
u n i ve r s i t y o f co pe n h ag e n

Københavns Universitet

Learning models of activities involving interacting objects

Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.; Zilles, Sandra

Published in:
Advances in Intelligent Data Analysis XII

DOI:
10.1007/978-3-642-41398-8_25

Publication date:
2013

Document Version
Peer reviewed version

Citation for published version (APA):
Manfredotti, C., Pedersen, K. S., Hamilton, H. J., & Zilles, S. (2013). Learning models of activities involving
interacting objects. In A. Tucker, F. Höppner, A. Siebes, & S. Swift (Eds.), Advances in Intelligent Data Analysis
XII: 12th International Symposium, IDA 2013, London, UK, October 17-19, 2013, Proceedings (pp. 285-297).
Springer. Lecture Notes in Computer Science, Vol.. 8207, DOI: 10.1007/978-3-642-41398-8_25

Download date: 21. Jun. 2018

https://doi.org/10.1007/978-3-642-41398-8_25

Learning Models of Activities Involving
Interacting Objects

Cristina Manfredotti1, Kim S. Pedersen2, Howard Hamilton3, Sandra Zilles3

1 LIP6, Pierre and Marie Curie University (UPMC), Paris, France
2 DIKU, University of Copenhagen, Copenhagen, Denmark

3 Department of Computer Science, University of Regina, Regina, Canada

Abstract. We propose the LEMAIO multi-layer framework, which makes
use of hierarchical abstraction to learn models for activities involving
multiple interacting objects from time sequences of data concerning the
individual objects. Experiments in the sea navigation domain yielded
learned models that were then successfully applied to activity recog-
nition, activity simulation and multi-target tracking. Our method com-
pares favourably with respect to previously reported results using Hidden
Markov Models and Relational Particle Filtering.

1 INTRODUCTION

Many practical problems including activity recognition, multi-target tracking
and detection of activity, require reasoning about the interactions of multiple re-
lated objects. A complex activity (such as exchanging goods between two ships)
is a type of interaction usually realized as a sequence of lower-level actions that
may involve multiple objects. Given a model of how an activity is decomposed,
it is possible to effectively recognize an ongoing activity by observing low-level
attributes (such as position, speed and color) [3, 17]. However, the model for
such activities is usually unknown. We investigate one possible solution: learn-
ing such a model directly from sensor data. This paper introduces a framework,
called LEMAIO (LEarning Models of Activities involving Interacting Objects),
for learning probabilistic models of complex activities involving multiple interact-
ing objects from sensor data. This framework is capable of inferring the interac-
tions between the objects, while also inferring how complex activities decompose
into lower level actions.

An activity is usually recognized from the sequence of the attribute values
of the interacting objects. An example of an activity in the soccer domain is
“passing the ball”, which can be recognized observing the sequence of positions
of the players and the ball over time. The same activity can be undertaken in
many ways, represented as different sequences of attribute values, e.g., all the
ways in which the ball can be passed from one player to another. To avoid
listing all possible realizations of an activity, we need an abstract representation
(a model) of it. This model should be such that an automatic system can use
it efficiently to recognize an activity from (noisy) data (activity recognition),
simulate it (activity generation), or track it (multi-target tracking).

Since activities often involve multiple objects, modeling the relations between
them is crucial for capturing their behaviour. Consider the difference between
the activities of “passing” and “intercepting” a ball: both activities result in a
new player having control of the ball but the former requires the two players
to be on the same team (to be in the relation of having the same value for
the team attribute), while the latter requires them to be on different teams. We
distinguish between atomic activities (called simply “activities” in [1]), involving
coordinated actions among multiple agents at one time, and complex activities,
which are sequences of atomic activities. We do not assume we know the relations
between objects: we know that objects might interact, but we do not know how.
We assume all relations are pairwise.

We are given a training set where each instance is a sequence of attribute
values describing the complete state of the world, along with a label identifying
the complex activity represented and we adopt a probabilistic viewpoint: the
problem is to learn from this training set a probabilistic model able to identify
complex activities in new data, track individual objects while complex activi-
ties are occurring, and generate sequences of synthetic data simulating complex
activities. The LEMAIO framework addresses this problem by learning a three-
layer hierarchical model from the bottom up that can be mapped into a Dynamic
Bayesian Network.

The main contributions of our work are: (1) a general top-supervised learning
framework to learn a hierarchical probabilistic model for complex activities from
low-level data; (2) the decomposition of complex activities into lower level actions
and interactions between objects and the explicit modelling of objects’ interac-
tions; (3) an implementation of the framework based on Expectation Maximiza-
tion and clustering; (4) empirical evidence of the effectiveness of our approach
in learning models able to recognize, track, and generate complex activities.

2 THE LEMAIO FRAMEWORK

To describe the LEMAIO framework, we first explain the four levels of abstrac-
tion. Then we describe how a three-layered model is learned that allows values
at any level to be generalized to the next higher level. Finally, we show how the
model is used to generate synthetic data corresponding to specified activities.

Our learning approach is top-supervised: labels are available in the training
data only at the top (complex activity) level. The learned model is able to assign
a label to a complex activity represented by an unseen sequence of low-level data
and is also able to recognize the lower-level constituents of the activity.

2.1 Levels of Abstraction in LEMAIO

The LEMAIO framework uses four levels of abstraction: (0) attribute values
for objects (raw data), (1) single object activities (activities involving only one
object), relations between pairs of objects at a single time, and changes in re-
lations over time, (2) atomic activities and (3) complex activities. We assume

that during any time interval an object can be involved in at most one single
object activity and a set of related objects can only be involved in at most one
atomic activity and at most one complex activity. In this section, we consider
each level in turn. These levels of abstraction are general and the decomposition
of a complex activity into atomic activities, relations, changes of relations and
single object activities can be applied to a variety of domains.
Level 0: We collect all attribute values of the objects in the world at consecutive
time steps while some complex activity is occurring. We assume the attribute
values correspond to noiseless observations from sensors that coincide with the
actual state of the world (in presence of noisy observation we could filter the

data before learning). Let s
(i)
t be the state of the object o(i) at time t. The state

of the world st can be represented as the vector of the states of all individual
objects in the world at time t . The training data consists of pairs of sequences of
consecutive states of the world from time 1 to time T and labels of the complex
activity represented by the sequence (s1:T , γ). Assuming that we have labels
for complex activities is restrictive but fair: it is easier for a person to classify a
complex activity (providing a labeled instance) than to describe such an activity.
Level 1: At level 1 we represent how objects behave individually, how they
interact and how their interactions change over time.

– single object activities are associated with changes over time in the attribute

values of single objects. e
(i)
(t−1,t) represents the single object activity that o(i)

performs in time interval (t−1, t) and assumes values in E = {ε1, ε2, · · · , εnE
}.

– relations represent degrees of similarity between attribute values of objects

at the same time. We assume pairwise relations. r
(i,j)
t represents the relation

between o(i) and o(j) and assumes values in R = {ρ1, ρ2, · · · , ρnR
}.

– changes in relation represent changes in the degree of similarity over time.

d
(i,j)
(t−1,t) represents the change of relation between o(i) and o(j) during the time

interval (t−1, t) and assumes values in D={δ1, δ2, · · · , δnD
}.

From data classified into single object activities, relations and change in the
relations we can learn distributions for atomic activities.
Level 2: Atomic activities describe how one object behaves with respect to an-

other during the time interval between consecutive time points. a
(i,j)
t represents

an atomic activity involving the related objects o(i) and o(j) in the interval (t−1, t)

and it is learned from vectors of the form a
(i,j)
t = [e

(i)
(t−1,t), e

(j)
(t−1,t), r

(i,j)
t , d

(i,j)
(t−1,t)].

We define the set of all possible atomic activities as A = {α1, α2, · · · , αnA
}.

Level 3: A complex activity c(i,j) is represented by a sequence of atomic activities
that involve o(i) and o(j); c(i,j) can assume values in C = {γ1, γ2, · · · , γnC

}.
Example: Let us focus on two possible complex activities (Rendezvous and

Avoidance) that can occur at sea. They consist of two vessels approaching each
other and subsequently going apart. In the latter only one of the two vessels
changes its speed to avoid the other ship, but in the former, when the vessels
are close to each other, they stay close with speed near zero to illegally exchange
goods. The state of the world is indicated by the position, name and class of

Fig. 1. left: The LEMAIO hierarchy with layers. right: The Dynamic Bayesian Net-
work learned by LEMAIO.

each vessel. The training set consists of pairs of a sequence of states and the
label (R or A) of the complex activity. A single object activity can encode the
movement of a ship (e.g., moving fast towards north); a relation can give the
separation distance between two ships or if they are of different/equal type; a
change in relation can tell whether the distance between two ships is increasing
or decreasing during a time interval; and an atomic activity can describe the
idea of “approaching” (e.g., two ships have decreasing distance over time). A
complex activity modeling a Rendezvous could be composed as a sequence of
atomic activities such as “approaching”, “staying together” and “going apart”
(each possibly repeated).

2.2 Learning with LEMAIO

In order to model the uncertainty about which activities are currently being per-
formed and how a complex activity decomposes into lower-level constituents, we
introduce a number of probability distributions. These are models that, given
an observed pattern and using the Bayes theorem, (1) assign probabilities to
the events that associate the pattern with any (single object, atomic, or com-
plex) activity and (2) assign probabilities to the future. In this way, the learned
model can be used for classification and generative purposes. We separate our
presentation into levels based on the abstraction hierarchy shown in Fig. 1 left.

Single Object Activities and Relations: To learn models for these quantities
we preprocess the data into three sets of differences.

– ∆
(i)
(t−1,t) denotes the difference between the states of o(i) at two consecutive

time points: ∆
(i)
(t−1,t) =s

(i)
t −s

(i)
t−1, where t>0;

– ∆
(i,j)
t denotes the distance between the states of o(i) and o(j) at the same

time step: ∆
(i,j)
t =dist(s

(i)
t , s

(j)
t), where t ≥ 0, i 6= j;

– ∆
(i,j)
(t−1,t) is short for: ∆

(i,j)
(t−1,t) =∆

(i,j)
t −∆(i,j)

t−1 ,where t>0, i 6= j.

Since single object activities involve only one object, they can be seen as the
change in the attribute values for one object. Given a sequence of states (our
training data), for all the attribute values of every object of every pair of consecu-

tive time steps we compute ∆
(i)
(t−1,t). From these data, we learn a model for single

object activities. The model consists of the prior of the single object activity

class, p(e
(i)
(t−1,t) =εk), and the probability density function p(∆

(i)
(t−1,t)|e

(i)
(t−1,t) =εk).

A relation is a difference between the attribute values of two objects at a
single time point. We learn a probability distribution for relations from data of

the form ∆
(i,j)
t obtained from the states of every pair of objects in the training

data at the same time step. The model consists of the prior of the relation class,

p(r
(i,j)
t =ρk), and the probability density function p(∆

(i,j)
t |r(i,j)t =ρk).

A change in relation is a difference between the relation of two objects over

time. From ∆
(i,j)
(t−1,t), we learn the prior of the classes of changes in relations,

p(d
(i,j)
(t−1,t) =δk), and the probability density function p(∆

(i,j)
(t−1,t)|d

(i,j)
(t−1,t) =δk).

According to the Bayes formula the probability of a single object activity

class εk, given the observed data ∆
(i)
(t−1,t), is the posterior

p(e
(i)
(t−1,t) =εk|∆(i)

(t−1,t))=
p(e

(i)
(t−1,t) =εk)p(∆

(i)
(t−1,t)|e

(i)
(t−1,t) =εk)

p(∆
(i)
(t−1,t))

. (1)

Such a posterior can be used for classification purposes. Similar posteriors can
be derived for relations and changes in relations.
Atomic Activities: To learn a model for atomic activities we first apply the
probabilistic models learned at layer 1 (Eq. 1) to classify data into single ob-
ject activities, relations and changes of relations. Secondly, by considering every
time interval in every input sequence, we collect vectors v(i,j) of single object
activities, relations and changes in relations for every pair of related objects:

v(i,j) = [e
(i)
(t−1,t), e

(j)
(t−1,t), r

(i,j)
t , d

(i,j)
(t−1,t)]. (2)

We then cluster these vectors for all (i, j) pairs according to a distance measure
f . Next, for each cluster (αk) we select one vector (vαk

) to represent all vectors in
the cluster. Finally we map each cluster into the set of labels in A. We assume the
probability that a vector v(i,j) is in cluster αk, p(v(i,j)|a(i,j) =αk), is given by one
minus its normalized distance from vαk

: p(v(i,j)|a(i,j) =αk) = 1 − f̃(v(i,j), vαk
).

We learn the prior p(a(i,j) =αk) proportional to the number of the data points
in the training set that fall in cluster αk. To classify vectors of the form of Eq.
2 into atomic activities we can use the posterior

p(a(i,j) =αk|v(i,j)) ∝ p(a(i,j) =αk)p(v(i,j)|a(i,j) =αk).

Complex Activities: Complex activities are defined as sequences of atomic
activities. We group the data in the training set according to their complex
activity label and, using the distributions learned at the previous layers, we map

them into sequences of atomic activities. From these sequences we learn the
probability that an atomic activity αk follows a sequence of atomic activities

a
(i,j)
1:t−1 given a particular complex activity γk:

p(a
(i,j)
t =αk|c = γk, a

(i,j)
1:t−1). (3)

The probability p(a1 =αk) is proportional to the number of times it occurs at
time t=1 in the training set. The prior p(c=γk) is proportional to the number of
occurrences of γk in the training set. We classify a sequence of atomic activities

a
(i,j)
1:t ={a(i,j)1 , a

(i,j)
2 , · · · , a(i,j)t } as the complex activity c=γk that is associated

with the highest value of p(c=γk|a(i,j)1:t), where

p(c = γk|a(i,j)1:t) =
p(a

(i,j)
t |c = γk, a

(i,j)
1:t−1)p(a

(i,j)
1:t−1, c = γk)

p(a
(i,j)
1:t)

. (4)

The overall learned model is depicted in Fig. 1 right.

2.3 Activity Generation with LEMAIO

Activity generation aims at generating sequences of states that match a given
complex activity c = γk. Assume we are given a sequence of states s0:t−1 that
matches complex activity γk. Given the probability distributions learned so far,

s0:t−1 can be classified into sequences of atomic activities a
(i,j)
1:t−1. We want to

generate the next atomic activity a
(i,j)
t such that the sequence a

(i,j)
1:t is con-

strained to be associated with complex activity c = γk. To do so, we sample

from the probability distribution p(a
(i,j)
t |c= γk, a

(i,j)
1:t−1) learned at layer 3. Sup-

pose a
(i,j)
t =αk. Next, we sample a vector v(i,j) from the probability distribution

p(v(i,j)|a(i,j)t = αk) learned at layer 2. Suppose v(i,j) = [εi, εj , ρl, δm], telling us
the generated single object activities, relations and changes of relations.

Knowing the current state st−1, single object activities (εi and εj), relations
(ρl) and change in relations (δm) we can generate the next state st by sampling
from the probability distributions learned at layer 1. To model the change in

relation, let us introduce a random variable Dm: Dm∼ p(∆(i,j)
(t,t−1)|d

(i,j)
(t,t−1) = δm).

Let q be the distribution of the random variable ∆
(i,j)
t−1 +Dm. We can sample a

value for ∆
(i,j)
t from the probability

p(∆
(i,j)
t |d(i,j)(t−1,t) =δm, r

(i,j)
t =ρl, ∆

(i,j)
t−1)=q(∆

(i,j)
t−1 +Dm)p(∆

(i,j)
t |r(i,j)t = ρl),

estimated from the distributions of the relations and their changes.
To simplify the following explanation, we assume the only objects in the world

are o(i) and o(j). Given the sampled value for ∆
(i,j)
t , we can sample st = [s

(i)
t , s

(j)
t]

from p(st|εi, εj , st−1, ∆(i,j)
t). That, assuming p(s

(i)
t |s

(i)
t−1, ∆

(i,j)
t) = p(s

(i)
t |s

(i)
t−1), can

be factored as:

p(st|εi, εj , st−1, ∆(i,j)
t)=

p(s
(i)
t |εi, s

(i)
t−1)p(s

(j)
t |εj , s

(j)
t−1)p(s

(j)
t |s

(j)
t−1, ∆

(i,j)
t , s

(i)
t)

p(s
(j)
t |s

(j)
t−1)

. (5)

With this assumption, we can first sample the state of o(i) and then sample
the state of o(j) taking into account the state of o(i) already sampled and their
relations. This assumption is equivalent to assuming one of the two objects (o(i)

in this case) is the “leader” and can be loosened in practice by exchanging the
order in which the objects are processed at each time step.

2.4 An Implementation

In our LEMAIO-1 implementation of the LEMAIO framework, we use mixtures
of Gaussians, for the distributions at layer 1, a mixture of categorical distribu-
tions at layer 2 and a mixture of Markov chains at layer 3.

LEMAIO-1 Layer 1: Since the same approach is used for the three kinds
of entities at layer 1, here we present only the procedure for learning single
object activities. We use Expectation Maximization (EM) to learn the prior of
the classes of single object activities and the probability density function of the
data given the class that maximize the likelihood of the data [6]. Assuming we

have observed a particular change in one object’s attribute values (∆
(i)
(t−1,t)), the

likelihood of the observed data given the parameters Θ of the distributions is

calculated as: p(∆
(i)
(t−1,t)|Θ) =

∑K
k=1 p(εk)p(∆

(i)
(t−1,t)|εk, Θ) where K is the number

of classes represented in the data, chosen to minimize the Bayes Information
Criterion (BIC) [7], and Θ is the vector of the means and variances of the chosen
Gaussian distributions.

LEMAIO-1 Layer 2: To cluster vectors v(i,j) (cf. Eq. 2) into atomic activity
classes we use the K-medoids clustering algorithm [14]. We compute the distance
measure f(v1, v2) on which the clustering is based in the following way: first we
map each element in v1 and in v2 into the mean of the Gaussian distribution that
best fits the class represented by the element; then we compute the Euclidean
distance between these elements and average over the elements of the vectors.
The number of clusters K is chosen such that it maximizes the intracluster
similarity of our data. The number of distributions and the number of clusters
K is chosen given a maximum number of sets K.

LEMAIO-1 Layer 3: Given sequences of atomic activities labeled with the
same complex activity (c = γk), we learn a Markov chain. In a Markov chain,
the probability of an atomic activity at time step t depends only on the value of
the atomic activity at time step t−1 and on the current complex activity c=γk.

We thus have (Eq. 3): p(a
(i,j)
t = αk|c = γk, a

(i,j)
1:t−1) = p(a

(i,j)
t = αk|c = γk, a

(i,j)
t−1).

Modeling the transitions between atomic activities with a Markov chain allows
us to simplify the classification of complex activities writing Eq. 4 as:

p(c = γk|a(i,j)1:t)=p(c = γk)

T∏
t=2

p(a
(i,j)
t =αk|c = γk, a

(i,j)
t−1). (6)

3 EXPERIMENTS

We experimented with our implementation on the sea navigation data set pro-
vided in [4]. This data set is composed of 37 sequences called encounters. An

encounter is a sequence of 96 time steps recording the 2D positions of two ships
involved in either a rendezvous or an avoidance; there are 19 rendezvous encoun-
ters. In the following, we describe how we applied LEMAIO-1 to learn models
from this dataset and how we tested the resulting models.

In our data set the state s
(i)
t is the vector [xit, y

i
t] of the position of o(i).

As distance between s
(i)
t and s

(j)
t we use the Euclidean distance. In this way

we learn the following probabilistic models: i) for single object activities from
vectors representing the movement of individual objects, ii) for relations from
distances between objects and iii) for changes in relations from differences of
distances during time. Given the small number of encounters in the data set, we
adopted the leave-one-out cross-validation technique [10].

At the first level, to choose K, we set K1 to 10 and apply BIC. We restrict
the EM algorithm to iterate for a maximum of 1000 times and add a small
regularization factor (1e−5) to the diagonal of the covariance matrices to ensure
they are positive-definite. For the K-medoid algorithm, we fix K2 to 20 and the
maximum number of iterations to 500. On average, the number of Gaussians
learned for single object activities is 9, for relations 7 and for changes of relations
9. On average, the number of clusters the K-medoid algorithm finds is 19. Similar
results were obtained with different values of K. We learned two Markov chains,
one for each type of encounters. To avoid having transitions of probability 0 for
unobserved patterns, we used Laplace’s succession rule.

We tested the models learned by LEMAIO-1 on activity classification, activ-
ity generation, and multi-object tracking. Moreover, we tested these models on
online activity recognition and compared the results to [17].
Experiment 1: Encounter Classification

Rendezvous (Positive) 19
Avoidance (Negative) 18

True Negative 11
True Positive 19
False Positive 7
False Negative 0

Accuracy 0.81
True Negative Rate 0.61

Recall (True Positive Rate) 1
Precision 0.73

F-measure 0.84

To test an unseen encounter, our classification method assigns it the label (ren-
dezvous or avoidance) associated with the Markov chain with the highest likeli-
hood. Since the data includes 37 encounters, we trained and tested 37 different
models: each model was trained on 36 of the 37 encounters and tested on the re-
maining encounter. The results are reported in the table above. Our method had
an F-measure of 0.84. A lower F-measure of 0.72 was previously reported [17]
on the same data set using hidden Markov models, obtained with a supervised
approach, whereas our system is (only) top-supervised.

Fig. 2. left: An example encounter generated given the atomic activities: (a) the orig-
inal encounter from the test set and (b) an encounter generated from the atomic ac-
tivities recognized from the original encounter. right: Two examples of encounters
generated given complex activities: (a) a rendezvous and (b) an avoidance.

Experiment 2: Encounter Generation

To evaluate the suitability of the models learned by LEMAIO-1 for generating
encounters probabilistically, we ran two experiments of increasing complexity.

In Experiment 2a (generation given a sequence of atomic activities), for each
learned model, we took the encounter part of the test set, and classified it to give
a sequence of atomic activities. From this sequence we generated the low-level
data representing an encounter, i.e., we generated the positions of the two ships.
One of these encounters is shown in Fig. 2 left, where the original rendezvous
from the test set is shown at the top and a rendezvous generated by the learned
model is shown at the bottom. Notice that the generated tracks follow the paths
of the original ones, as dictated by the recognized atomic activities.

In Experiment 2b (generation given a complex activity; by first generating
a sequence of atomic activities and then generating encounters from them), for
each model we generated a sequence of atomic activities a1:T for the rendezvous
complex activity and another sequence for the avoidance activity. We sampled
the atomic activity sequence according to the Markov chain learned, by first
sampling the first atomic activity a1 according to the vector of priors in the
Markov chain (associated with the relevant encounter) and then sampling the
atomic activity at+1 according to the probability of transition from the atomic
activity at. Fig. 2 on the right represents a rendezvous (top) and an avoidance
(bottom) generated from one model learned by LEMAIO-1. In both cases the
ships are approaching at the beginning and going apart at the end. In the ren-
dezvous, there is a distinctive behaviour localized in the center where the two
ships stay close together for a while; this does not happen in the avoidance.

For both Experiment 2a and 2b the generation of a sequence of positions given
a sequence of atomic activities is done with sampling. From each atomic activity
in the sequence we sample a particular vector of probabilistic models that gives

us the single object activities of o(i) (e
(i)
t), and of o(j) (e

(j)
t), their relation r

(i,j)
t

and the change of their relations d
(i,j)
t at time t. For each atomic activity we

generate M2 = 100 vectors and from each of these M1 = 100 positions following
Eq. 5. We sample M1 positions of o(i) and o(j) independently from p(sit|εi, sit−1)

and p(sjt |εj , s
j
t−1), resp. We sample M1 distances ∆

(i,j)
t from Eq. 5 on the line

(sit, s
j
t) and, for each sample, we fix one of the sampled s

(i)
t or s

(j)
t and pick the

other at the opposite side at distance ∆
(i,j)
t . To avoid preferential treatment, we

exchange the order in which s
(i)
t or s

(j)
t are chosen at each time step.

Experiment 3: Tracking
We evaluate the tracking ability of the models learned by LEMAIO-1. This ex-
periment makes use of the 3PF algorithm presented in [17] coupled for the pre-
diction step with the same transition model used for the generation experiments
and learned by our LEMAIO-1 implementation. Each particle first samples the
distribution of complex activities, then samples the atomic activities using the
appropriate Markov chain, and then predicts the next position of each object
based on the atomic activities. Thus, while tracking, the algorithm is also able
to recognize the activity online. When an observation arrives the tracker filters
it by weighting the particles according to a sensor model that takes into account
their distance from the observation. For comparison purposes we used the same
sensor model used in [17] and the same number of particles (M = 100).

We compare the tracking performance of the 3PF algorithm using the models
learned by LEMAIO-1, with the performance of the original 3PF (that uses a
model manually optimised for tracking) and a standard particle filtering algo-
rithm (PF)4. The mean of the tracking errors on 37 encounters for 3PF using
LEMAIO-1 models is 0.27, for the original 3PF is 0.15 and for the standard PF
is 1.68. As expected, the tracking error with the LEMAIO-1 models is higher
than that obtained with the hand-crafted model, but it was substantially better
than the standard PF. The accuracy for the activity recognition task is 0.95.

4 DISCUSSION

The LEMAIO multi-layer framework learns models for activities involving mul-
tiple interacting objects from sequences of attribute values for the individual
objects. Our experiments show the validity of the models learned on a publicly
available data set. In particular, our results are better than previously reported
results using Hidden Markov Models (for activity recognition) and Relational
Particle Filtering (for tracking).

Numerous researchers have dealt with the problem of modeling and recog-
nizing the actions of a single agent [2, 19]. Single object activities can be used to

4 The tracking error for an encounter is computed as the mean distance between the
filtered and actual positions of the ships across all time points.

recognize the action of an agent in a time interval. In practice, many activities
of interest involve several agents, which interact with each other and with the
environment. LEMAIO is better suited to such problems than the single agent
approaches because it learns a model for the relations between interacting objects
and the way these relations change over time, in contrast to other approaches
that consider relations between objects by either limiting the interactions to
particular types [9] or constraining the objects and their interactions to be fixed
over time [8]. Many works have dealt with the problem of representing and rec-
ognizing complex activities from data [20–22]. These approaches typically rely
on a model of the activity being provided by a domain expert. Such models
are rarely available for real life systems featuring many variables with complex
interdependencies. As well, many of these models are inflexible and can be used
for recognition but not for generation or tracking. In contrast, LEMAIO learns
its own model, which can be used for recognition, generation and tracking. Some
existing approaches use a hierarchy of actions specified by a stochastic context
free grammar [13, 15], making them less flexible than LEMAIO.

Several approaches have dealt with learning concepts similar to the ones
learned at the various layers of the LEMAIO framework. For example, the equiv-
alent of single object activities has been learned in various computer vision sys-
tems [16]. Atomic activities have been used, for example, to recognize robot
actions by various RoboCup competitors [18] taking as given the interpretation
of low level attribute values. Bobick [1] distinguished the concepts of actions,
characterized by simple motion patterns typically executed by a single agent,
and activities, which are more complex and involve coordinated actions among
multiple agents. To the best of our knowledge LEMAIO is one of the first ap-
proaches to put these concepts together and is the first approach to learn models
for relations.

Other previous approaches studied the behaviour of several objects moving
together by considering them as a single entity [5, 11]. Our aim is to model
the behaviour of interacting objects pursuing an activity that is permitted to
be something other than moving together. For this reason, we chose to learn
a model of the relations that is separate from the model of the activities of
the single objects. The relations studied in this paper were based on distance
or similarity. We hypothesize that the LEMAIO framework can learn models
for relations that are not distance or similarity relations, such as ”passing an
obstacle on the left” or ”being on the same team”.

In future work, we will investigate the use of different probability distribu-
tions. We think that, especially at the second layer, the use of time windows
may improve the accuracy of the model. Therefor, we will investigate the use
of Temporal Nodes Bayesian Networks [12]. The assumption that relations are
pairwise is certainly a limitation, but investigating all possible combinations of
related objects while learning is computationally intractable for a large number
of objects. We are investigating the use of non-parametric methods to discover
which objects are related while performing a particular activity.

References

1. Bobick, A.F.: Movement, activity and action: the role of knowledge in the percep-
tion of motion. Phil. Trans. Lond. B 352 (1997) 1257–1265

2. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal
templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3) (2001) 257–267

3. Borg, M., Thirde, D., Ferryman, J.M., Fusier, F., Valentin, V., Brémond, F., Thon-
nat, M.: Video surveillance for aircraft activity monitoring. In: AVSS. (2005) 16–21

4. CAIAC: The CAIAC intelligent systems challenge. http://www.intelligent-
systems-challenge.ca/challenge2009/problemDescriptionAndDataset/index.html
(2009)

5. Cattelani, L., Manfredotti, C.E., Messina, E.: Multiple object tracking with rela-
tions. In: ICPRAM (1). (2012) 459–466

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. B 39(1) (1977) 1–38

7. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers
via model-based cluster analysis. The Computer Journal 41(8) (1998) 578–588

8. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI. (1999) 1300–1309

9. Galata, A., Cohn, A.G., Magee, D.R., Hogg, D.: Modeling interaction using learnt
qualitative spatio-temporal relations and variable length Markov models. In: ECAI.
(2002) 741–745

10. Geisser, S.: Predictive Inference. Taylor & Francis (1993)
11. Gning, A., Mihaylova, L., Maskell, S., Pang, S., Godsill, S.: Group object structure

and state estimation with evolving networks and Monte Carlo methods. IEEE
Trans. Signal Processing 59(4) (2011) 1383–1396

12. Hernandez-Leal, P., Gonzalez, J.A., Morales, E.F., Sucar, L.E.: Learning temporal
nodes bayesian networks. Int. J. Approx. Reasoning 54(8) (2013) 956–977

13. Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by
stochastic parsing. IEEE Trans. Pattern Anal. Mach. Intell. 22(8) (2000) 852–872

14. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley (1990)

15. Lee, K., Kim, T.K., Demiris, Y.: Learning action symbols for hierarchical grammar
induction. In: ICPR. (2012) to appear

16. Li, K., Hu, J., Fu, Y.: Modeling complex temporal composition of actionlets for
activity prediction. In: ECCV. (2012) 286–299

17. Manfredotti, C.E., Fleet, D.J., Hamilton, H.J., Zilles, S.: Simultaneous tracking
and activity recognition. In: ICTAI. (2011) 189–196

18. Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.H.: Learning and detecting
activities from movement trajectories using the hierarchical hidden Markov models.
In: CVPR. (2005) 955–960

19. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action cate-
gories using spatial-temporal words. Int. J. Comput. Vision 79(3) (2008) 299–318

20. Oh, S.M., Rehg, J.M., Balch, T.R., Dellaert, F.: Data-driven MCMC for learning
and inference in switching linear dynamic systems. In: AAAI. (2005) 944–949

21. Ryoo, M.S., Aggarwal, J.K.: Stochastic representation and recognition of high-level
group activities. Int. J. Comput. Vision 93(2) (2011) 183–200

22. Ryoo, M.S., Aggarwal, J.K.: Semantic representation and recognition of continued
and recursive human activities. Int. J. Comput. Vision 82(1) (2009) 1–24

