Forskning ved Københavns Universitet - Københavns Universitet

Forside

Segre class computation and practical applications

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Corey Harris
  • Martin Helmer
Let X subset of Y be closed (possibly singular) subschemes of a smooth projective toric variety T. We show how to compute the Segre class s(X, Y) as a class in the Chow group of T. Building on this, we give effective methods to compute intersection products in projective varieties, to determine algebraic multiplicity without working in local rings, and to test pairwise containment of subvarieties of T. Our methods may be implemented without using Grobner bases; in particular any algorithm to compute the number of solutions of a zero-dimensional polynomial system may be used
OriginalsprogEngelsk
TidsskriftMathematics of Computation
Vol/bind89
Udgave nummer321
Sider (fra-til)465-491
ISSN0025-5718
DOI
StatusUdgivet - jan. 2020

ID: 233586974