Forskning ved Københavns Universitet - Københavns Universitet

Forside

Ketamine analogues: Comparative toxicokinetic in vitro–in vivo extrapolation and quantification of 2-fluorodeschloroketamine in forensic blood and hair samples

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Recently, the new psychoactive substance (NPS) ketamine analogue 2-fluoro-deschloroketamine (2FDCK) was observed in driving-under-the-influence-of-drugs whole blood samples and in a forensic hair investigation case in Denmark. The molecular structure variations among the NPS subgroups may alter the metabolic fate and drug potency, thereby posing a threat for drug users. This study reports quantification of 2FDCK in whole blood samples and forensic hair and compares the following toxicokinetic parameters: unbound fraction (fu) and in vitro–in vivo-extrapolation (IVIVE) of hepatic clearance for ketamine, norketamine, 2FDCK, methoxetamine and deschloroketamine. The fu was investigated with ultrafiltration, while clearance studies were conducted at 1 μM with pooled human liver microsomes. Samples were analysed by liquid chromatography and mass spectrometry. For the first time, 2FDCK was determined in a concentration range between 0.005 and 0.48 mg/kg in blood samples. Segmental hair analysis demonstrated 2FDCK at concentrations from 0.007 to 0.034 ng/mg throughout the three investigated segments. Toxicokinetic comparison of the five compounds gave a fu between 0.54 and 0.84, with ketamine being the most bound and deschloroketamine being the least bound, in accordance with the logP of the compounds. Conversely, a negative correlation was observed between the molecular weight of the halogen in the ortho-position and IVIVE hepatic clearance. The IVIVE of hepatic clearance, CLparallel-tube, gave values from 18.1 to 5.44 mL/min/kg for ketamine and methoxetamine, respectively. The deschloroketamine IVIVE was disregarded due to low drug elimination under the experimental conditions used. This study provides a basis for toxicokinetic understanding of ketamine analogues.

OriginalsprogEngelsk
Artikelnummer113049
TidsskriftJournal of Pharmaceutical and Biomedical Analysis
Vol/bind180
ISSN0731-7085
DOI
StatusUdgivet - 20 feb. 2020

ID: 233780902