Forskning ved Københavns Universitet - Københavns Universitet

Forside

%lrasch_mml: A SAS Macro for Marginal Maximum Likelihood Estimation in Longitudinal Polytomous Rasch Models

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Item response theory models are often applied when a number items are used to measurea unidimensional latent variable. Originally proposed and used within educationalresearch, they are also used when focus is on physical functioning or psychological wellbeing.Modern applications often need more general models, typically models for multidimensionallatent variables or longitudinal models for repeated measurements. This paperdescribes a SAS macro that fits two-dimensional polytomous Rasch models using a specifi-cation of the model that is sufficiently flexible to accommodate longitudinal Rasch models.The macro estimates item parameters using marginal maximum likelihood estimation. Agraphical presentation of item characteristic curves is included.
OriginalsprogEngelsk
TidsskriftJournal of Statistical Software
Vol/bind67
Udgave nummerCode Snippet 2
Sider (fra-til)1-24
Antal sider24
ISSN1548-7660
DOI
StatusUdgivet - 7 okt. 2015

ID: 160407441