Forskning ved Københavns Universitet - Københavns Universitet

Forside

The black hole mass of NGC 4151: Comparison of reverberation mapping and stellar dynamical measurements

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Christopher A. Onken
  • Monica Valluri
  • Bradley M. Peterson
  • Richard W. Pogge
  • Misty C. Bentz
  • Laura Ferrarese
  • Vestergaard, Marianne
  • D. Michael Crenshaw
  • Sergey G. Sergeev
  • Ian M. McHardy
  • David Merritt
  • Gary A. Bower
  • Timothy M. Heckman
  • Amri Wandel

We present a stellar dynamical estimate of the black hole (BH) mass in the Seyfert 1 galaxy, NGC 4151. We analyze ground-based spectroscopy as well as imaging data from the ground and space, and we construct three-integral axisymmetric models in order to constrain the BH mass and mass-to-light ratio. The dynamical models depend on the assumed inclination of the kinematic symmetry axis of the stellar bulge. In the case in which the bulge is assumed to be viewed edge-on, the kinematical data give only an upper limit to the mass of the BH, of ∼4 x 107 M (1 σ). If the bulge kinematic axis is assumed to have the same inclination as the symmetry axis of the large-scale galaxy disk (i.e., 23° relative to the line of sight), a best-fit dynamical mass between 4 and 5 x 107 M is obtained. However, because of the poor quality of the fit when the bulge is assumed to be inclined (as determined by the noisiness of the x2 surface and its minimum value) and because we lack spectroscopic data that clearly resolves the BH sphere of influence, we consider our measurements to be tentative estimates of the dynamical BH mass. With this preliminary result, NGC 4151 is now among the small sample of galaxies in which the BH mass has been constrained from two independent techniques, and the mass values we find for both bulge inclinations are in reasonable agreement with the recent estimate from reverberation mapping (4.57+0.57-0.47 X 10 7 M) published by Bentz et al.

OriginalsprogEngelsk
TidsskriftAstrophysical Journal
Vol/bind670
Udgave nummer1
Sider (fra-til)105-115
Antal sider11
ISSN0004-637X
DOI
StatusUdgivet - 20 nov. 2007
Eksternt udgivetJa

ID: 229913212