Forskning ved Københavns Universitet - Københavns Universitet

Forside

DotAligner: Identification and clustering of RNA structure motifs

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

The diversity of processed transcripts in eukaryotic genomes poses a challenge for the classification of their biological functions. Sparse sequence conservation in non-coding sequences and the unreliable nature of RNA structure predictions further exacerbate this conundrum. Here, we describe a computational method, DotAligner, for the unsupervised discovery and classification of homologous RNA structure motifs from a set of sequences of interest. Our approach outperforms comparable algorithms at clustering known RNA structure families, both in speed and accuracy. It identifies clusters of known and novel structure motifs from ENCODE immunoprecipitation data for 44 RNA-binding proteins.

OriginalsprogEngelsk
Artikelnummer244
TidsskriftGenome Biology
Vol/bind18
Udgave nummer1
Antal sider12
ISSN1474-7596
DOI
StatusUdgivet - dec. 2017

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 188367767