Forskning ved Københavns Universitet - Københavns Universitet

Forside

On Ext 1 (A, R)  for torsion-free

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

On Ext 1 (A, R)  for torsion-free . / Jensen, Chr Ulrik.

I: Bulletin of the American Mathematical Society, Bind 78, Nr. 5, 1972, s. 831-834.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Jensen, CU 1972, 'On Ext 1 (A, R)  for torsion-free ', Bulletin of the American Mathematical Society, bind 78, nr. 5, s. 831-834.

APA

Jensen, C. U. (1972). On Ext 1 (A, R)  for torsion-free . Bulletin of the American Mathematical Society, 78(5), 831-834.

Vancouver

Jensen CU. On Ext 1 (A, R)  for torsion-free . Bulletin of the American Mathematical Society. 1972;78(5):831-834.

Author

Jensen, Chr Ulrik. / On Ext 1 (A, R)  for torsion-free . I: Bulletin of the American Mathematical Society. 1972 ; Bind 78, Nr. 5. s. 831-834.

Bibtex

@article{67b38845577c484da8637402f8bcd596,
title = "On Ext 1 R (A, R)  for torsion-free A ",
abstract = "For an integral domain R  with quotient field Q  the group Ext R  1 (Q,R)  may be regarded as a Q  -vector space and hence it is isomorphic to the direct power Q (d)   for some finite or infinite cardinal number d  . It is shown that in the class of all Noetherian domains of Krull dimension 1 that are analytically unramified in at least one maximal ideal the above number d  is either arbitrarily infinite or of the form p t −1  , p  a prime. Further, a class of principal ideal domains is obtained, for which Ext R  1 (A,R)≅Q/R  for a suitable torsion-free R  -module A  . ",
author = "Jensen, {Chr Ulrik}",
year = "1972",
language = "English",
volume = "78",
pages = "831--834",
journal = "Bulletin of the American Mathematical Society",
issn = "0273-0979",
publisher = "American Mathematical Society",
number = "5",

}

RIS

TY - JOUR

T1 - On Ext 1 R (A, R)  for torsion-free A 

AU - Jensen, Chr Ulrik

PY - 1972

Y1 - 1972

N2 - For an integral domain R  with quotient field Q  the group Ext R  1 (Q,R)  may be regarded as a Q  -vector space and hence it is isomorphic to the direct power Q (d)   for some finite or infinite cardinal number d  . It is shown that in the class of all Noetherian domains of Krull dimension 1 that are analytically unramified in at least one maximal ideal the above number d  is either arbitrarily infinite or of the form p t −1  , p  a prime. Further, a class of principal ideal domains is obtained, for which Ext R  1 (A,R)≅Q/R  for a suitable torsion-free R  -module A  . 

AB - For an integral domain R  with quotient field Q  the group Ext R  1 (Q,R)  may be regarded as a Q  -vector space and hence it is isomorphic to the direct power Q (d)   for some finite or infinite cardinal number d  . It is shown that in the class of all Noetherian domains of Krull dimension 1 that are analytically unramified in at least one maximal ideal the above number d  is either arbitrarily infinite or of the form p t −1  , p  a prime. Further, a class of principal ideal domains is obtained, for which Ext R  1 (A,R)≅Q/R  for a suitable torsion-free R  -module A  . 

M3 - Journal article

VL - 78

SP - 831

EP - 834

JO - Bulletin of the American Mathematical Society

JF - Bulletin of the American Mathematical Society

SN - 0273-0979

IS - 5

ER -

ID: 152957324