Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

Jia, Jizeng; Zhao, Shancen; Kong, Xiuying; Li, Yingrui; Zhao, Guangyao; He, Weiming; Appels, Rudi; Pfeifer, Matthias; Tao, Yong; Zhang, Xueyong; Jing, Ruilian; Zhang, Chi; Ma, Youzhi; Gao, Lifeng; Gao, Chuan; Spannagl, Manuel; Mayer, Klaus F. X.; Li, Dong; Pan, Shengkai; Zheng, Fengya; Hu, Qun; Xia, Xianchun; Li, Jianwen; Liang, Qinsi; Chen, Jie; Wicker, Thomas; Gou, Caiyun; Kuang, Hanhui; He, Genyun; Luo, Yadan; Keller, Beat; Xia, Qiuju; Lu, Peng; Wang, Junyi; Zou, Hongfeng; Zhang, Rongzhi; Xu, Junyang; Gao, Jinlong; Middleton, Christopher; Quan, Zhiwu; Liu, Guangming; Wang, Jian; Yang, Huanming; Liu, Xu; He, Zhonghu; Mao, Long; Wang, Jun

Published in:
Nature

DOI:
10.1038/nature12028

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

Download date: 28. Jan. 2019
Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

Jizeng Jia1*, Shancen Zhao2,3*, Xiuying Kong1*, Yingrui Li2*, Guangyao Zhao1*, Weiming He2*, Rudi Appels4*, Matthias Pfeifer5, Yong Tao7, Xueyong Zhang4, Ruilan Jing1, Chi Zhang2, Youzi Ma1, Lifeng Gao2, Chuan Gao2, Manuel Spannagl5, Klaus F. X. Mayer5, Dong Li2, Shengkai Pan2, Fengya Zheng2,3, Qiuju Xia2, Peng Lu2, Junyi Wang2, Zhiwu Quan2, Guangming Liu8, Jianwen Li2, Qinsi Liang2, Jie Chen2, International Wheat Genome Sequencing Consortium†, Huaming Yang2, Xu Liu1, Zhonghu He1, Long Mao1 & Jun Wang2,3,6,11

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBD). Wheat has since become a staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker’s flour. Here we describe sequencing the A. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in A. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.

We selected A. tauschii accession AL8/78 for genome sequencing because it has been extensively characterized genetically (Supplementary Information). Using a whole genome shotgun strategy, we generated 398 Gb of high-quality reads from 45 libraries with insert sizes ranging from 200 bp to 20 kb (Supplementary Information). A hierarchical, iterative assembly of short reads employing the parallelized sequence assembler SOAPdenovo1 achieved contigs with an N50 length (minimum length of contigs representing 50% of the assembly) of 4,512 bp (Table 1). Paired-end information combined with an additional 18.4 Gb of Roche/454 long-read sequences was used sequentially to generate 4.23-Gb scaffolds (83.4% were non-gapped contiguous sequences) with a total of 2,505 transfer RNA, 358 ribosomal RNA, 35 small nuclear RNA (snRNA) and 117-Mb transcriptome assembly) on 23 libraries representing eight tissues including pistil, root, seed, spike, stamen, stem, leaf and sheath (Supplementary Information). Using both evidence-based and de novo gene predictions, we identified 34,498 high-confidence protein-coding loci. FGENESH4 and GeneID models were supported by a 60% overlap with either our ESTs and RNA-Seq reads, or with homologous proteins. More than 76% of the gene models had a significant match (E value ≤ 10−2; alignment length ≥ 60%) in the GenBank non-redundant database. An additional 8,652 loci were predicted as low-confidence genes as a result of incomplete gene structure or limited expression data support (Supplementary Information). We also predicted a total of 2,505 transfer RNA, 358 ribosomal RNA, 35 small nuclear RNA and 78 small nuclear RNA genes (Supplementary Information).

We found that more than 65.9% of the A. tauschii genome was composed of different transposable element (TE) families (Supplementary Information). About 5 × 106 Illumina reads of A. tauschii were mapped to hexaploid wheat repetitive sequences and we found that a comparable percentage of reads (more than 62.3%) could be classified as part of a TE sequence (Supplementary Fig. 6). This estimate is similar to that derived from a previous survey of Roche/454 sequences5. There were 410 different TE families, of which the 20 most abundant contributed more than 50% of the A. tauschii genome (Supplementary Table 9). A single peak of increased insertion activity was estimated to occur about 3–4 Myr ago by measuring the similarity of the assembled LTR retrotransposons (Supplementary Information), suggesting that the expansion of the A. tauschii genome was relatively recent and coincided with the abrupt climate change during the Pliocene Epoch6.

We constructed a high-density genetic map using an F2 population of 490 individuals derived from a cross between the A. tauschii accessions Y2280 and AL8/78. The map, whose total length was 1059.8 centimorgans (cM), consisted of 151,083 single nucleotide polymorphism (SNP) markers developed by restriction-site-associated DNA (RAD) tag sequencing technology (Supplementary Fig. 13). Together with bin-mapped wheat ESTs’, SNPs and tags’, the genetic map was used to align 30,303 scaffolds (1.72 Gb; 30,697 genes) to chromosomes (Supplementary Information). The A. tauschii genes and scaffolds were also anchored to barley9 and Brachypodium chromosome maps10 (Fig. 1 and Supplementary Fig. 17). Calculation of Ks/Ka ratios (the ratio of non-synonymous substitutions to synonymous substitutions) for pairs of conserved orthologous genes showed that the average values between A. tauschii and barley (20,892 genes), Brachypodium (17,231 genes), rice (16,370 genes) and sorghum (16,823 genes) were 0.2214, 0.1888, 0.1736 and 0.1726, respectively, respectively.

*These authors contributed equally to this work.
†A list of participants and their affiliations appears in the Supplementary Information.
which indicated that most gene lineages evolved under purifying selection in *Ae. tauschii*. A total of 628 genes exhibited K_s/K_a ratios of more than 0.8 when compared with the other four species, indicating potential positive selection (innermost circle of Fig. 1). These genes were assigned to a wide range of molecular functions by using Gene Ontology (GO) analyses (Supplementary Table 14).

Ae. tauschii proteins were clustered with those of *Brachypodium*, rice, sorghum and barley (full-length complementary DNAs), and formed 23,202 orthologous groups (at least two members; Supplementary Information). In total, we identified 11,289 (barley/rice, sorghum and barley (full-length complementary DNAs), and 14,675 (*Ae. tauschii* and barley) orthologous gene pairs. We found that 8,443 gene groups contained sequences from all five grass genomes, and 234 were specific to Pooidae (*Ae. tauschii, Brachypodium* and barley) and 587 were specific to Triticeae (*Ae. tauschii* and barley) (Fig. 2a). Enrichment analyses of both Pfam domains and GO terms showed that genes encoding NBS-LRR (nucleotide-binding-site leucine-rich repeat) proteins were over-represented in *Ae. tauschii* relative to *Brachypodium* and rice11,12 (Supplementary Information). These observations are consistent with those reported in a recent study13. A total of 1,219 *Ae. tauschii* genes were similar to NBS-LRR genes (R gene analogues (RGAs))11,14 (Supplementary Information). This number is double that in rice (623) and sixfold that in maize (216)15, indicating that the RGA family has substantially expanded in *Ae. tauschii*. We mapped 878 RGAs (72%) to specific positions across wheat chromosomes by using molecular marker–genome sequence alignment, which provides a large number of potential disease resistance loci for further investigation.

We found more genes for the cytochrome P450 family in *Ae. tauschii* (485) than in sorghum (365), rice (333), *Brachypodium* (262) or maize (261). This family of genes is important for abiotic stress response, especially in biosynthetic and detoxification pathways15. Using 178 manually curated cold-acclimation-related genes such

Table 1 | Overall statistics of sequencing and genome assembly

<table>
<thead>
<tr>
<th>Assembly process</th>
<th>Library insert size (bp)</th>
<th>Read length (bp)</th>
<th>Effective data (Gb)</th>
<th>N50 (bp)</th>
<th>N50 number</th>
<th>Total length (Mb)</th>
<th>Gaps (Mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contig assembly</td>
<td>167–764</td>
<td>44, 75, 100, 150</td>
<td>270</td>
<td>4,521</td>
<td>179,145</td>
<td>3,528</td>
<td>114</td>
</tr>
<tr>
<td>Scaffolding</td>
<td>2,000–20,000</td>
<td>44, 49, 90</td>
<td>128</td>
<td>58,011</td>
<td>19,405</td>
<td>4,244</td>
<td>1,122</td>
</tr>
<tr>
<td>Gap closure</td>
<td>167–764</td>
<td>44, 75, 100, 150</td>
<td>270</td>
<td>57,585</td>
<td>19,455</td>
<td>4,229</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>~600*</td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reads from 454 sequencing platform.
The expansion of the miR2275 family (eight members in Ae. tauschii, in contrast with 23 in Brachypodium and 34 in maize) was also organized in a cluster. RNA-Seq analysis showed that these grain quality genes were expressed predominantly in seeds (Supplementary Fig. 29).

The anchoring of more than 40% of the scaffold sequences to four genetic maps and to syntenic regions of other sequenced grass species provided a structural framework for integrating multiple maps by using shared markers (Fig. 1 and Supplementary Information). The co-localization of genes in scaffolds and genetically mapped quantitative trait loci (QTLs) will directly support map-based gene cloning. On chromosome 2D, for example, the locations of 33 QTLs or genes were integrated with scaffold information (http://ccg.murdoch.edu.au/cmap/ccg-live/) (Fig. 3 and Supplementary Information). Alignment of the Ae. tauschii genetic map with the wheat 2D consensus genetic map was unambiguous, with the exception of some single crossovers that were probably due to repetitive elements (dotted lines in Fig. 3). The genome sequence also provided the basis for the identification of more than 860,126 simple sequence repeats (SSRs), with trimers (37.7%) and tetramers (27.5%) as the most abundant SSR types (Supplementary Information). Together with the 711,907 SNPs identified by resequencing a roughly fivefold coverage of a second accession, Y2280 (Supplementary Information), the genomic resources reported here will promote map-based gene cloning and marker-assisted selection in wheat.

With its high base accuracy and nearly complete set of gene sequences, the Ae. tauschii draft genome sequence provides an essential reference for studying D genome diversity by re-sequencing additional accessions. Over the past half century, the introduction of new D genome diversity into synthetic wheat has been a major effort to expand bread wheat genetic diversity and to create environmentally resilient lines26-27. The Ae. tauschii genome sequence should aid in identifying new elite alleles for agriculturally important traits to alleviate the worsening plight of global climate and environment changes27.

The Ae. tauschii genome served as the source for many grain quality genes in hexaploid wheat, creating a step improvement in the formation of the elastic dough essential for bread making2. Grain quality genes include high-molecular-weight glutenin subunits (HMW-GS), low-molecular-weight glutenin subunits (LMW-GS)23, grain texture proteins (GSP; puroindolines)24 and storage protein activator (SPA)25.

As the CCAAT-binding factor (CBF) transcription factors16, late-embryogenesis-abundant proteins (LEA) and osmoregulat vegetables18 (Fig. 2b), MADS-box genes (58, in contrast with 23 in Brachypodium and 34 in maize) are involved in regulation of plant reproduction18 (Fig. 2b). Figure 2| Ae. tauschii gene families and transcription factors. a, Distribution of orthologous gene families in Ae. tauschii, Brachypodium, sorghum, rice and barley. The number of gene families is represented in each intersection of the Venn diagram. The first number under the species name indicates the total number of genes annotated for a particular species, and the second indicates the number of genes in groups for that organism. The difference between the two accounts for singleton genes that were not present in any cluster. b, The composition of transcription factors (TFs) in Ae. tauschii and Brachypodium composed of more than 30 members.
METHODS SUMMARY

We selected 104 accessions of Ae. tauschii (2n = 14) accession AL8778 for sequencing. Plants were grown at 25°C in a darkened chamber for two weeks; DNA was extracted from leaf tissue and purified with a standard phenol/chloroform extraction protocol. Sequencing libraries were constructed and sequenced on Illumina next-generation sequencing platforms (GAII and HiSeq) (2009). High-quality reads were sequenced on Illumina next-generation sequencing platforms (GAII and HiSeq) (2000). High-quality reads were mapped to the draft genome with Tophat (2010). See Supplementary Information for details and additional analyses.

Received 28 March 2012; accepted 20 February 2013.

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank J. Y. L. Xie and M. C. Luo for the AL8778 line; C. Y. Jin, X. Y. Li, L. C. Zhang, L. Pan and J. C. Zhang for material preparation; Y. H. Lu for providing helpful palaeogeographical information; D. M. England for providing the SNP database of molecular genetic maps; R. Edwards for providing the details of the SNP-based map for Avalon × Cadenza; L. Goodman for assistance in editing the manuscript; and M. W. Bevan, Y. B. Xu and Z. Cao for useful comments on the manuscript. This work was supported by grants from the National Basic Project of China for the period of two years. Theor. Appl. Genet. 77, 57–64 (1989).

Author Information The genome sequence and the annotation are available from the National Centre for Biotechnology Information (NCBI) as BioProject ID PRJNA182898. This Whole Genome Shotgun project is deposited at DDBJ/EMBL/GenBank under accession number AOC0000000000. The version described in this paper is the first version, AOC001000000. The Illumina sequencing reads are available in the Sequence Read Archive under accession number SRA030526, RNA-Seq sequences under SRA062662, and resequencing short reads under SRA063175. Genomic data are also available at the Comprehensive Library for Modern Biotechnology (CLiMB) repository under doi:10.5524/100054. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to Ju.W. (wangj@genomics.cn), J.Z.J. (ji@caas.net.cn), Lo.M. (maolong@caas.net.cn), Z.H.H. (zhhe@public3.bta.net.cn) and Xu L. (liuxu01@caas.cn).