Forskning ved Københavns Universitet - Københavns Universitet

Forside

Detection of chaotic determinism in stochastic short time series

Publikation: Bidrag til tidsskriftKonferenceartikelForskningfagfællebedømt

We have developed an algorithm based on the nonlinear autoregressive (NAR) model which is very accurate in determining whether chaotic determinism is present in a noisy time series and is effective even for a time series with as few as 500 data points. The algorithm is based on fitting a deterministic and stochastic nonlinear autoregressive (NAR) model to the time series, followed by an estimation of the Lyapunov exponents of the resultant fitted model. The major benefits of this algorithm are: 1) it provides accurate parameter estimation with as few as 500 data points, 2) it is accurate down to signal-to-noise ratios of -9 dB (variance of the noise is approximately 2.9 times greater than the variance of the signal), and 3) it allows characterization of the dynamics of the system, and thus prediction of future states of the system. The advantages of the developed algorithm allow this method to be superior to the conventional algorithms for calculating Lyapunov exponents.

OriginalsprogEngelsk
TidsskriftAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Vol/bind1
Sider (fra-til)275-277
Antal sider3
ISSN0589-1019
StatusUdgivet - 1 dec. 1997
BegivenhedProceedings of the 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Chicago, IL, USA
Varighed: 30 okt. 19972 nov. 1997

Konference

KonferenceProceedings of the 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ByChicago, IL, USA
Periode30/10/199702/11/1997
SponsorIEEE Engineering in Medicine and Biology Society, Chicago Section of IEEE, Pritzker Institute of Medical Engineering, University of Illinois

ID: 204299799