Forskning ved Københavns Universitet - Københavns Universitet


Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay: reduction by CYP2E1 inhibition

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

The myelotoxic and genotoxic effects of benzene have been related to oxidative DNA damage after metabolism by CYP2E1. Single cell gel electrophoresis (alkaline comet assay) detects DNA damage and may thus be a convenient method for the study of benzene genotoxicity. Benzene exposure to NMRI mice as a single oral gavage at 40, 200 or 450 mg/kg resulted in dose-related DNA damage indicated by an increased comet tail length of peripheral blood lymphocytes and bone marrow nucleated cells sampled 6 h after exposure. After a dose of 40 mg/kg, there was a 1.6-fold increase of 'tail length' in bone marrow nucleated cells in comparison with the control (p < 0.01). There was no significant increase in DNA damage in peripheral blood lymphocytes in the same animals. At 200 mg/kg, the tail length was 4.8-fold and 4.0-fold increased in the two cell types, respectively (p < 0.01). At 450 mg/kg, the tail length was further increased to 5.4-fold and 6.6-fold of the control values, respectively (p < 0.01). Pretreatment with propylene glycol (5 microliters/g b.wt., twice with a 60-min interval), a selective CYP2E1 inhibitor, reduced the increase in the tail length by about half at all doses in both cell types (p < 0.01). By comparing our data with those from genotoxicity studies on benzene using other methods, we conclude that the 'alkaline comet assay' is a sensitive method to detect DNA damage induced by benzene. We also infer that CYP2E1 contributes, at least partly, to the formation of the 'comet'-inducing metabolites in the chosen cell types.

TidsskriftMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Udgave nummer3-4
Sider (fra-til)213-9
Antal sider7
StatusUdgivet - 5 jul. 1996

ID: 156510197