, EGFP expression was re-activated after experimental reprogramming by either somatic cell nuclear transfer (SCNT), fusion of porcine somatic cells with murine embryonic stem (ES) cells, or viral transduction with a set of 4 reprogramming factors [41]. Here, we employed porcine Oct4-EGFP transgenic fibroblasts and a SB transposon-based reprogramming approach to generate pluripotent iPS cells.

Materials and Methods

Plasmid construction

The PB-CAG.OSKM-puAtk sequences containing the cDNAs of the open reading frames of the 4 Yamanaka factors (murine Oct4, Sox2, Klf4, and cMyc) were removed from piggyBac (PB) vectors described previously [42] by NheI and NotI restriction and cloned into the SpeI and NotI sites of the pT2HB SB vector. The resulting construct contained a cytomegalovirus enhancer, chicken beta-actin hybrid promoter-driven reprogramming cassette (the reprogramming factors were combined into a single open reading frame separated by sequences encoding viral self-cleaving peptide of foot-and-mouth-virus (2A) peptides and a puAtk cassette), flanked by SB inverted terminal repeats (ITRs).

Derivation of Oct4-EGFP transgenic porcine fetal fibroblasts

The Oct4-EGFP transgenic pigs were produced by SCNT and transferred as reconstructed zygotes to synchronized recipients [41]. One pregnant recipient was sacrificed at day 25 of gestation and fetuses were recovered for fibroblast derivation as described [43]. Porcine fetal fibroblasts were cultured in a high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum (PAA), 2 mM L-glutamine, 1 mM sodium pyruvate, 1% nonessential amino acids, 0.05 mM β-mercaptoethanol, 100 U/mL penicillin, and 100 μg/mL streptomycin. Cells at passage 3 were used for electroporation with transposon plasmids. A Biorad electroporator with square wave function was used for electroporation. For feeder cells, murine embryonic fibroblasts (MEFs) or transformed mouse fibroblast cells with expression of leukemia inhibitory factor (SNL) cells were grown to subconfluency and inactivated with 10 μg/mL mitomycin C (Sigma) followed by thorough washings.

iPS cell generation and cultivation

Presumptive iPS cells were cultured in a human ES cell medium consisting of DMEM/nutrient mixture F-12 supplemented with 20% knockout serum replacement (Millipore), 1 mM L-glutamine, 0.1 mM nonessential amino acids (Gibco), 0.1 mM β-mercaptoethanol (Sigma), 100 U/mL penicillin, 100 μg/mL streptomycin, and 4 ng/mL basic fibroblast growth factor (bFGF) (Peprotech). Presumptive porcine iPS cells were cultured in a humidified atmosphere consisting of 5% CO2 in air at 37°C. Gelatinized plates, or plates seeded with inactivated MEFs or SNLs were used for porcine iPS cell culture. For subpassaging, a mechanical splitting method [27] was employed. In brief, a Pasteur pipette was pulled over a gas burner, in a second step, the tip was bended by 45–60° over a burner. The bended Pasteur pipette was used to scrape the surface of iPS culture dishes. Typically, small aggregates of cells were released; then a fresh iPS medium was added and cell aggregates were subpassed (1:2 to 1:4 ratio) to gelatinized culture dishes. For gelatinization, the intended culture dishes were wetted with sterile 1% gelatin in phosphate-buffered saline (PBS) and allowed to dry immediately before subpassaging. Alternatively, porcine iPS cells were passaged on feeder cells seeded the day before.

Fluorescence microscopy

For fluorescence microscopy, images were made with an Olympus BX 60 (Olympus) fluorescence microscope equipped with a 12-bit digital camera (Olympus DP 71).

Transmission electron microscopy

Putative iPS cell colonies from passage 16 were mechanically harvested for ultrastructural evaluation. Specimens were fixed in 3% glutaraldehyde in 0.1 M Na phosphate buffer (pH 7.3) at room temperature for 1 h, and then transferred and stored in 0.1 M Na phosphate buffer at 4°C. Samples were embedded in Bacto-agar (Difco Laboratories), dehydrated, and embedded in Epon TAAB 812 Embedding
Immunocytochemistry

In vitro differentiation assays

iPS cells were trypsinized and resuspended in the regular ES cell medium (without bFGF) for generation of embryoid bodies (EBs). To induce EB formation, the hanging-drop method was used and drops of 20 µL containing 600 cells were pipetted onto the lids of 10-cm cell culture dishes and incubated at 37°C for 3 days. EBs were washed off the plate with PBS and transferred to 10-cm dishes containing the ES cell medium in which they were incubated for 3 additional days before harvesting.

For ectodermal differentiation [45], iPS cells underwent 3 weeks of coculture in dishes containing murine stromal cells (MS5; obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen) on gelatin-coated glass coverslips in the serum replacement medium containing DMEM, 15% knockout serum replacement, and 2 mM L-glutamine (all from Invitrogen). Immunocytochemistry for TUJ1 (neuron-specific βIII-tubulin), SOX2, NESTIN, and GFAP was carried out upon appearance of neuron-like structures. For meso- and endodermal differentiation, iPS cells were detached from the feeder layer by collagenase IV (0.2%) (Invi
trogen). Immunocytochemistry for Oct4-EGFP was performed using brightfield microscopy (Leica Microsystems) and ultrathin sections were observed using an electron microscope (CM100; Philips).

Antibodies were run in parallel.

1-60 (1:250) antibodies (both from Millipore) were used in combination with an anti IgM secondary antibody conjugated with Alexa 555. Fibroblasts were used as controls, and samples without the first or without the secondary antibody were run in parallel.

by a goat anti-mouse Fab antibody (1:10,000; Sigma) at room temperature for 1 hour. Membranes were rinsed with TBST containing 5% dry milk powder for 1 h. Membranes were incubated with the primary antibody anti-Oct4 [Santa Cruz, sc-5279 (1:500)] in TBST with 5% dry milk at room temperature for 1 hour. Membranes were rinsed with TBST and incubated with a horseradish peroxidase-conjugated secondary anti-mouse Fab antibody (1:10,000; Sigma) at room temperature for 1 h. Protein detection was performed with an enhanced chemiluminescence reagent (ECL plus; GE Healthcare) and the FusionFX station (VilberLourmat).

Quantitative real-time polymerase chain reaction

Total RNA was prepared using a TriReagent (Ambion) from Oct4-EGFP fibroblasts (OG2-PFF) and different passages of iPS cells according to the manufacturer’s instructions. Isolated total RNA from cell samples was treated with RNase-free DNase (1 U/µg RNA) (Epicentre Biotechnologies) and 0.5 µg was used for cDNA synthesis. Reverse transcription (RT) was performed in a 20 µL volume consisting of 2 µL of 10× RT buffer (Invitrogen), 2 µL of 50 mM MgCl2 (Invitrogen), 2 µL of 10 mM deoxytriphosphatnucleotides solution (Bioline), 1 µL (20 U) of RNAsin (Applied Biosystems), 1 µL (50 U) of moloney murine leukemia virus (MMLV) reverse transcriptase (Applied Biosystems), and 1 µL hexamers (50 µM) (Applied Biosystems). The samples were incubated at 25°C for 10 min for primer annealing, and then incubated at 42°C for 1 h. Finally, the samples were heated to 95°C for 5 min. The cDNA was diluted 1:5 and 2 µL (10 ng) were used for Real-Time polymerase chain reaction (PCR) amplification. Real-Time PCR was performed in 96-well optical reaction plates (Applied Biosystems). The PCR mix in each well included 10 µL of 2× Power Sybr Green PCR Master Mix (Applied Biosystems), 6.4 µL dH2O, 0.8 µL each of the forward and reverse primers (5 µM) (Table 1), 2 µL of cDNA in a final reaction volume of 20 µL. The PCR reaction was carried out in an ABI 7500 Fast Real-Time System (Applied Biosystems) using the following program; activation of the Taq Polymerase for 10 min at 95°C followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. The specificity of the PCR product was confirmed by dissociation curve analysis and size detection by agarose gel electrophoresis. Data generated by the Sequence Detection Software 1.4 were transferred to Microsoft Excel for analysis. For normalization, the housekeeping genes GAPDH and EEF1A1 were amplified along with the pluripotency-related genes. Normalization factors were calculated with the excel-based software genorm (http://medgen.ugent.be/-jvdesomp/genorm/) based on the housekeeping genes [47].
Transfer efficiency was controlled by E7 (tubulin; DSHB) blotting.

Teratoma formation

To assess the tumorigenic potential of the porcine iPS cells, 1×10^6 cells were subcutaneously injected into the flank of CD-1 nude mice. The founder animals were obtained from Charles River, and then maintained in the Institute’s mouse house according to approved protocols. Mice were analyzed for tumor formation twice a week, and sacrificed 6–12 weeks after treatment. Tumors were fixed in 4% formaldehyde and cryosections were stained with hematoxylin/eosin for histological analyses.

RNA preparation and microarray analysis

Total RNA was extracted using the TRIzol Reagent (Invitrogen). After RNA isolation, a DNase I digest was performed. A second cleanup of isolated RNA was done by extraction with PhOH/CHCl$_3$/Isomyl and Isoprop/NaOAc precipitation. The RNA was checked for quantity, purity, and integrity of the 18S and 28S ribosomal bands by capillary electrophoresis using the Agilent 2100 bioanalyzer (Agilent Technologies).

Table 1. Primers for Real-Time Reverse Transcription–Polymerase Chain Reaction and end point Polymerase Chain Reaction

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences: 5’–3’</th>
<th>Annealing temp./cycle number</th>
<th>Fragment size (bp)</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcine</td>
<td>AGTGCCCAAGGACCCACTCT</td>
<td>63/40</td>
<td>100</td>
<td>NM_001113060</td>
</tr>
<tr>
<td>OCT4</td>
<td>TCTGGGCAAGGTTGCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>AAGAACCGGCCAGACGAGTT</td>
<td>63/40</td>
<td>88</td>
<td>NM_001123197.1</td>
</tr>
<tr>
<td>SOX2</td>
<td>GGTTCCTTGCAGGACAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>GCCACCGACCTGAGAGT</td>
<td>62/40</td>
<td>59</td>
<td>NM_001031782.1</td>
</tr>
<tr>
<td>KLF4</td>
<td>AGACAGCGTGTTGTACAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>GCTGGATTTCTCCGGATAG</td>
<td>62/40</td>
<td>66</td>
<td>NM_001005154.1</td>
</tr>
<tr>
<td>cMYC</td>
<td>TTGTTGAAAGCTGATGTGAG</td>
<td>60/40</td>
<td>70</td>
<td>NM_001129971.1</td>
</tr>
<tr>
<td>Porcine</td>
<td>GCCCCAGCTCCAGTTTCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NANOG</td>
<td>ATTTTCCCCAGCATTTTCAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>CAAAATGAGGCCACCTTGGAGA</td>
<td>60/40</td>
<td>69</td>
<td>NM_001097418.1</td>
</tr>
<tr>
<td>EF1A1</td>
<td>GGCACGATTTGTCAGAGTATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>ACACTCACCCTACTCTTTTTG</td>
<td>60/40</td>
<td>89</td>
<td>AF017079.1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>AAAATTCATTGTCGACCAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>CGGCCGGCCCGCCACCTCCAAGAGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTF1</td>
<td>CGCCCTTCCTCGACACTCTT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>AGGGACTGGTGGGCACTCAT</td>
<td>60/40</td>
<td>62</td>
<td>XM_001928051</td>
</tr>
<tr>
<td>ESRB</td>
<td>CCCCAGAGAGAGGGTTGAGA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>GTGCTCCAGTCTATGGCAAGATGAGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPPA5</td>
<td>GTGAACTATGGCCTTCAGTTA</td>
<td>60/40</td>
<td>80</td>
<td>NM_001160273.1</td>
</tr>
<tr>
<td>Porcine</td>
<td>ATGGCCAGAAAAACCTACAG</td>
<td>60/40</td>
<td>203</td>
<td>NM_001044580.1</td>
</tr>
<tr>
<td>STAT3</td>
<td>TGGGGTCCCCCTTGTAGCTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>TGAGATGGAAAGTGGAGCAT</td>
<td>60/40</td>
<td>100</td>
<td>NM_001114673.1</td>
</tr>
<tr>
<td>SALA</td>
<td>GCTGCAAGGCAACAAATG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>CTGGAGTGGTCACTGGAATAT</td>
<td>60/40</td>
<td>72</td>
<td>AY785158</td>
</tr>
<tr>
<td>TERT</td>
<td>GCTCTGGTTGAAAGTGAGACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcine</td>
<td>GTCTTGAGCTGAGTGGCACAAG</td>
<td>60/40</td>
<td>70</td>
<td>XM_001927029.1</td>
</tr>
<tr>
<td>REX1 (ZFPI2)</td>
<td>CTGTGAACGGAGAGATGCTTCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murine</td>
<td>ATCGGACAGGCTAGAGTCTTCT</td>
<td>60/40</td>
<td>70</td>
<td>NM_013633.2</td>
</tr>
<tr>
<td>Oct4</td>
<td>CCATCCCTCAGCAGAACTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murine</td>
<td>AAAAGGCCCATAGATGTAAGT</td>
<td>60/40</td>
<td>70</td>
<td>NM_010849</td>
</tr>
</tbody>
</table>

Endpoint PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences: 5’–3’</th>
<th>Annealing temp./cycle number</th>
<th>Fragment size (bp)</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNT1</td>
<td>GAGCCCCTGTGGAGAGTCA</td>
<td>55/32</td>
<td>107</td>
<td>XM_003126100</td>
</tr>
<tr>
<td>TBX20</td>
<td>AGGTACCAGCAGGCTTTAC</td>
<td>50/32</td>
<td>470</td>
<td>GI 31652229</td>
</tr>
<tr>
<td>SOX17</td>
<td>CGGACGAGAGGGTTGACAAATA</td>
<td>55/32</td>
<td>167</td>
<td>XM_001928376.4</td>
</tr>
<tr>
<td>NANOOG</td>
<td>GTGATGGTACCTCTCTCTGT</td>
<td>62/35</td>
<td>315</td>
<td>[41]</td>
</tr>
<tr>
<td>PolyA/POLYA</td>
<td>GTTCTCCTGGTGGTCACTGGCTCTGGGTGAAG</td>
<td>57/35</td>
<td>252</td>
<td>[41]</td>
</tr>
</tbody>
</table>

PCR, polymerase chain reaction.
Technologies). Only samples with comparable RNA integrity numbers > 8 were selected for microarray analysis.

Microarrays were done using the Low RNA Input linear Amplification Kit Plus, One Color protocol (Agilent Technologies, Inc., 2007; Cat. No.: 5188-5339) and the Agilent RNA Spike-In Kit for One color (Agilent Technologies, Inc., 2007; Cat. No.: 5188-5282), according to the manufacturer’s standard protocol. Global gene expression analysis was applied using the porcine 4×44 K design array from Agilent Technologies (G2519F; V2: 026440). A total of 200 ng total RNA was used as a starting material to prepare cDNA. The cDNA synthesis and in vitro transcription were performed according to the manufacturer’s recommendation. Quantity and efficiency of the labeled amplified cRNA were determined using the NanoDrop ND-1000 UV-VIS spectrophotometer version 3.2.1. The hybridizations were performed for 17 h at 10 rpm and 65°C in a hybridization oven (Agilent). Washing and staining of the arrays were done according to the manufacturer’s recommendation. Cy3 intensities were detected by one-color scanning using an Agilent DNA microarray scanner (G2505B) at 5-μm resolution. Scanned image files were visually inspected for artefacts, and then analyzed.

Intensity data were extracted using Agilent’s Feature Extraction software (version 9.5.3.1). All chips passed the quality control and were analyzed using the Limma package of Bioconductor. The data reported in this article were generated in compliance with the minimum information about a microarray experiment (MIAME) guidelines.

The microarray data analysis consisted of the following steps: (1) between-array normalization, (2) global clustering and principal components analysis (PCA), (3) fitting the data to a linear model, (4) detection of differential gene expression, and (5) over-representation analysis of differentially expressed genes. Quantile-normalization was applied to the log2-transformed intensity values as a method for between-array normalization to ensure that the intensities had similar distributions across arrays.

P values were obtained from the moderate t-statistic and corrected for multiple testing with the Benjamini–Hochberg method. The P value adjustment guarantees a smaller number of false positive findings by controlling the false discovery rate.

FIG. 1. Reprogramming porcine fibroblasts with Sleeping Beauty (SB) transposon vectors. (A) Schematic depiction of experimental design. A SB transposon with a poly-cistronic reprogramming cassette encoding Oct4, Sox2, Klf4, and cMyc, separated by self-cleaving peptides of foot-and mouth-virus (2A) and the SB100X expression plasmid were co-electroporated into porcine fibroblasts. (B, C) 10–15 days post-electroporation, cell colonies formed in co-electroporated cultures (arrows). Scale bars = 50 μm. (D) Colony formation was not observed in control cultures (no pOSKM), the same magnification as in (C). (E, F) Comparative transcriptome analysis of fibroblasts and presumptive porcine iPSCs at passages 18 and 38. (E) Hierarchical cluster analysis; (F) heat diagram. CAGGS, cytomegalovirus enhancer, chicken β-actin promoter; ITR, inverted terminal repeat; SB100X, hyperactive variant of Sleeping Beauty transposase; pOSKM, plasmid carrying SB ITRs and reprogramming factor sequences; pPS, porcine induced pluripotent stem cells. Color images available online at www.liebertpub.com/scd
Results

Transposon mediated reprogramming of Oct4-GFP transgenic porcine fibroblasts

Porcine fibroblasts isolated from Oct4-EGFP transgenic fetuses (passage 3) were co-electroporated with a SB transposon carrying a multigene cassette consisting of the cDNAs for Oct4, Sox2, Klf4, and cMyc, separated by self-cleaving 2A peptide sequences (Fig. 1) and a helper plasmid expressing the hyperactive variant of Sleeping Beauty transposase (SB100X). Jumping genes, such as the class II transposon SB, are mobilized via binding of the transposase to the ITRs, excision of the ITR flanked region and insertion of this sequence into a chromosome [48]. Thereby, a single (monomeric) copy of the ITR flanked transposon is integrated into a genomic locus of the host organism.

About 10–14 days after transposon electroporation, colonies of cells became visible in the porcine cell cultures (Fig. 1B, C). Mock treatments without plasmid DNA, or only one plasmid of the nonautonomous transposon, resulted in no or very few colonies (Table 2). On day 14, the serum-supplemented culture medium was replaced by the serum-free medium, supplemented with the knockout serum replacement and bFGF, and cells were passaged by mechanical splitting to gelatinized plates. Starting from day 20 after electroporation, first EGFP-positive cells were detected (Fig. 2), which were unevenly distributed in the culture dishes and formed loose colonies (Fig. 2A–C). This observation was confirmed after staining with AP (Fig. 2D, E). After proliferation for >40 passages, the porcine putative iPS cells grew in sheet-like colonies with expression of the Oct4-EGFP transgene. The ratio of EGFP-positive cells varied between 1% and 5% of all cells.

Expression profiling of putative iPS cells

Global gene expression profiling by microarray hybridization revealed a total of 2,166 upregulated and 2,321 downregulated transcripts in the presumptive iPS cells.

Table 2. Summary of Transposon Electroporation Experiments

<table>
<thead>
<tr>
<th>Plasmid(s)</th>
<th>Amount of DNA (µg/3x10⁶ cells)</th>
<th>No of colonies (d12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no DNA</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>pCMV-SB100X</td>
<td>n.a.</td>
<td>5</td>
</tr>
<tr>
<td>pOSKM</td>
<td>n.a.</td>
<td>5</td>
</tr>
<tr>
<td>pCMV-SB100X</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>pOSKM</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>pOSKM</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>pCMV-SB100X</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

(n=2); n.a., not applicable; CMV, cytomegalovirus immediate early promoter; SB100X, hyperactive variant of Sleeping Beauty transposase; pOSKM, transposon plasmid carrying the reprogramming factor sequences.

FIG. 2. Reactivation of pluripotency reporter Oct4-EGFP. (A–C) The Oct4-EGFP construct was reactivated after transposon plasmid electroporation, the images show exemplary colonies at 20 days (A), 25 days (B), and 30 days (C) after treatment. (A′–C′) Corresponding brightfield images. Control cultures did not reveal any EGFP fluorescence (not shown). (D, E) Expression of alkaline phosphatase at day 25 after electroporation. EGFP, enhanced green fluorescent protein. Color images available online at www.liebertpub.com/scd
compared to the originating fibroblasts. Putative porcine iPS cells were remarkably stable over different passages (Fig. 1E) and showed expression of stemness-associated genes, such as LIN28, ZFP42 (REX1), SALL4, and TERT. Real-time RT-PCR of selected genes confirmed upregulation of endogenous OCT4, SOX2, UTF1, SALL4, ESSRB, REX1, DPPA5 and TERT (Supplementary Fig. S1; Supplementary Data are available online at www.liebertpub.com/scd), whereas the porcine KLF4 and cMYC transcripts were downregulated compared to fibroblast cultures. OCT4, SOX2, UTF1, and REX1 transcript levels were higher in porcine iPS cells cultured in serum-free medium than in iPS cells maintained in

FIG. 3. Expression of pluripotency reporter, OCT4 and SOX2 in porcine iPS. (A) Porcine iPS colony with expression of the Oct4-EGFP reporter cultured on murine embryonic fibroblast feeders. (A) Brightfield, (A') EGFP fluorescence, and (A'') overlay. (B) OCT4 expression: (B) Brightfield, (B') OCT4 immunohistology, and (B'') overlay. (C) NANOG expression: (C) Brightfield, (C') NANOG immunohistology, and (C'') overlay. Bars=20 μm. Color images available online at www.liebertpub.com/scd

FIG. 4. Transposon-derived porcine iPS colonies and cells display typical ultrastructural features of pluripotent stem cells. (A) Tightly packed porcine iPS cell colony consisting of cells of uniform morphology. Apoptotic bodies are occasionally seen (arrows). Inset: Light micrograph of iPS colony. (B) Porcine iPS cell presenting a large centrally located nucleus rich in euchromatin and with a single large nucleolus (Nu). In the cytoplasm, sparse mitochondria (M), rough endoplasmic reticulum (RER), and Golgi complexes (G) are seen. (C) Porcine iPS cells in the periphery of the colony connected by tight junctions (TJ). (D) Individual porcine iPS cell showing condensed chromatin blocks (arrows) peripherally in the nucleus as a hallmark of apoptosis. Color images available online at www.liebertpub.com/scd
When porcine iPS cells were cultured on inactivated murine fibroblasts, they formed colonies, which resembled human iPS cell or ES cell colonies (Fig. 3A). Expression of OCT4 and NANOG could be confirmed by immunocytochemistry (Fig. 3B, C).

The mRNA expression of the exogenous (transposon-based) multicistronic transcript was determined by species-specific real-time RT-PCR in feeder free-grown porcine iPS cells (Supplementary Fig. S2). Western blotting confirmed the presence of the OCT4 protein in the transposon-treated cells (Supplementary Fig. S2). However, the primary antibody cannot discriminate between the transposon-encoded transcription factor (Oct4) and the porcine OCT4 homolog. In addition, expression of endogenous and exogenous stemness genes were determined by real-time RT-PCR for porcine iPS cells cultured on MEFs (Supplementary Fig. S3). Expression of the surface markers, SSEA1 and TRA-1-60, was verified by indirect immunofluorescence (Supplementary Fig. S4).

Transmission electron microscopy was performed on colonies harvested at passage 16. The analysis revealed that the porcine iPS colonies were compact and composed of cells of uniform morphology (Fig. 4A). The individual cells presented a large, centrally located nucleus rich in euchromatin, typically with a single large nucleolus (Fig. 4B). The cytoplasm only rarely contained organelles, including mitochondria, rough endoplasmic reticulum, and Golgi complexes. Cells in the periphery of the colonies were in some cases connected to each other by tight junctions (Fig. 4C). Apoptotic bodies and cells undergoing apoptosis were occasionally observed (Fig. 4A, D).

Differentiation in vitro and in vivo

In vitro differentiation experiments toward the neuronal lineage [45] resulted in rosette formation and cells, which stained positive for the neuronal progenitor marker NESTIN, SOX2, and the axonal marker TUJ1, all representing ectodermal cell derivatives (Fig. 5). No specific staining for GFAP was found (Fig. 5). Putative mesodermal cells could be identified with antibodies specific for vimentin and desmin; cells of the endoderm were detected with monoclonal antibodies against the endoderm-specific cytokeratin 19 and

FIG. 5. Directed neuronal differentiation of porcine iPS cells. (A–C) Expression of SOX2 (A), NESTIN (B), and overlay with nuclear counterstain (C). (D–F) Expression of the axonal marker TUJ1 (D), GFAP immunoreactivity (E), and overlay with nuclear counterstain (F). Scale bar = 20 μm. Color images available online at www.liebertpub.com/scd

FIG. 6. Expression of mesodermal and endodermal markers. (A, B) Expression of mesoderm-specific vimentin AMF17B (A), and nuclear counter stain (B). (C, D) Expression of endoderm-specific cytokeratin 19 (C), and nuclear counter stain (D). Scale bar = 10 μm. (E) Expression of TUJ1 and nuclear counterstain. (F) Expression of SOX17 and nuclear counterstain. (G) Expression of desmin and nuclear counterstain. Bars = 40 μm. (H) Expression of WNT1, TBX20, and SOX17 at day 0 and day 20 of differentiation; +, with RT; −, without RT. Color images available online at www.liebertpub.com/scd
SOX17 (Fig. 6 and Supplementary Fig. S5). Histochemical staining with oil red and alizarin indicated differentiation toward adipocytes and cartilage cells (Supplementary Fig. S6). In all cases, differentiated cells lost their EGFP fluorescence.

To test their tumorigenic potential, 1×10^6 putative porcine iPS cells were injected under the skin of 6 immunodeficient nude mice. In 3 animals, a visible tumor growth was observed 2 weeks later. The animals were sacrificed 6–12 weeks after injection and the tumor tissue was sectioned and stained with hematoxylin/eosin. Evidence for the presence derivatives of the 3 germ layers was found indicating the formation of true teratomas (Fig. 7). The sections contained the skeletal muscle, smooth muscle, neuronal, and gland-like structures. Genotyping with species-specific PCR assays confirmed the porcine origin of the teratomas (Supplementary Fig. S7).

Discussion

Here, we used primary fibroblasts derived from Oct4-EGFP transgenic pigs as pluripotency reporter cells and demonstrate their usefulness in reprogramming somatic cells to iPS cells by transposon-mediated delivery of the reprogramming factors. The availability of Oct4-EGFP transgenic pigs allows screening of factors critical for maintenance of pluripotency and to establishing a culture system that is compatible with long-term proliferation of porcine pluripotent cells. Under feeder-free conditions, the porcine iPS cells formed loose colonies. Upon seeding on feeder cells (MEF or SNL), porcine iPS cells grew in typical dense colonies, resembling the morphology of human iPS cells [2,6].

Ultrastructural analysis revealed that the putative iPS cells appeared morphologically uniform and displayed characteristics of typical pluripotent cells, including a large nucleus in a sparse cytoplasm harboring few organelles, a prominent nucleolus, and an abundant amount of euchromatin [49]. At the periphery of the colony, adjacent cells were connected by tight junctions indicating epithelial characteristics; a similar observation has been made in human ES cells [49].

Attempts to derive true porcine iPS cells have met with limited success, although chimerism upon blastocyst complementation with porcine iPS cells [28] and germ line transmission [29] has been reported by one group. Unfortunately, both piglets with germline-transmitted reprogramming factors died around birth [29].

The lack of true porcine ES cells prevents the unequivocal identification of pluripotent cells after reprogramming toward iPS cells in this species. In contrast, the available mouse and human ES cells clearly facilitated the development of protocols for cellular reprogramming in these species [16,50]. In reprogrammed human cells, colonies with phenotypes that resemble true ES cells differed with regard to molecular marker expression and differentiation potential [51]. By analyzing expression of pluripotency markers, the methylation status at the OCT4 and NANOG promoters, and the differentiation potential into teratomas, true iPS cells could be discriminated from cells that were not completely reprogrammed [51]. Mouse reprogramming studies were facilitated by the use of pluripotency reporter gene.
constructs, driven by either the Fbx15, Oct4, or Nanog promoter, and nascent iPSCs could successfully be identified [1,3,4,13]. Culture conditions for long-term maintenance of pluripotency in murine cells are well defined [52]. Recent findings indicate that long-term maintenance of pluripotency of murine ES and iPSCs depends on the presence of a rare two-cell (2C) stage [53].

In the present study, we used somatic cells from Oct4-EGFP transgenic pigs, and show that this facilitated reprogramming, thus representing a valuable tool for studies into the reprogramming of somatic cells into iPSCs. Experiments have been initiated to excise the reprogramming SB-transposon to generate foot print-free porcine iPSCs. In PB reprogrammed murine iPSC, the traceless removal of a reprogramming transposon has been shown [54]. Recently, the suitability of SB-mediated reprogramming of murine fibroblasts to iPSC cells has been demonstrated [55].

The transposon-mediated reprogramming reported here has distinct advantages over viral approaches reported previously [25–28]. Transposon plasmid preparation is straightforward and does not require additional security precautions, as for retro- and lentiviral vectors. The SB transposase catalyzes integration into the host genome in a random manner, without preference for promoter or exonic regions, thus reducing the risk of insertional mutagenesis [54,56,57].

In conclusion, results of the present study demonstrate the usefulness of porcine Oct4-EGFP cells and transposon-mediated reprogramming for the derivation of porcine iPSC cells. However, this study also highlights the limitations of current culture systems. Variable cell morphology in different mediated reprogramming for the derivation of porcine iPS cells and does not require additional security precautions, as for viral approaches reported previously [25–28]. Transposon plasmid preparation is straightforward and does not require additional security precautions, as for retro- and lentiviral vectors. The SB transposase catalyzes integration into the host genome in a random manner, without preference for promoter or exonic regions, thus reducing the risk of insertional mutagenesis [54,56,57].

Acknowledgments

The authors are grateful for the expert technical support of Stephanie Holler and Nicole Cleve. We thank Dr. S. Galge (MHH) for support with teratoma analysis. Gratefully, Prof. R. Michael Roberts (University of Missouri) gifted lentivirus reprogrammed porcine iPSC, described in [27]. The authors thank Dr. S. Petkov and Dr. T.R. Talluri for critical reading of the manuscript. Financial support by the Bundesministerium für Bildung und Forschung (IPST-LAM and ReGene consortia), the EU projects EU FP7 PartnErS (PIAP-GA-2008-218205) and PlurSys (HEALTH-2007-B-223485) and InduStem, the Danish National Advanced Technology Foundation, and the Danish Council for Independent Research, Technology and Production Science is gratefully acknowledged.

Ethics Statement

Animals were maintained and treated according to German laws for animal welfare and for genetically modified organisms.

Author Disclosure Statement

No competing financial interests exist.

References

Address correspondence to:
Dr. Wilfried A. Kues
Institute of Farm Animal Genetics
Friedrich-Loeffler-Institut
Mariensee, 31535 Neustadt
Germany
E-mail: wilfried.kues@fli.bund.de

Prof. Heiner Niemann
Institute of Farm Animal Genetics
Friedrich-Loeffler-Institut
Mariensee, 31535 Neustadt
Germany
E-mail: heiner.niemann@fli.bund.de

Received for publication July 11, 2012
Accepted after revision September 18, 2012
Prepublished on Liebert Instant Online XXXX XX, XXXX