Forskning ved Københavns Universitet - Københavns Universitet

Forside

On some new invariants for shift equivalence for shifts of finite type

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

On some new invariants for shift equivalence for shifts of finite type. / Eilers, Søren; Kiming, Ian.

I: Journal of Number Theory, Bind 132, Nr. 4, 01.04.2012, s. 502-510.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Eilers, S & Kiming, I 2012, 'On some new invariants for shift equivalence for shifts of finite type', Journal of Number Theory, bind 132, nr. 4, s. 502-510. https://doi.org/10.1016/j.jnt.2011.08.003

APA

Eilers, S., & Kiming, I. (2012). On some new invariants for shift equivalence for shifts of finite type. Journal of Number Theory, 132(4), 502-510. https://doi.org/10.1016/j.jnt.2011.08.003

Vancouver

Eilers S, Kiming I. On some new invariants for shift equivalence for shifts of finite type. Journal of Number Theory. 2012 apr 1;132(4):502-510. https://doi.org/10.1016/j.jnt.2011.08.003

Author

Eilers, Søren ; Kiming, Ian. / On some new invariants for shift equivalence for shifts of finite type. I: Journal of Number Theory. 2012 ; Bind 132, Nr. 4. s. 502-510.

Bibtex

@article{78d36b5fa766403a9d34a5a8c3e74e14,
title = "On some new invariants for shift equivalence for shifts of finite type",
abstract = "We introduce a new computable invariant for strong shift equivalence of shifts of finite type. The invariant is based on an invariant introduced by Trow, Boyle, and Marcus, but has the advantage of being readily computable. We summarize briefly a large-scale numerical experiment aimed at deciding strong shift equivalence for shifts of finite type given by irreducible 2 × 2-matrices with entry sum less than 25, and give examples illustrating the power of the new invariant, i.e., examples where the new invariant can disprove strong shift equivalence whereas the other invariants that we use cannot.",
keywords = "Picard groups of orders, Strong shift equivalence",
author = "S{\o}ren Eilers and Ian Kiming",
year = "2012",
month = apr,
day = "1",
doi = "10.1016/j.jnt.2011.08.003",
language = "English",
volume = "132",
pages = "502--510",
journal = "Journal of Number Theory",
issn = "0022-314X",
publisher = "Academic Press",
number = "4",

}

RIS

TY - JOUR

T1 - On some new invariants for shift equivalence for shifts of finite type

AU - Eilers, Søren

AU - Kiming, Ian

PY - 2012/4/1

Y1 - 2012/4/1

N2 - We introduce a new computable invariant for strong shift equivalence of shifts of finite type. The invariant is based on an invariant introduced by Trow, Boyle, and Marcus, but has the advantage of being readily computable. We summarize briefly a large-scale numerical experiment aimed at deciding strong shift equivalence for shifts of finite type given by irreducible 2 × 2-matrices with entry sum less than 25, and give examples illustrating the power of the new invariant, i.e., examples where the new invariant can disprove strong shift equivalence whereas the other invariants that we use cannot.

AB - We introduce a new computable invariant for strong shift equivalence of shifts of finite type. The invariant is based on an invariant introduced by Trow, Boyle, and Marcus, but has the advantage of being readily computable. We summarize briefly a large-scale numerical experiment aimed at deciding strong shift equivalence for shifts of finite type given by irreducible 2 × 2-matrices with entry sum less than 25, and give examples illustrating the power of the new invariant, i.e., examples where the new invariant can disprove strong shift equivalence whereas the other invariants that we use cannot.

KW - Picard groups of orders

KW - Strong shift equivalence

UR - http://www.scopus.com/inward/record.url?scp=84455172426&partnerID=8YFLogxK

U2 - 10.1016/j.jnt.2011.08.003

DO - 10.1016/j.jnt.2011.08.003

M3 - Journal article

AN - SCOPUS:84455172426

VL - 132

SP - 502

EP - 510

JO - Journal of Number Theory

JF - Journal of Number Theory

SN - 0022-314X

IS - 4

ER -

ID: 233961155