Forskning ved Københavns Universitet - Københavns Universitet

Forside

Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P < 0.05) by 28% in FT fibres, whereas in CON, CP decreased (P < 0.05) by 33% and 23% in ST and FT fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P < 0.05) in CUR compared to CON (425 +/- 25 (+/- S.E.M.) versus 332 +/- 30 ml min(-1)) and remained higher (P < 0.05) throughout exercise. Using monoexponential fitting, the time constant of the exercise-induced muscle VO2 response was slower (P < 0.05) in CUR than in CON (55 +/- 6 versus 33 +/- 5 s). During CUR and CON, muscle homogenate CP was lowered (P < 0.05) by 32 and 35%, respectively, and also muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P < 0.05) in CUR than in CON (1196 +/- 90 versus 1011 +/- 59 mmol) and true mechanical efficiency was lower (P < 0.05) in CUR than in CON (26.2 +/- 2.0 versus 30.9 +/- 1.5%). In conclusion, the present findings provide evidence that FT fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.
OriginalsprogEngelsk
TidsskriftJournal of Physiology
Vol/bind586
Udgave nummer24
Sider (fra-til)6037-6048
Antal sider12
ISSN0022-3751
DOI
StatusUdgivet - 2008

Bibliografisk note

CURIS 2008 5200 137

ID: 9539902