Forskning ved Københavns Universitet - Københavns Universitet


Biochemical mechanisms of tumor invasion and metastases

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • L A Liotta
  • Wewer, Ulla M.
  • N C Rao
  • E Schiffmann
  • M Stracke
  • R Guirguis
  • U Thorgeirsson
  • R Muschel
  • M Sobel
Cancer invasion and metastases is a complex multistep process. In order for a tumor cell to successfully traverse all the steps of this process and initiate a metastatic colony, it must express the right combination of gene products. Such gene products may include proteins which regulate cell interaction with the basement membrane and cell motility. Tumor cells attach to the basement membrane glycoprotein laminin via the cell surface laminin receptor. The human laminin receptor was purified and molecularly cloned. The level of laminin receptor mRNA is a variety of human carcinoma cells correlated with the number of laminin receptors on the cell surface of these cells. Following attachment to the basement membrane, the tumor cell next secretes proteases which may degrade type IV collagen. A genetic linkage between type IV collagenase secretion and metastases was studied using our new genetic system for inducing metastases employing the ras oncogene. Following attachment and local proteolysis, the third step of invasion is tumor cell motility. We have isolated a tumor cell autocrine motility factor (AMF). This factor is secreted by the tumor cells and binds to a cell surface receptor resulting in a profound (greater than 100x) stimulation of cell locomotion. AMF may play a major role in the autonomous invasive behavior of tumor cells.
BogserieAdvances in Experimental Medicine and Biology
Sider (fra-til)161-9
Antal sider9
StatusUdgivet - 1 jan. 1988

ID: 34330223