## Approximation schemes for maximum weight independent set of rectangles

Publikation: Bidrag til bog/antologi/rapport › Bidrag til bog/antologi › Forskning › fagfællebedømt

In the Maximum Weight Independent Set of Rectangles (MWISR) problem we are given a set of n axis-parallel rectangles in the 2D-plane, and the goal is to select a maximum weight subset of pairwise non-overlapping rectangles. Due to many applications, e.g. in data mining, map labeling and admission control, the problem has received a lot of attention by various research communities. We present the first (1+epsilon)-approximation algorithm for the MWISR problem with quasi-polynomial running time 2^{poly(log n/epsilon)}. In contrast, the best known polynomial time approximation algorithms for the problem achieve superconstant approximation ratios of O(log log n) (unweighted case) and O(log n / log log n) (weighted case). Key to our results is a new geometric dynamic program which recursively subdivides the plane into polygons of bounded complexity. We provide the technical tools that are needed to analyze its performance. In particular, we present a method of partitioning the plane into small and simple areas such that the rectangles of an optimal solution are intersected in a very controlled manner. Together with a novel application of the weighted planar graph separator theorem due to Arora et al. this allows us to upper bound our approximation ratio by (1+epsilon). Our dynamic program is very general and we believe that it will be useful for other settings. In particular, we show that, when parametrized properly, it provides a polynomial time (1+epsilon)-approximation for the special case of the MWISR problem when each rectangle is relatively large in at least one dimension. Key to this analysis is a method to tile the plane in order to approximately describe the topology of these rectangles in an optimal solution. This technique might be a useful insight to design better polynomial time approximation algorithms or even a PTAS for the MWISR problem.

Originalsprog | Engelsk |
---|---|

Titel | 2013 IEEE 54th Annual Symposium on Foundations of Computer Science |

Antal sider | 10 |

Forlag | IEEE |

Publikationsdato | okt. 2013 |

Sider | 400-409 |

ISBN (Trykt) | 978-0-7695-5135-7 |

DOI | |

Status | Udgivet - okt. 2013 |

Eksternt udgivet | Ja |

ID: 144250945