Semi-Nonparametric Estimation and Misspecification Testing of Diffusion Models

Kristensen, Dennis

Publication date:
2010

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Semi-Nonparametric Estimation and Misspecification Testing of Diffusion Models

Dennis Kristensen
Semi-Nonparametric Estimation and Misspecification Testing of Diffusion Models*

DENNIS KRISTENSEN†
COLUMBIA UNIVERSITY AND CREATES‡
MARCH, 2010

Abstract

We propose novel misspecification tests of semiparametric and fully parametric univariate diffusion models based on the estimators developed in Kristensen (Journal of Econometrics, 2010). We first demonstrate that given a preliminary estimator of either the drift or the diffusion term in a diffusion model, nonparametric kernel estimators of the remaining term can be obtained. We then propose misspecification tests of semiparametric and fully parametric diffusion models that compare estimators of the transition density under the relevant null and alternative. The asymptotic distribution of the estimators and tests under the null are derived, and the power properties are analyzed by considering contiguous alternatives. Test directly comparing the drift and diffusion estimators under the relevant null and alternative are also analyzed. Markov Bootstrap versions of the test statistics are proposed to improve on the finite-sample approximations. The finite sample properties of the estimators are examined in a simulation study.

Keywords: Diffusion process; kernel estimation; nonparametric; specification testing; semiparametric; transition density.

JEL-Classification: C12, C13, C14, C22.

†This paper is a revised version of a chapter of my PhD thesis at the LSE. I wish to thank my supervisor, Oliver Linton, for helpful advice and encouragement, and Jianqing Fan for fruitful discussions and suggestions. Parts of this paper appeared in an earlier version titled "Estimation in Two Classes of Semiparametric Diffusion Models". Financial Support from the Danish Social Sciences Research Council (through CREATES) and the National Science Foundation (grant no. SES-0961596) is gratefully acknowledged. Parts of this research was conducted while the author visited Princeton University and University of Copenhagen whose hospitality is gratefully acknowledged.

‡E-mail: dk2313@columbia.edu. Dep. of Economics, International Affairs Building, MC 3308, 420 West 118th Street New York NY 10027.

§Center for Research in Econometric Analysis of Time Series, funded by the Danish National Research Foundation.
1 Introduction

In this study, we develop semi-nonparametric estimators and misspecification tests of the so-called drift and diffusion functions in univariate diffusion models given low-frequency observations. The proposed estimators and tests provide the researcher with tools to investigate whether a given parametric specification of the drift and diffusion function is correct and allows him to test drift and diffusion specifications separately from each other. This is in contrast to existing methods found in the literature which simultaneously test correct specification of drift and diffusion terms.

Our estimation and testing procedure takes as starting point two classes of semiparametric diffusion models introduced in Kristensen (2010): In the first class, the drift term is known up to a finite-dimensional parameter while the diffusion term is left unspecified; in the second class, the diffusion term is on parametric form while the drift term is unknown. Kristensen (2010) develop estimators of the parametric component for a given model in either of the two classes. We demonstrate how the unspecified term in any of these semiparametric diffusion models can be estimated nonparametrically using kernel methods. These estimators are useful as guides in the search for a correct parametric specification since they provide information about the shape of the unspecified term. In addition, the estimators help us to develop novel misspecification tests of diffusion models.

We suggest two sets of tests: First, we propose tests for a given semiparametric diffusion model against a fully nonparametric alternative. Second, tests for a fully parametric model against either of its two semiparametric alternatives are developed. Our tests are based on comparison of estimators of the so-called transition density obtained under null and alternative respectively. In addition, we also consider tests that directly compare drift or diffusion estimators. We analyze the asymptotic properties of the tests both under null and alternative, and obtain a number of interesting results:

First, our transition-based test of a given semiparametric model against the fully nonparametric alternative is under the null first-order asymptotically equivalent to tests of fully parametric models as developed in Aït-Sahalia, Fan and Peng (2009) and Li and Tkacz (2006). This is due to the fact that estimators of the transition density under the semiparametric and parametric null respectively both converge with parametric rate, and as such the asymptotic distributions of our tests are completely driven by the fully nonparametric transition density estimator. The parametric rate of the semiparametric transition density estimator is due to the fact that computation of transition densities for low-frequency observations involves integration of both the drift and diffusion term (see e.g. Kristensen, 2008) which functions as an additional smoothing mechanism. This additional smoothing speeds up convergence rate of the semiparametric estimator of the transition density even though it involves kernel estimators.

Second, our proposed transition-based tests of the fully parametric model against either of the two semiparametric alternatives converge with parametric rate under the null despite the fact that nonparametric estimators enter the tests. This is non-standard within the class of tests based on kernel density estimators, and as such our transition-based tests for the fully parametric null share similarities to the Cramer-von-Mises (CvM) type tests which also converge at parametric rate.

Third, we analyze the power properties of the tests by considering their performance under contiguous alternatives. Due to the aforementioned integration of drift and diffusion function taking place in the computation of transition densities, our transition-based tests are not able to detect high-frequency departures from the null in terms of the drift and diffusion function. The power results lead us to propose two alternative tests of the parametric null against semiparametric alternatives based on direct comparison of drift and diffusion function estimators obtained under null and alternatives. We analyze their asymptotic properties both under null and alternative: They converge with a slower rate than the transition-based tests, and thus
are dominated by transition-based tests in terms of detecting global alternatives. On the other hand, the tests are better at detecting local deviations of drift and diffusion functions from the null, and so have better power against local alternatives. As such they complement our transition-based tests.

Finally, we conduct a higher-order analysis of the proposed tests under the null. This analysis demonstrates that first-order asymptotic distributions obtained under the null may be a poor proxy of their finite-sample distributions. We therefore propose a Markov bootstrap method that we hope will provide a better approximation of finite-sample distributions of the test statistics. This conjecture is supported by simulation results in Aït-Sahalia et al (2009) and Li and Tkacz (2006) who propose similar Bootstrap procedures for their tests.

The proposed tests and their theoretical analysis add to a growing literature on specification testing of diffusion models. This class of models is widely used in describing dynamics of asset pricing variables such as interest rates, stock prices, and exchange rates; see for example Björk (2004) for an overview. Since economic theory imposes little restrictions on asset price dynamics, statistical techniques are usually employed in the search for a correct specification. The literature on testing diffusion model specifications can roughly be divided up into two categories depending on whether high-frequency data is assumed available or not.

If high-frequency data is observed, simple nonparametric kernel-regression estimators of drift and diffusion terms can be used to test for correct specification (Bandi and Phillips, 2005; Corradi and White, 1999; Li, 2007; Negri and Nishiyama, 2009). In principle, these tests do not rely on stationarity which is an advantage over the approach taken here. On the other hand, asymptotic properties of estimators and associated tests do rely on the time distance between observations shrinking to zero; thus, estimators and tests will potentially be severely biased if only low-frequency data is available (see Nicolau, 2003).

To avoid the bias issues associated with high-frequency based tests, alternative tests based on fixed time distance between observations have been developed. Aït-Sahalia (1996b) propose to test for correct specification using a weighted L_2-distance to measure discrepancies between the marginal density under the null and a nonparametric kernel density estimator. This class of tests was originally proposed in Bickel and Rosenthal (1973) in a cross-sectional setting; see also Fan (1994) and Gourieroux and Tenreiro (2001). Since the test of Aït-Sahalia (1996b) is only able to detect discrepancies in the marginal density, it is not consistent against all alternatives. This observation lead to the development of tests based on transition densities since these fully characterize diffusion models.

Our transition-based tests are most related to the ones developed in Aït-Sahalia et al (2009) and Li and Tkacz (2006) where fully nonparametric and parametric estimators of the transition density are compared. In a similar spirit, Hong and Li (2004) propose a test where transformed versions of the transition densities are compared, while Chen, Gao and Tang (2009) employ empirical likelihood techniques. These tests are all designed to examine the correct parametric specification of the drift and diffusion function jointly. In contrast, we are able to test the specification of each of the two functions characterizing the model separately. Our local power analysis complements the one carried out in Aït-Sahalia et al (2009). They specify alternatives in terms of the transition densities and find that transition-based tests have the ability to detect local deviations form the null at a better rate than CvM type tests. However, given that the end goal is to test for the correct specification of drift and diffusion term, we instead specify our alternatives directly in terms of these. By doing so, we obtain some rather different power results for transition-based tests. In particular, we show that they are not able to detect local alternatives at a higher rate compared to CvM type tests. These seemingly contradictory results are due to the fact that Aït-Sahalia et al (2009) specify their alternatives in terms of the transition density while we focus on deviations in terms of underlying drift and diffusion functions. Since, as already noted above, the transition density involves integration over the drift and diffusion function, local features in these get smoothed out in the transition density
and therefore not easily detected.

Our tests based on direct comparison of the drift and diffusion function estimates under null and alternative are related to the marginal density tests of Aït-Sahalia (1996b) and Huang (1997). However, our proposed tests involve non-trivial transformations of the marginal density and its derivatives and as such are able to detect different, more natural alternatives compared to their tests.

Instead of comparing transition densities, Kolmogorov-Smirnov (KS) type tests have been proposed by Bhardwaj, Corradi and Swanson (2008) and Corradi and Swanson (2005) where estimators of the cumulative distribution functions (cdf’s) are compared. This on one hand means that their tests converge with parametric rate under the null and as such are more powerful at detecting certain global alternatives compared to transition-based tests. On the other hand KS-type tests are known to have difficulties detecting local deviations from the null; a shortcoming that density-based tests do not suffer from (see e.g. Escanciano, 2009; Eubank and LaRiccia, 1992).

Finally, Kristensen (2010) proposes some specification tests which appear to be the only existing tests based on low-frequency data that allow for testing correct specifications of the drift and diffusion terms separately. However, Kristensen (2010) does not supply a complete asymptotic theory. Moreover, as with CvM and KS type tests, his proposed Hausmann-type tests of fully parametric models will in general have low power against local alternatives since they are based on only matching estimators of the parametric component obtained under null and under alternatives. In particular, his tests may not be consistent against all alternatives. In contrast, we base our tests on estimators of the nonparametric component under the alternative, and so expect them to enjoy better power properties.

The remains of the paper is organized as follows: In Section 2, the nonparametric estimators of the drift and diffusion term are presented and their asymptotic properties derived. In Section 3, we propose a number of different test statistics for a parametric specification against semi- and nonparametric alternatives and analyze their asymptotic behaviour. Bootstrap versions of the test statistics are developed in Section 4. The finite-sample performance of the estimators are examined through a simulation study in Section 5. We conclude in Section 6. All proofs have been relegated to the Appendix.

2 Framework

Consider the continuous time process \(\{X_t\} = \{X_t : t \geq 0\} \) solving the following univariate Markov diffusion model,

\[
dX_t = \mu (X_t) \, dt + \sigma (X_t) \, dW_t,
\]

where \(\{W_t\} \) is a standard Brownian motion. The domain of \(\{X_t\} \) takes the form of an open interval \(I = (l, r) \) where \(-\infty \leq l < r \leq \infty\). The functions \(\mu : I \to \mathbb{R} \) and \(\sigma^2 : I \to \mathbb{R}_+ \) are the so-called drift and diffusion term respectively. The dynamics of the process are fully characterised by the transition densities \(p(y|x; t), \quad t \geq 0, \) describing conditional distributions,

\[
P(X_{s+t} \in A|X_s = x) = \int_A p(y|x; t) \, dy, \quad A \subseteq I, \quad s, t \geq 0.
\]

For diffusion models as given in eq. (1), the transition density can be characterized as the solution to the following partial differential equation (PDE) (see Friedman, 1976):

\[
\frac{\partial p(y|x; t)}{\partial t} = \mathcal{A} [\mu, \sigma^2] \, p(y|x; t), \quad t > 0, \quad (x, y) \in I \times I,
\]

with boundary condition \(\lim_{t \to 0} p_t (y|x) = \delta (y - x) \). Here, \(\mathcal{A} [\mu, \sigma^2] \) denotes the infinitesimal generator,

\[
\mathcal{A} [\mu, \sigma^2] \, p(y|x; t) = \mu (x) \frac{\partial p(y|x; t)}{\partial x} + \frac{1}{2} \sigma^2 (x) \frac{\partial^2 p(y|x; t)}{\partial x^2},
\]
and $\delta(\cdot)$ Dirac’s delta function. Thus, the drift and diffusion function fully characterizes the transition density and we will write $p(y|x; t, \mu, \sigma^2)$ for the solution mapping that takes any drift and diffusion function into the corresponding transition density as given implicitly through the PDE in eq. (2).

We are interested in testing parametric specifications of the drift and diffusion function. We will throughout work under the maintained (nonparametric) hypothesis that $\{X_t\}$ is a Markov diffusion process,

$$H_{NP} : \{X_t\} \text{ solves eq. (1) with } \sigma^2(\cdot) \text{ and } \mu(\cdot) \text{ unspecified.}$$

In the existing literature, tests have been developed for a fully parametric diffusion specification of drift, diffusion or both are the cause of rejection. This motivates us to introduce the following two semiparametric hypotheses, which allow us to test for misspecification of the drift and diffusion term separately from each other:

$$H_{SP,1} : \sigma^2(\cdot) = \sigma^2(\cdot; \theta_1) \text{ for some } \theta_1 \in \Theta_1,$$

and

$$H_{SP,2} : \mu(\cdot) = \mu(\cdot; \theta_2) \text{ for some } \theta_2 \in \Theta_2.$$

If a model satisfies $H_{SP,1}$ ($H_{SP,2}$), the drift (diffusion) term is unspecified, and the model is semiparametric. As such the two hypotheses match up with the two classes of semiparametric diffusion models considered in Kristensen (2010). Finally, note that if a model satisfies both $H_{SP,1}$ and $H_{SP,2}$, then both drift and diffusion are specified and the model is fully parametric.

In particular, we have the following nesting of the hypotheses: $H_P \subseteq H_{SP,k} \subseteq H_{NP}$ for $k = 1, 2$.

In the next section, we first develop tests of each of the two semiparametric hypotheses, $H_{SP,1}$ and $H_{SP,2}$, against the nonparametric alternative. Secondly, we propose tests of H_P against each of the two semiparametric hypotheses. Together, the tests enable the econometrician to first test for the correct specification of, say, the drift term ($H_{SP,2}$ vs. H_{NP}), and then (once $H_{SP,2}$ is accepted) the correct specification of the diffusion term (H_P vs. $H_{SP,2}$).

In order to develop our tests, we first obtain estimators of the drift and diffusion functions under the two semiparametric hypotheses. The estimators rely on the assumption of stationarity. Suppose that $\{X_t\}$ is strictly stationary and ergodic, in which case it has a stationary marginal density which we denote π. This density satisfies $\int_A \pi(x) \, dx = P(X_t \in A)$, for any $t \geq 0$ and Borel set $A \subseteq I$, and can be written on the following form:

$$\pi(x) = \frac{M_{x^*}}{\sigma^2(x)} \exp \left[2 \int_{x^*}^x \frac{\mu(y)}{\sigma^2(y)} \, dy \right],$$

for some some point $x^* \in \text{int}I$, and normalization factor $M_{x^*} > 0$, c.f. Karlin and Taylor (1981, Section 15.6). One can revert the expression in eq. (3) to obtain expressions of either drift or diffusion function:

$$\mu(x) = \frac{1}{2\pi(x)} \frac{\partial}{\partial x} \left[\sigma^2(x) \pi(x) \right],$$

$$\sigma^2(x) = \frac{2}{\pi(x)} \int_1^x \mu(y) \pi(y) \, dy.$$

5
From these expressions, we see that we can identify the drift (diffusion) function from the diffusion (drift) term together with the marginal density; this point was already made in Wong (1964), and further pursued in Aït-Sahalia (1996a), Hansen and Scheinkman (1995), and Kristensen (2010). In particular, this allows us to identify the unspecified term under each of the two semiparametric hypotheses.

We now develop specific estimators based on this identification scheme: Suppose that we have $n + 1$ observations available from eq. (1), $X_0, X_\Delta, X_{2\Delta}, \ldots, X_{n\Delta}$, where $\Delta > 0$ is the fixed time distance between observations; without loss of generality, we normalize time distance to $\Delta \equiv 1$ in the following. Under the relevant semiparametric hypothesis, $H_{SP,1}$ or $H_{SP,2}$, we assume that a preliminary estimator of the parametric component, θ_1 or θ_2, is available. We make no assumptions about where the preliminary estimators have arrived from, and merely require that they are sufficiently regular. One particular class of estimators are the pseudo-MLEs proposed in Kristensen (2010), but we do not restrict ourselves to these.

Given estimators of the parametric components, we now just need to obtain an estimator of the marginal density, π. We here propose to use kernel methods to estimate it,

$$\hat{\pi} (x) = \frac{1}{nh} \sum_{i=1}^{n} K_h (x - X_i),$$

where $K_h (z) = K (z/h)/h$, K is a kernel, and $h > 0$ is a bandwidth; see Robinson (1983) for an introduction to kernel density estimators in a time series setting. We then combine estimators of the parametric component and the marginal density to obtain an estimator of the unspecified term.

First, consider $H_{SP,1}$: In this case, the diffusion term is parameterised and an estimator $\hat{\theta}_1$ is available together with the kernel estimator $\hat{\pi}$. We then estimate μ by substituting $\sigma^2(x; \hat{\theta}_1)$ and $\hat{\pi}$ into eq. (4):

$$\hat{\mu} (x) = \frac{1}{2\hat{\pi} (x)} \frac{\partial}{\partial x} \left[\sigma^2(x; \hat{\theta}_1)\hat{\pi} (x) \right].$$

Under $H_{SP,2}$, we have a parametric estimator of the drift parameter, $\hat{\theta}_2$, which together with $\hat{\pi}$ can be used to estimate the diffusion term. Two alternative estimators present themselves: An obvious estimator would be to directly substitute $\mu(y; \hat{\theta}_2)$ and $\hat{\pi}$ into eq. (5), $\hat{\sigma}^2 (x) = \frac{2}{\pi(x)} \int \mu (y; \hat{\theta}_2) \hat{\pi} (y) dy$. However, the integral $\int \mu (y; \hat{\theta}_2) \hat{\pi} (y) dy$ can be estimated without bias by a sample average, $\frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{ X_i \leq x \} \mu (X_i) \rightarrow P \int \mu (y; \hat{\theta}_2) \hat{\pi} (y) dy$, where $\mathbb{I} \{ \cdot \}$ is the indicator function. So we suggest to estimate $\sigma^2 (x)$ by

$$\hat{\sigma}^2 (x) = \frac{2}{\hat{\pi} (x)} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{ X_i \leq x \} \mu (X_i; \hat{\theta}_2).$$

To establish the asymptotic properties of the two estimators, we impose regularity conditions on the model:

A.1 (i) The drift $\mu (\cdot)$ and diffusion $\sigma^2 (\cdot) > 0$ are continuously differentiable.

(ii) there exists a twice continuously differentiable function $V : \mathbb{R} \rightarrow \mathbb{R}_+$ with $V (x) \rightarrow \infty$ as $|x| \rightarrow \infty$, and constants $b, c > 0$ such that

$$\mu (x) V'(x) + \frac{1}{2} \sigma^2 (x) V''(x) \leq -cV (x) + b.$$

A.2 The marginal density π is uniformly differentiable of order $m \geq 2$ with bounded derivatives, and satisfies $\int \pi (x) (1-q) dx < \infty$ for some $q > 0$. The conditional density $p (y|x) \equiv p (y|x; 1)$ is uniformly differentiable of order m with $\sup_{x, y \in I} p (y|x) \pi (x) < \infty$.

6
A.3 The parametric drift and diffusion function satisfy:

1. \(\theta_1 \mapsto \sigma^2(x; \theta_1) \) is continuously differentiable satisfying \(||\partial_\theta^j \sigma^2(x; \theta_1)|| \leq V(x) \), \(i, j = 0, 1 \).

2. \(\theta_2 \mapsto \mu(x; \theta_2) \) is continuously differentiable, satisfying \(||\partial_\theta^i \mu(x; \theta_2)|| \leq V(x) \), \(i = 0, 1 \).

A.4 For \(k = 1, 2 \): There exists \(\theta^*_k \in \Theta_k \) and function \(\psi_{SP,k} \) satisfying \(E[\psi_{SP,k}(X_1|X_0)] = 0 \) and \(E[||\psi_{SP,k}(X_1|X_0)||^{2+\eta}] < \infty \), such that \(\hat{\theta}_k = \theta^*_k + \sum_{i=1}^n \psi_{SP,k}(X_i|X_{i-1})/n + o_P(1/\sqrt{n}) \).

Assumption (A.1) is sufficient for a stationary and geometrically \(\beta \)-mixing solution to exist as shown in Meyn and Tweedie (1993); alternative mixing conditions for diffusion processes can be found in Carrasco, Chen and Hansen (2009) and Hansen and Scheinkman (1995). We will throughout assume that we have observed this solution. Some of the results stated in this section actually go through under weaker mixing conditions, but since in the next section we will throughout assume that we have observed this solution. The smoothness of \(\mu \) as shown in Meyn and Tweedie (1993); alternative mixing conditions for diffusion processes an estimator of the transition density (see Lemma 2 in Section 3). The parameter \(\phi \) determines how much the bias can be reduced with. The condition that \(\phi \) is a pseudo-true value such that \(\phi(x; \theta^*_k) = \phi(x) \) and \(\phi(x; \theta^*_k) = \phi(x) \) holds, while Kristensen (2010) give conditions under which semiparametric pseudo MLE’s satisfy the conditions.

Assumption (A.3) in conjunction with (A.1) implies that the following two moments exist: \(E[||\partial_\theta^j \mu(X_0; \theta_2)||] < \infty \) and \(E[||\partial_\theta^j \sigma^2(X_0; \theta_1)||] < \infty \). These are used when demonstrating uniform convergence of the nonparametric estimators.

Assumption (A.4)(i) and (ii) are assumed to hold under both \(H_{SP,1} \) and \(H_{SP,2} \) respectively, and the nonparametric alternative. If \(H_{SP,k} \) holds, \(k = 1, 2 \), then the parameter value \(\theta^*_k \in \Theta_k \) introduced in (A.4) is assumed to be equal to the true value such that \(\sigma^2(x; \theta^*_k) = \sigma^2(x) \) and \(\mu(x; \theta^*_k) = \mu(x) \) \(H_{SP,1} \) and \(H_{SP,2} \) respectively. If the semiparametric null does not hold, then \(\theta^*_k \) is a pseudo-true value such that \(\sigma^2(x; \theta^*_k) \neq \sigma^2(x) \) and \(\mu(x; \theta^*_k) \neq \mu(x) \) respectively. For some of our results, the conditions imposed on the parametric estimators in (A.4) can be weakened to the requirement that they merely converge at a faster rate than the kernel estimator. However, for simplicity we maintain the stronger assumptions of (A.4) throughout. Assumption (A.4) is satisfied in great generality for most well-behaved estimators: For the fully parametric MLE’s, Aït-Sahalia (2002) gives conditions for (A.4) to hold, while Kristensen (2010) give conditions under which semiparametric pseudo MLE’s satisfy the conditions.

Finally, we restrict the class of kernel functions to belong to the following family:

B.1 The kernel \(K \) is differentiable, and there exists constants \(C, \eta > 0 \) such that

\[
K^{(i)}(z) \leq C|z|^{-\eta}, \quad |K^{(i)}(z) - K^{(i)}(z')| \leq C|z - z'|, \quad i = 0, 1,
\]

where \(K^{(i)}(z) \) denotes the \(i \)th derivative. Furthermore, \(\int_{\mathbb{R}} K(z) \, dz = 1, \int_{\mathbb{R}} z^j K(z) \, dz = 0, \)

\(1 \leq j \leq m - 1, \) and \(\int_{\mathbb{R}} |z|^m K(z) \, dz < \infty. \)
This class includes most standard kernels including the Gaussian and Uniform kernel. We are now able to state pointwise convergence results for the estimators of the unspecified term under the two semiparametric alternatives:

Theorem 1 Assume that (A.1)-(A.4) and (B.1) hold. Then for any point \(x \) in the interior of \(I \):

1. Under \(H_{SP,1} \): As \(nh^3 \to \infty \) and \(nh^{3+2m} \to 0 \),
 \[
 \sqrt{n} h^3 (\hat{\mu}(x) - \mu(x)) \xrightarrow{d} N(0, V_\mu(x)),
 \]
 where \(V_\mu(x) = \frac{\sigma^4(x)}{4\pi(x)} \int_{\mathbb{R}} K^{(1)}(z)^2 \, dz \).

2. Under \(H_{SP,2} \): As \(nh \to \infty \), and \(nh^{1+2m} \to 0 \),
 \[
 \sqrt{n} h (\hat{\sigma}^2(x) - \sigma^2(x)) \xrightarrow{d} N(0, V_{\sigma^2}(x)),
 \]
 where \(V_{\sigma^2}(x) = \frac{\sigma^4(x)}{\pi(x)} \int_{\mathbb{R}} K^2(z) \, dz \).

The above result allows the researcher to plot the two estimators together with pointwise confidence bands. The pointwise asymptotic variances for \(\hat{\mu}(x) \) and \(\hat{\sigma}^2(x) \) can be estimated by:

\[
\hat{V}_\mu(x) = \frac{\sigma^4(x; \hat{\theta}_1)}{4\pi(x)} \int_{\mathbb{R}} K^{(1)}(z)^2 \, dz, \quad \hat{V}_{\sigma^2}(x) = \frac{\hat{\sigma}^4(x)}{\hat{\pi}(x)} \int_{\mathbb{R}} K(z)^2 \, dz.
\] (10)

One can easily show, as is standard for kernel-based estimators, that both nonparametric estimators are asymptotically independent across distinct points. This facilitates inference, for example when constructing pointwise confidence bands.

The rate of convergence of \(\hat{\mu} \) is slower than the one of \(\hat{\sigma}^2 \). This owes to the fact that \(\hat{\mu} \) depends on both \(\hat{\pi} \) and its first derivative, \(\hat{\pi}^{(1)} \), while \(\hat{\sigma}^2 \) is only a function of \(\hat{\pi} \). The density derivative has slower weak convergence rate than \(\hat{\pi} \), \(\sqrt{nh^3} \) relative to \(\sqrt{nh} \), which the drift estimator inherits. Thus, the drift is more difficult to estimate than the diffusion term which is a well-established fact in the literature: Gobet et al. (2003) show that the optimal convergence rate of the nonparametric estimation of the drift is slower than for the diffusion given low-frequency observations, and coin the nonparametric estimation of \(\mu \) as an "ill-posed problem". Similarly, Bandi and Phillips (2003) demonstrate that with high-frequency observations of a stationary diffusion, it is only possible to estimate \(\mu(x) \) nonparametrically with \(\sqrt{n\Delta h} \)-rate, while \(\sigma^2(x) \) can be estimated at the faster rate \(\sqrt{nh} \) as \(\Delta \to 0 \) and \(n\Delta \to \infty \).

3 Goodness-of-Fit Testing

We here develop tests of correct specifications of the drift and/or diffusion function. Our main focus will be on tests based on the transition density of the Markov process \(\{X_t\} \), where a given null is tested against a given alternative by comparing estimators of the transition density obtained under the null and the alternative respectively. However, motivated by a power analysis of the proposed transition-based tests, we will also develop tests that directly compare drift and diffusion estimators under null and alternative. The two following subsections develop and analyze tests of the semiparametric and fully parametric hypotheses respectively.
3.1 Semiparametric Specification Tests

We consider testing either $H_{SP,1}$ or $H_{SP,2}$ against H_{NP}. In order to present our tests, we first introduce some additional notation: Recall that we have normalized the time distance between observations to $\Delta = 1$, such that $p(y|x) := p(y|x; 1)$ is the transition density of the observed Markov chain, X_i, $i = 1, \ldots, n$. Let $f(y, x) = p(y|x) \pi(x)$ denote the corresponding joint density of (X_i, X_{i-1}). Under either of the two semiparametric hypotheses, restrictions are imposed on the drift and diffusion term. Using eqs. (4)-(5), we may rewrite the two hypotheses as

$$H_{SP,1} : \mu_{SP,1}(x) = \frac{1}{2\pi(x)} \frac{\partial}{\partial x} \left[\sigma^2(x; \theta_1^*) \pi(x) \right], \quad \sigma^2_{SP,1}(x) = \sigma^2(x; \theta_1^*) \quad (11)$$

$$H_{SP,2} : \mu_{SP,2}(x) = \mu(x; \theta_2^*), \quad \sigma^2_{SP,2}(x) = \frac{2}{\pi(x)} \int_1^x \mu(x; \theta_2^*) \pi(y) dy. \quad (12)$$

We let $p_{SP,k}(y|x; \theta_k) := p_{SP,k}(y|x; 1, \theta_k)$ denote the transition density corresponding to the restricted drift and diffusion functions under $H_{SP,k}$, $k = 1, 2$ at $t = 1$. It can for example be represented as the solution (at $t = 1$) to the PDE in eq. (2) with the restricted drift and diffusion functions plugged in. When evaluated at the (pseudo-)true parameter value we simply write $p_{SP,k}(y|x) = p_{SP,k}(y|x; \theta_k^*)$.

Under the nonparametric hypothesis, H_{NP}, the drift and diffusion functions are left completely unspecified, and so we propose to estimate the unrestricted transition density, $p(y|x)$, under the alternative using standard kernel methods. A standard kernel estimator of the transition density for the observed data is

$$\hat{p}_{NP}(y|x) = \frac{\hat{f}_{NP}(y, x)}{\hat{\pi}_{NP}(x)},$$

where, for some bandwidth $h_{NP} > 0$,

$$\hat{f}_{NP}(y, x) = \frac{1}{n} \sum_{i=1}^n K_{h_{NP}}(X_i - y) K_{h_{NP}}(X_{i-1} - x), \quad \hat{\pi}_{NP}(x) = \frac{1}{n} \sum_{i=1}^n K_{h_{NP}}(X_{i-1} - x).$$

Note that two different bandwidths are now being employed: Under the semiparametric null, we use the bandwidth h in the estimation of the univariate marginal density, while under the alternative h_{NP} is used to obtain a nonparametric estimator of the bivariate transition density.

Next, we obtain an estimator of the transition density under either of the two semiparametric hypotheses, $p_{SP,k}(y|x)$. In both cases, we have drift and diffusion estimators available as developed in the previous section. These could in principle be used to obtain an estimator of $p_{SP,k}(y|x)$ by plugging them into the PDE in eq. (2) and then solving w.r.t. $p(y|x; t)$ (at $t = 1$). However, to establish theoretical properties of the resulting semiparametric estimator of the transition density, we have to modify the drift and diffusion estimators proposed in the previous section to control their tail behaviour. We first introduce a class of trimming functions $\tau_a(z)$:

B.2 The trimming function $\tau_a : \mathbb{R} \mapsto [0, 1]$, $a > 0$, satisfies $\tau_a(z) = 1$ for $z \geq a$ and $\tau_a(z) = 0$ for $z \leq a/2$.

A simple way of constructing $\tau_a(z)$ is to choose a cdf F with support $[0, 1]$, and define $\tau_a(z) = F((2z - a)/a)$ which then in great generality will satisfy (B.2); see also Andrews (1995, p. 572).

Given the trimming function, we redefine the estimators under the two semiparametric hypotheses, where we now use subscripts to differentiate between the two nulls,

$$\hat{\mu}_{SP,1}(x) = \frac{\hat{\tau}_a(x)}{2\pi(x)} \frac{\partial}{\partial x} \left[\sigma^2(x; \tilde{\theta}_1) \tilde{\pi}(x) \right], \quad \hat{\sigma}^2_{SP,1}(x) = \hat{\tau}_a(x) \sigma^2(x; \tilde{\theta}_1) + \sigma^2(1 - \hat{\tau}_a(x)), \quad (13)$$
The transition density under following assumption on the transition density: To ensure that the solution (asymptotically) exists and is sufficiently regular, we impose the analysis will rely on the representation of results for other distance measures could be derived by following the same proof strategy as for some weighting function can be interpreted as second-order approximations of the generalized likelihood-ratio tests, c.f. Aït-Sahalia et al (2009, p. 1105) and Fan et al (2001).

Given the non- and semiparametric estimates, we propose to test \(H_{SP,k} \) using the following statistic, for some weighting function \(w \). Similar test statistics have been considered in Aït-Sahalia et al (2009) and Li and Tkacz (2006) but in a different context, namely that of testing fully parametric models against a nonparametric alternative. By appropriate choice of \(w \), the tests can be interpreted as second-order approximations of the generalized likelihood-ratio tests, c.f. Aït-Sahalia et al (2009, p. 1105) and Fan et al (2001).

Other transition-based distance measures could be used: For example, measures based on the Kullback-Leibler divergence (Robinson, 1991), the empirical likelihood (Chen et al, 2009), or integral transforms (Hong and Li, 2004). We focus on \(H_{SP,k} \), but conjecture that theoretical results for other distance measures could be derived by following the same proof strategy as used here for \(T_{SP,k} \).

As a first step towards establishing asymptotic properties of \(T_{SP,k} \), we analyze \(\hat{p}_{SP,k}(y|x) \). The analysis will rely on the representation of \(\hat{p}_{SP,k}(y|x) \) as the solution to eq. \((15)\) at \(t = 1 \). To ensure that the solution (asymptotically) exists and is sufficiently regular, we impose the following assumption on the transition density:

\begin{equation}
\hat{\mu}_{SP,2}(x) = \hat{\tau}_a(x) \mu(x; \hat{\theta}_2), \quad \hat{\sigma}_{SP,2}^2(x) = \frac{2\hat{\tau}_a(x)}{\hat{\pi}(x)} \int_0^x \mu(y; \hat{\theta}_2) \hat{\pi}(y) dy + \sigma^2 (1 - \hat{\tau}_a(x)),
\end{equation}

where \(\hat{\tau}_a(x) := \tau_a(\hat{\tau}(x)), a = a_n > 0 \) is a trimming sequence, and \(\sigma^2 > 0 \) a constant. The inclusion of the additional term \(\sigma^2 (1 - \hat{\tau}_a(x)) \) in the diffusion estimator guarantees that it is strictly positive for all \(x \in I \) for \(n \) sufficiently large. The motivation for the trimming is two-fold: First, by combining results of Andrews (1995) and Kristensen (2009), the trimming of the nonparametric component is used to show that \(\hat{\mu}_{SP,1}(x) \rightarrow^P \tau_a(\pi(x)) \mu_{SP,1}(x) \) and \(\hat{\sigma}_{SP,2}^2(x) \rightarrow^P \tau_a(\pi(x)) \sigma_{SP,2}^2(x) \) uniformly over \(x \in I \), \(k = 1, 2 \), c.f. Lemma 9. We will then let \(a \to 0 \) at a suitable rate such that asymptotically the trimming has no first-order effect asymptotically, \(\tau_a(\pi(x)) \mu_{SP,1}(x) \approx \mu_{SP,1}(x) \) and \(\tau_a(\pi(x)) \sigma_{SP,2}^2(x) \approx \sigma_{SP,2}^2(x) \); see, for example, Ai (1997) and Robinson (1988) for similar applications of trimming. Second, the trimming of the parametric component is introduced to ensure that the associated transition density exists: Due to trimming, \(\hat{\mu}_{SP,k} \) and \(\hat{\sigma}_{SP,k}^2 \) are bounded and \(\hat{\sigma}_{SP,k}^2 > 0 \), and we can therefore apply standard results to ensure that the associated diffusion process has a well-defined transition density; see, for example, Friedman (1976).

Given the above re-defined semiparametric drift and diffusion estimators, we define our estimator of the corresponding transition density, \(\hat{p}_{SP,k}(y|x) \), as the solution to the following PDE at \(t = 1 \),

\begin{equation}
\frac{\partial \hat{p}_{SP,k}(y|x; t)}{\partial t} = A [\hat{\mu}_{SP,k}, \hat{\sigma}_{SP,k}^2] \hat{p}_{SP,k}(y|x; t), \quad t > 0, \quad (x, y) \in I \times I.
\end{equation}

While the theoretical analysis of the estimator will rely on the above representation, its actual computation can be done using numerical techniques as, for example, developed Aït-Sahalia et al (2002) and Kristensen and Shin (2008); see also Kristensen (2010, Section 5).

Given the non- and semiparametric estimates, we propose to test \(H_{SP,k} \) using the following statistic,

\begin{equation}
T_{SP,k} = \int_I \int_I [\hat{p}_{SP,k}(y|x) - \hat{p}_{NP}(y|x)]^2 w(y, x) dy dx,
\end{equation}

for the transition density under \(H_{SP,k} \), \(p_{SP,k}(y|x; t, \theta) \) for \(t > 0 \), exists as a solution to eq. \((2)\) and satisfies \(|\partial_x^i p_{SP,k}(y|x; t, \theta)| \leq \gamma(y|x; t), (t, x, y, \theta) \in (0, \Delta) \times I^2 \times \Theta, i = 0, 1, 2 \), where

\begin{equation}
\gamma(y|x; t) = c_1 \frac{|y|^{\lambda_1} + |x|^{\lambda_1}}{t^{\alpha_1}} \exp \left[-c_2 \frac{|y|^{\lambda_2} + |x|^{\lambda_2}}{t^{\alpha_2}} \right]
\end{equation}

for constants \(c_j, \alpha_j, \lambda_j > 0, j = 1, 2 \).
The weighting function

\textbf{B.3} on the weighting function:

in the derivation of the asymptotic properties of

is, for example, also imposed in Aït-Sahalia et al (2009). Under (B.2), converges at a faster rate than

a solution to a PDE: As such, the computation of

The reason for this maybe surprising result can be found in the representation of

and diffusion estimator which in turn speeds up the convergence rate; for more details, we refer

metric component under the null converges with rate

\(p \) can go to zero. They are used to control higher-order bias and variance terms appearing in

For

Lemma 2

and that the trimming has no first-order impact on the semiparametric transition density esti-

matively. The conditions involve both

\(p \) and

\(H.2 \)

fast:

\[H.1 \quad \sqrt{n} a^6 / \log (n) \rightarrow \infty, \quad \sqrt{n} a^4 / \log (n) \rightarrow \infty, \quad n^{1/4} h^m a^{-3} \rightarrow 0, \quad \sqrt{n} h^m a^{-1} \rightarrow 0, \quad \text{and} \quad \sqrt{n} a^{q/2} \rightarrow 0. \]

\[H.2 \quad \sqrt{n} a^4 / \log (n) \rightarrow \infty, \quad n^{1/4} h^m a^{-2} \rightarrow 0, \quad \sqrt{n} h^m a^{-1} \rightarrow 0, \quad \text{and} \quad \sqrt{n} a^{q/2} \rightarrow 0. \]

Depending on whether we work under \(H_{SP,1} \) or \(H_{SP,2} \), we will impose (H.1) or (H.2) respectively. The conditions involve both \(h \) and \(a \) and impose restrictions on how fast they jointly can go to zero. They are used to control higher-order bias and variance terms appearing in \(\hat{p}_{SP,k}(y|x) \); in particular, they ensure that the kernel-based estimators of the relevant nonparametric component under the null converges with rate \(o_P \left(n^{-1/4} \right) \) uniformly over \(\{ x : \pi (x) \geq a \} \), and that the trimming has no first-order impact on the semiparametric transition density estimator.

Utilizing arguments developed in Kristensen (2008, 2010), we are now able to establish the following asymptotic expansion of the transition density estimator:

\[\text{Lemma 2} \quad \text{For} \ k \in \{ 1, 2 \} : \text{Assume that (A.1)-(A.5), (B.1)-(B.2) and (H.k) hold. Then,} \]

\[\hat{p}_{SP,k}(y|x) = p_{SP,k}(y|x) + \frac{1}{n} \sum_{i=1}^{n} D_{k,i} (y|x) + o_P (1/\sqrt{n}), \quad k = 1, 2, \]

\[\text{uniformly over} \ (y, x) \ \text{in any compact set of} \ I \times I. \ \text{Here,} \ D_{k,i} (y|x) = D_{k} (X_i, X_{i-1}; y, x) \ \text{is given} \]

\[\text{in eq. (32). In particular,} \ E [D_{k,i} (y|x)] = 0 \ \text{and} \ E \left[D_{k,i}^2 (y|x) \right] < \infty \ \text{for all} \ (x, y). \]

From the above lemma, we see that \(\hat{p}_{SP,k}(y|x) \) is \(\sqrt{n} \)-consistent. This holds despite the fact that nonparametric kernel estimators are employed as inputs in the computation of \(\hat{p}_{SP,k}(y|x) \). The reason for this maybe surprising result can be found in the representation of \(\hat{p}_{SP,k}(y|x) \) as a solution to a PDE: As such, the computation of \(\hat{p}_{SP,k}(y|x) \) involves integrating over the drift and diffusion estimator which in turn speeds up the convergence rate; for more details, we refer to Kristensen (2008, 2010). An important consequence of the above lemma is that \(\hat{p}_{SP,k}(y|x) \) converges at a faster rate than \(\hat{p}_{SP}(y|x) \), so we can exchange \(\hat{p}_{SP,k}(y|x) \) for the unknown density in the derivation of the asymptotic properties of \(T_{SP,k} \).

To derive the asymptotic properties of the test statistics, we impose the following restriction

on the weighting function:

\[\text{B.3} \quad \text{The weighting function} \ w : I \times I \mapsto \mathbb{R}_+ \ \text{is continuous with compact support.} \]

The assumption of a fixed, compact support of \(w \) is made in order to control the tail behaviour of the estimators of transition densities. This assumption is fairly standard and is, for example, also imposed in Aït-Sahalia et al (2009). Under (B.2), \(T_{SP,k} \) can only detect
departures from $H_{SP,k}$ that reveal themselves in the density within the support of w. However, under suitable regularity conditions on the tail behaviour of w, the drift and the diffusion, one should be able to allow for weighting functions with unbounded support, see e.g. Kristensen (2010) and Li and Tkacz (2006). This would lead to more technical proofs however, and we therefore maintain (B.3) for simplicity.

In the following, let $(f \ast g)(z) = \int f(u)g(u + z)\,du$ denote the convolution of any two functions f and g. We then have the following results for the asymptotic properties of the two tests:

Theorem 3 For $k \in \{1, 2\}$: Assume that (A.1)-(A.5), (B.1)-(B.3), (H.k) and $H_{SP,k}$ hold.

(i) If $\lambda_n^2 := nh_{NP}^{2m+2} \to \lambda^2 < \infty$, the following expansion holds:

$$nh_{NP} \{ T_{SP,k} - m_{SP} \} = v_{SP} U_n + \sqrt{h_{NP} v_{SP} U_n + \lambda_n \{ \sigma^2 V_n + \bar{\sigma}^2 \bar{V}_n \}} + nh_{NP}^{2m+1} B_k + O_P \left(\frac{\log(n)^2}{nh_{NP}^2} \right)$$

where (U_n, V_n) and (\bar{U}_n, \bar{V}_n) both converge towards bivariate standard normal distributions,

$$m_{SP} = \frac{1}{nh_{NP}^2} \left[\int_{\mathbb{R}} K^2(z)\,dz \right]^2 \times \int_{\mathbb{R}^2} \frac{p(y|x)}{\pi(x)} w(y, x)\,dy\,dx,$$

$$+ \frac{1}{nh_{NP}} \left[\int_{\mathbb{R}} K^2(z)\,dz \times \int_{\mathbb{R}^2} \frac{p(y|x)}{\pi^2(x)} w(y, x)\,dy\,dx,\right.$$

$$v_{SP}^2 = 2 \left[\int_{\mathbb{R}} (K \ast K)^2(z)\,dz \right]^2 \times \int_{\mathbb{R}^2} p^2(y|x) w(y, x)\,dy\,dx,$$

and the parameters $B_k, v_{SP}^2, \sigma^2_v$ and $\bar{\sigma}^2_v$ are given in the proof.

(ii) In particular, if $nh_{NP}^3 / \log(n)^2 \to \infty$ and $nh_{NP}^{2m+1} \to 0$,

$$nh_{NP} \frac{T_{SP,k} - m_{SP}}{v_{SP}} \to^d N(0, 1).$$

The first part of the theorem states an asymptotic expansion of $T_{SP,k}$, $k = 1, 2$, under weak restrictions on the bandwidth. The limiting distribution is in this general case quite involved and not easily evaluated. One could adjust the proposed test statistics by following the ideas of Bickel and Rosenblatt (1973) and Fan (1994) in order to remove the higher-order terms $\lambda_n \{ \sigma^2 V_n + \bar{\sigma}^2 \bar{V}_n \}$ and $O_P (nh_{NP}^{2m+1})$. This however would have consequences for the resulting tests’ power properties, c.f. Fan (1994).

Under additional restrictions on the bandwidth h_{NP}, we obtain a standard normal distribution of the tests which is similar to the results reported in Aït-Sahalia et al (2009, Theorems 1-2), and Li and Tkacz (2006, Theorem 1). In particular, as in these studies, the asymptotic distribution is entirely determined by the nonparametric estimator, $\hat{p}_{NP}(y|x)$, since the estimator of the transition density under the null converges with parametric rate. This is the reason for that the asymptotic expansions in the first part are the same for both tests. It should also be noted that the asymptotic distribution in the second part is not affected by the dependence structure in data and is identical to the one found when data is i.i.d., see e.g. Fan (1994).

In order for the resulting test in the second part to become operational, consistent estimates of m_{SP} and v_{SP}^2 have to be obtained. This can easily be done by substituting the unknown quantities entering these for their estimates (either under the null or the alternative); see e.g. Li and Tkacz (2006, p. 867).
Next, we investigate the power of the proposed tests. To this end, we introduce the following two sequences of contiguous alternatives:

\[H_{\text{SP},1}^n : \mu_n (x) = \frac{1}{2\pi (x)} \frac{\partial}{\partial x} \left(\sigma_n^2 (x) \pi (x) \right), \quad \sigma_n^2 (x) = \sigma^2 (x; \theta^*_1) + g_n (x), \]

and

\[H_{\text{SP},2}^n : \mu_n (x) = \mu (x; \theta^*_2) + g_n (x), \quad \sigma_n^2 (x) = \frac{2}{\pi (x)} \int_1^x \mu_n (y) \pi (y) \, dy. \]

Here, \(g_n : I \to \mathbb{R} \) is a sequence of functions, which we will throughout restrict to be continuously differentiable with compact support. These alternatives posit that the diffusion model is stationary such that the unspecified term can be identified by eqs. (4) and (5) respectively, but that the parametric component is misspecified with \(g_n (x) \) describing the degree of misspecification. It should be stressed that the above alternatives are different from the ones analyzed in, for example, Fan (1994) and Aït-Sahalia (2009) who specify alternatives in terms of the drift and diffusion function, our alternatives seem to be the more natural ones though.

Since the proposed tests are based on transition densities, we first obtain an expression of the sequences transition densities corresponding to the above two local alternatives. Let \(p_n (y|x) = p (y|x; 1, \mu_n, \sigma_n^2) \) denote the sequence of transition densities corresponding to either of the two contiguous alternatives. By utilizing that \(p_n (y|x) \) and \(p_{\text{SP},k} (y|x) \) both solve a PDE on the form given in eq. (2), we obtain the following relationship between the two:

\[p_n (y|x) = p_{\text{SP},k} (y|x) + \gamma_{\text{SP},k}^{(n)} (y|x) + O (R_{\text{SP},k}), \quad (18) \]

where

\[\gamma_{\text{SP},1}^{(n)} (y|x) = \frac{1}{2} \int_I g'_n (w) \frac{\pi' (w)}{\pi (w)} \bar{\mu}_1 (y, x, w) \, dw + \int_I g_n (w) \bar{\sigma}_{1,1} (y, x, w) \, dw, \quad (19) \]

\[\gamma_{\text{SP},2}^{(n)} (y|x) = \int_I g_n (w) \bar{\mu}_2 (y, x, w) \, dw + 2 \int_I \int_I g_n (u) \pi (u) \, du \frac{1}{\pi (w)} \bar{\sigma}_{2,2} (y, x, w) \, dw, \quad (20) \]

and \(R_{\text{SP},1} \) and \(R_{\text{SP},2} \) are remainder terms given by

\[R_{\text{SP},1} = \sup_{x \in I} |g_n (x)|^2 + \sup_{x \in I} |g'_n (x)|^2, \quad R_{\text{SP},2} = \sup_{x \in I} |g_n (x)|^2. \]

Here, we have defined

\[\bar{\mu}_k (y, x, w) := \int_0^1 \frac{\partial p_{\text{SP},k} (y|w; t)}{\partial w} p_{\text{SP},k} (w|x; t) \, dt, \quad \bar{\sigma}_{2,k} (y, x, w) := \int_0^1 \frac{\partial^2 p_{\text{SP},k} (y|w; t)}{\partial w^2} p_{\text{SP},k} (w|x; t) \, dt \quad (21) \]

see Proof of Theorem 4 for more details. The above expressions of the deviations in terms of densities, \(\gamma_{\text{SP},k}^{(n)} (y|x) \), involves integrating over the deviation \(g_n (x) \) appearing in the drift and diffusion term. This is due to the fact that any given diffusion transition density implicitly integrates over the underlying drift and diffusion terms as noted earlier. Next, using arguments similar to those of Gourieroux and Tenreiro (2001, Proof of Theorem 3), we obtain the following theorem:

Theorem 4 For \(k \in \{1, 2\} \): Assume that \((A.1)-(A.5), (B.1)-(B.3), (H.k) \) and \(H_{\text{SP},k}^n \) hold. Then, as \(nh_{\text{NP}}^3 / \log (n)^2 \to \infty \) and \(nh_{\text{NP}}^{2n+1} \to 0 \),

\[nh_{\text{NP}} \{ T_{\text{SP},k} - m_{\text{SP}} \} = v_{\text{SP}} U_{n,1} + nh_{\text{NP}} \int_I \int_I \gamma_{\text{SP},k}^{(n)} (y|x)^2 w (y, x) \, dy \, dx + O_P \left(R_{\text{SP},k}^2 \right) + o_P (1). \quad (22) \]
The above expression of the test statistic under contiguous alternatives corresponds to the ones found in Aït-Sahalia et al (2009, Theorem 3) and Fan (1994, Theorem 3.6), except that the deviation from the null, \(\gamma^{(w)}_{SP,k} \), here takes a more complicated form since it is expressed in terms of the underlying deviations from the hypothesized drift and diffusion function.

To further analyze the power properties of the test statistics, we first consider so-called "global" Pittman alternatives on the form \(g_n(x) = a_n g(x) \) for a sequence \(a_n \to 0 \) and a fixed function \(g(w) \). In this case,

\[
\gamma^{(n)}_{SP,1}(y|x) = \frac{a_n}{2} \int I g'(w) \frac{\pi'(w)}{\pi(w)} \bar{p}_{\mu,1}(y, x, w) dw + a_n \int I g(w) \bar{p}_{\sigma^2,1}(y, x, w) dw,
\]

and

\[
\gamma^{(n)}_{SP,2}(y|x) = a_n \int I g(w) \bar{p}_{\mu,2}(y, x, w) dw + 2a_n \int I \int w g(w) \pi(w) du \frac{1}{\pi(w)} \bar{p}_{\sigma^2,2}(y, x, w) dw.
\]

Plugging these expressions into eq. (22), we easily see that both tests can detect global alternatives for which \(\lim_{n \to \infty} n h_{NP} a_n^2 > 0 \). In particular, they can detect alternatives that vanish with rate \(a_n = O(n^{-2/5}) \) when the bandwidth is chosen to vanish with rate \(h_{NP} = O(n^{-1/5}) \). This shows that our tests are less powerful than CvM and KS type tests which can detect alternatives at parametric rate. The above results are in accordance with the analysis of kernel-based specification tests where the alternatives are directly expressed in terms of the density of interest, c.f. Aït-Sahalia et al (2009) and Fan (1994).

To investigate whether the above mentioned drawback of our test relative to cdf-based tests is peculiar to Pittman alternatives, we consider "local" deviations on the form \(g_n(x) = a_n g((x - x_0)/b_n) \) as originally proposed in Rosenblatt (1975). We here introduce an additional sequence of \(b_n \to 0 \) and some \(x_0 \in I \). For this class of drift and diffusion alternatives, the corresponding deviations in terms of the transition densities satisfy

\[
\gamma^{(n)}_{SP,1}(y|x) = \frac{a_n}{2} \int I \frac{1}{b_n} g' \left(\frac{w - x_0}{b_n} \right) \frac{\pi'(w)}{\pi(w)} \bar{p}_{\mu,1}(y, x, w) dw + a_n \int I g \left(\frac{w - x_0}{b_n} \right) \bar{p}_{\sigma^2,1}(y, x, w) dw
\]

\[
= \frac{a_n}{2} \frac{\pi'(x_0)}{\pi(x_0)} \bar{p}_{\mu,1}(y, x, x_0) \times \int I g' \left(\frac{z}{b_n} \right) dz + a_n b_n \bar{p}_{\sigma^2,1}(y, x, x_0) \times \int I g(z) dz
\]

\[
+ o(a_n) + o(a_n b_n),
\]

and, similarly,

\[
\gamma^{(n)}_{SP,2}(y|x) = a_n b_n \bar{p}_{\mu,2}(y, x, x_0) \times \int I g(z) dz + 2a_n b_n \pi(x_0) \int I \frac{1}{x_0} \bar{p}_{\sigma^2,2}(y, x, w) dw \times \int I g(z) dz
\]

\[
+ o(a_n) + o(a_n b_n).
\]

By plugging the above expressions into eq. (22), we find that our tests are only able to detect local alternatives for which \(\lim_{n \to \infty} nh_{NP} a_n^2 b_n^2 > 0 \). Moreover, alternatives which satisfy \(\int g(z) dz = \int g'(z) dz = 0 \) cannot be detected by \(T_{SP,1} \) no matter how slowly \(a_n \) and \(b_n \) vanish, while \(T_{SP,2} \) cannot detect alternatives satisfying \(\int g(z) dz = 0 \). This shows that our transition-based test statistics also have problems detecting high-frequency/local features in the drift and diffusion function. In particular, the above rates are the same as the one for KS and CvM type tests.

One can easily convince oneself about that the above local power results also are valid when the null is fully parametric instead of semiparametric. As such, our results complement the ones of Aït-Sahalia et al (2009) who conduct a power analysis by considering alternatives formulated directly in terms of the transition density. They find that their density-based test can detect local alternatives on the form \(p_n(y|x) = p(y|x; \theta) + a_n f(x) g((y - y_0)/b_n) \) at rate \(nh_{NP} a_n^2 b_n \).
which is a faster rate than ours. This seeming contradiction between our results and the ones of Aït-Sahalia et al (2009) are due to different formulations of alternatives. While Aït-Sahalia et al (2009) express their alternatives in terms of the transition density, we formulate them directly in terms of the underlying drift and diffusion functions. This has as consequence that in our setting high-frequency departures from the drift and diffusion functions imposed under the null cannot be detected by tests based on L_2-distance measures of transition densities since the deviations are smoothed out when the drift and diffusion functions are plugged into the transition density, c.f. eqs. (18)-(24).

Our findings for local ("high-frequency") alternatives are somewhat analogous to the negative results reported for tests based on cumulative distribution functions (cdf’s) such as the KS and CvM tests: High-frequency departures, as formulated in terms of the density, cannot be detected by such tests since the departures are integrated out in the computation of the cdf’s, see e.g. Escanciano (2009) and Eubank and LaRiccia (1992). However, such tests are on the other hand more powerful at detecting global Pittman alternatives compared to tests based on transition densities such as ours, since the former can detect alternatives at parametric rate.

In conclusion, it appears as if tests based on L_2-distance measures of transition densities are not appropriate when detection of high-frequency alternative are of interest. One way to detect high-frequency features of the drift and diffusion function would be to obtain estimates of these under null and alternative and compare those directly instead of through the corresponding transition densities. In the next section, we demonstrate how this can be done in testing of fully parametric models against semiparametric alternatives. It would be of interest to develop similar tests for the two semiparametric nulls against the nonparametric alternative and analyze these, but this is complicated by the fact that the properties of existing fully nonparametric estimators of the drift and diffusion functions based on low-frequency observations are currently not fully established (see Chen, Hansen and Scheinkman, 2010 and Gobet, Hoffmann and Reiß, 2004 for existing results).

3.2 Parametric Specification Tests

In this section, we develop tests of the fully parametric hypothesis, H_P, against either of the two semiparametric ones, $H_{SP,1}$ or $H_{SP,2}$. We will consider two types of tests: The first is similar in spirit to the tests considered in the previous section and based on an indirect comparison of the null and alternative through the corresponding transition density estimates. The second will directly compare the drift and diffusion estimates obtained under null and alternative. As we shall see, these two classes of tests have radically different asymptotic behaviour.

First, we introduce our transition-based tests: Under the alternative, we have the semiparametric estimate, $\hat{p}_{SP,k}(y|x)$, while under the null, we assume an estimator of the parameters, $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)$, is available. Under the null, the model is fully specified and the estimator $\hat{\theta}$ could arrive from a range of standard parametric estimation methods such as maximum-likelihood (Aït-Sahalia, 2002; Kristensen and Shin, 2008) and method of moments (Bibby, Jacobsen and Sørensen, 2009; Hansen and Scheinkman, 1995). Associated with the fully parametric family of diffusion models under H_P, there exists a family of transition densities; this can be obtained by, for example, plugging the parametric drift and diffusion specification into eq. (2). We denote this family $p_{SP}(y|x; t, \theta) = p_{SP}(y|x; t, \mu(\cdot; \theta), \sigma^2(\cdot; \theta))$, and we will again suppress the dependence on t when evaluated at $t = 1$. The estimated transition density under the null is then given by $\hat{p}_{P}(y|x) := p_{P}(y|x; \hat{\theta})$. As with the semiparametric transition density estimator, $\hat{p}_{P}(y|x)$ can in general not be written on closed form and numerical approximations have to be employed (Aït-Sahalia, 2002; Kristensen and Shin, 2008).

Given $\hat{p}_{P}(y|x)$ and $\hat{p}_{SP,k}(y|x)$, we then propose to test H_P against $H_{SP,k}$ by:

$$T_{P,k} = \int_I \int_I \left[\hat{p}_{P}(y|x) - \hat{p}_{SP,k}(y|x) \right]^2 w(y, x) dy dx, \quad k = 1, 2.$$
To analyze the asymptotic properties of these two tests, we impose the following assumptions on the parametric model and its estimators:

A.6 The estimator \(\hat{\theta} \) satisfies \(\hat{\theta} = \theta^{**} + \sum_{i=1}^{n} \psi_p (X_i | X_{i-1}) / n + o_p (1/\sqrt{n}) \) with \(E[\psi_p (X_1 | X_0)] = 0 \) and \(E[|\psi_p (X_1 | X_0)|^{2+\delta}] < \infty \) for some \(\delta > 0 \).

A.7 The transition density under \(H_P \), \(p_p (y|x; \theta) \), and its first two derivatives w.r.t. \(\theta \) exist, and they are all continuous w.r.t. \((y, x)\) for all \(\theta \).

As with the estimators under the semiparametric nulls, (A.6) allows for misspecification and will only assume that \(\theta^{**} \) is equal to the true value when working under \(H_P \). We will in general suppress dependence on \(\theta \) when evaluated at \(\theta = \theta^{**} \). Sufficient conditions for the above assumption to hold for the MLE can be found in Aït-Sahalia (2002) and for GMM-type estimators in Bibby et al (2009). As we shall see, to derive the asymptotic distribution of \(T_{P,k} \) under the null, it is critical that the estimators of the parametric components are \(\sqrt{n} \)-asymptotically normally distributed. This is in contrast to the semiparametric tests, \(T_{SP,k} \), where we only need that they converge at a sufficiently fast rate.

Theorem 5 For \(k \in \{1,2\} \): Assume that (A.1)-(A.7), (B.1)-(B.3), and (H.1-k) hold. Then under \(H_P \):

\[
T_{P,k} = \frac{1}{n} \int \int Z_k^2 (y, x) w(y, x) dy dx,
\]

for \(k = 1, 2 \), where \(Z_k(y, x) \) is a Gaussian process with covariance kernel

\[
\Sigma ((x, y), (x', y')) = \Sigma_0 ((x, y), (x', y')) + \sum_{i=1}^{\infty} \Sigma_i ((x, y), (x', y'))
\]

\[
\Sigma_i ((x, y), (x', y')) = E \left[\left\{ \frac{\partial p_p (y' | x; \theta)}{\partial \theta'} \psi_{P,0} - D_{k,0} (y|x) \right\} \left\{ \frac{\partial p_p (y' | x'; \theta)}{\partial \theta'} \psi_{P,i} - D_{k,i} (y'|x') \right\} \right],
\]

and \(\psi_{P,i} := \psi_p (X_i | X_{i-1}) \).

The above test statistic has the interesting property that it converges with parametric rate even though it involves nonparametric kernel estimators. This is due to the fact that the transition density under the semiparametric alternative, \(\hat{p}_{SP,k} (y|x) \), converges with parametric rate. Moreover, the limiting distributions depend on the asymptotics of the underlying parametric estimators. Both these features are in contrast to the ones of the semiparametric transition-based tests. Instead, the asymptotic behaviour of \(T_{P,k} \), \(k = 1, 2 \), is similar to those of omnibus tests such as the KS and CvM test; see, for example, Bhardwaj et al (2008, Theorem 3) and Escanciano (2009).

These omnibus-type features of the tests in particular means that they are able to detect "global" alternatives with parametric rate; on the other hand, due to the integration involved when computing the transition densities, \(T_{P,k} \) cannot detect local (or high-frequency) departures. To see this, consider the following two contiguous alternatives:

\[
H_{P,1} : \mu_n (x) = \mu (x; \theta_2^*) + g_n (x), \quad \sigma_n^2 (x) = \sigma^2 (x; \theta_1) \tag{23}
\]

and

\[
H_{P,2} : \mu_n (x) = \mu (x; \theta_2), \quad \sigma_n^2 (x) = \sigma^2 (x; \theta_1^*) + g_n (x). \tag{24}
\]

Here, \(H_{P,k} \) will be used to examine the power properties of \(T_{P,k} \). Note that under \(H_{P,1} \) the diffusion function is correctly specified and as such it is a constant sequence; this is to ensure that the maintained assumption, \(H_{SP,1} \) is correct. Similarly with \(H_{P,2} \). As before, we let
and \(g\) vanishing at parametric rate, \(Z\) is similar to the one for use the ones given in eqs. (7)-(8) instead of eqs. (13)-(14). This is akin to the semiparametric tests, and the discussion of these also applies here. In conclusion, the transition-based tests may not be suitable when the interest lies in detecting local, "high-frequency" departures in the drift and diffusion function from the null.

The problem with the transition-based tests lies in the fact that they integrate out the deviation from the nonparametric estimators is not required; thus, we may use the expressions in eq. (25) can then in turn be derived to state results under contiguous alternatives:

Theorem 6 For \(k \in \{1, 2\}\): Assume that (A.1)-(A.6) and (B.1)-(B.3), and (H.k) hold. Then under \(H_{P,k}\),

\[
T_{P,k} = \int \int Z_{n,k}^2 (y, x) w (y, x) dy dx + n \int \int \gamma_{P,k}^{(n)} (y | x)^2 w (y, x) dy dx \\
+ 2v \sqrt{n} \int \int Z_{n,k} (y, x) \gamma_{P,k}^{(n)} (y | x) w (y, x) dy dx + O_P \left(nR_P^2 \right) + O \left(R_P / \sqrt{n} \right),
\]

where \(Z_{n,k} \rightarrow_d Z_k\) on the support of \(w\).

From the expression in Theorem 6, it is easily seen that \(T_{P,k}\) can detect global alternatives on the form \(g_n (x) = a_n g(x)\) for which \(\lim_{n \rightarrow \infty} na_n^2 > 0\). Thus, it can detect global alternatives vanishing at parametric rate, \(a_n = O \left(n^{-1/2} \right)\). On the other hand, local alternatives on the form \(g_n (x) = a_n g \left((x - x_0) / b_n \right)\) are not as easily detected. For this class of alternatives, we obtain

\[
\gamma_{P,1}^{(n)} (y | x) = a_n \int \frac{g (x - x_0)}{b_n} \tilde{p}_\mu (y, x, w) dw = a_n b_n \tilde{p}_\mu (y, x, x_0) \times \int g (z) dz,
\]

and similarly for \(\gamma_{P,2}^{(n)} (y | x)\). Thus, deviations can only be detected if \(\int g (z) dz \neq 0\) and \(\lim_{n \rightarrow \infty} b_n^2 a_n^2 > 0\). This is akin to the semiparametric tests, and the discussion of these also applies here. In conclusion, the transition-based tests may not be suitable when the interest lies in detecting local, "high-frequency" departures in the drift and diffusion function from the null.

The problem with the transition-based tests lies in the fact that they integrate out the deviations appearing in the drift and/or diffusion function. We therefore introduce two alternative test statistics that directly compare the fully parametric and semiparametric estimators of the drift and diffusion function. Define

\[
\tilde{T}_{P,1} = \int \left[\mu (x; \tilde{\theta}_1) - \tilde{\mu}_{SP,1} (x) \right]^2 \tilde{w} (x) dx, \quad \tilde{T}_{P,2} = \int \left[\sigma^2 (x; \tilde{\theta}_2) - \tilde{\sigma}_{SP,2}^2 (x) \right]^2 \tilde{w} (x) dx,
\]

for some weighting function \(\tilde{w} : I \rightarrow \mathbb{R}_+\). We will assume that \(\tilde{w}\) has compact support which in particular implies that trimming of the nonparametric estimators is not required; thus, we may use the ones given in eqs. (7)-(8) instead of eqs. (13)-(14).

Here, \(\tilde{T}_{P,k}\) tests \(H_P\) against \(H_{SP,k}\), \(k = 1, 2\). The intuition behind these two alternative test statistics is similar to the one for \(T_{P,1}\) and \(T_{P,2}\), but instead of measuring deviations from the null in terms of the transition densities we now directly measure discrepancies appearing in the drift or diffusion functions. To get a better understanding of what \(\tilde{T}_{P,k}\) is actually testing, it is worth noting that under the null \(\tilde{T}_{P,1} \approx I_0 (\bar{m}_{10}) + I_1 (\bar{m}_{11})\) and \(\tilde{T}_{P,2} \approx I_0 (\bar{m}_2)\), where

\[
I_k (m) = \int \left[\hat{\pi}^{(k)} (x) - \pi^{(k)} (x) \right]^2 m (x) dx,
\]

for some weighting function \(\hat{\pi}^{(k)} : I \rightarrow \mathbb{R}_+\). We will assume that \(\hat{\pi}\) has compact support which in particular implies that trimming of the nonparametric estimators is not required; thus, we may use the ones given in eqs. (7)-(8) instead of eqs. (13)-(14).
for $k = 0, 1$, and \tilde{m}_{10}, \tilde{m}_{11} and \tilde{m}_2 are appropriately chosen weighting functions (see the proof of Theorem 7 below for details). This highlights that $\tilde{T}_{\text{P,1}}$ and $\tilde{T}_{\text{P,2}}$ to a large extent are testing the correct specification of the marginal density as implied by the parametric specification under H_{P} against its nonparametric alternative. As such the tests are similar to the ones proposed in Aït-Sahalia (1996b) and Huang (1997).

This could also seem to indicate that one could instead use $I_k (m)$, $k = 0, 1$, to test H_{P} against $H_{\text{SP,1}}$ and $H_{\text{SP,2}}$. However, observe that $\tilde{T}_{\text{P,1}}$ and $\tilde{T}_{\text{P,2}}$ involve nontrivial transformations of the marginal density and therefore test different directions of departure from the null with special emphasis on the correct specification of the drift and diffusion respectively. In particular, when one specifies deviations from the null in terms of the drift and diffusion terms, then $I_0 (m)$ and $I_1 (m)$ will distort some of the local features in the drift and diffusion term; see the discussion following Theorem 8 below for more details.

We also note that $\tilde{T}_{\text{P,2}}$ shares some similarities with the specification tests proposed in Corradi and White (1999) and Li (2007). These two studies are only concerned with testing the correct specification of the diffusion term, and propose to test a given specification of σ^2 using $\tilde{T}_{\text{P,2}}$ as given in Eq. (26) except that they employ the nonparametric estimator of $\sigma^2 (\cdot)$ proposed in Florens-Zmirou (1989); see also Bandi and Phillips (2003). The advantage of the estimator of Florens-Zmirou (1989) is that it does not require as input a preliminary estimator of the drift function (as ours do). On the other hand, the estimator of Florens-Zmirou (1989) requires high-frequency observations and is only consistent as time distance between observations shrinks to zero, $\Delta \to 0$, sufficiently fast as $n \to \infty$ (c.f. Nicolau, 2003). So for low frequency data, the tests of Corradi and White (1999) and Li (2007) will be biased, and will not have a well-defined asymptotic distribution under the null.

The theorem is shown under the following regularity condition on the weighting function:

B.4 The weighting function $\tilde{w} : I \to \mathbb{R}_+$ is continuous and has compact support.

The discussion that followed Assumption B.3 also applies here. We are now able to derive the following result concerning the asymptotic distributions of the tests under the null:

Theorem 7 Assume (A.1)-(A.5), (B.1) and (B.4) hold. Then under H_{P}:

(i) As $nh^{-m+5} \to 0$, $nh^{4m+5/2} \to 0$ and $nh^{1/2} / \log (n)^2 \to \infty$,

$$nh^{5/2} \frac{\tilde{T}_{\text{P,1}} - m_{\text{P,1}}}{v_{\text{P,1}}} \overset{d}{\to} N (0, 1),$$

where

$$m_{\text{P,1}} = \frac{1}{4nh^3} \int_{\mathbb{R}} K' (z)^2 dz \times \int_{I} \frac{\sigma^4 (x) \tilde{w} (x)}{\pi (x)} dx + \frac{1}{4nh} \int_{\mathbb{R}} K^2 (z) dz \times \int_{I} \frac{\sigma^4 (x) \tilde{w}^2 (x) \pi' (x)^2}{\pi^4 (x)} dx,$$

$$v_{\text{P,1}}^2 = \frac{1}{8} \int_{\mathbb{R}} (K' K)^2 (z) dz \times \int \pi^2 (x) \sigma^8 (x) \tilde{w}^2 (x) dx.$$

(ii) As $nh^{-2m+1} \to 0$, $nh^{4m+1/2} \to 0$, and $nh^{3/2} / \log (n)^2 \to \infty$,

$$nh^{1/2} \frac{\tilde{T}_{\text{P,2}} - m_{\text{P,2}}}{v_{\text{P,2}}} \overset{d}{\to} N (0, 1),$$

where

$$m_{\text{P,2}} = \frac{4}{nh} \int_{\mathbb{R}} K^2 (z) dz \times \int_{I} \frac{\sigma^4 (x) \tilde{w} (x)}{\pi (x)} dx,$$

$$v_{\text{P,2}}^2 = 32 \int_{\mathbb{R}} (K K)^2 (z) dz \times \int \frac{\pi^2 (x) \tilde{w}^2 (x)}{\sigma^2 (x)} dx.$$
Consistent estimates of $\hat{m}_{P,k}$ and $\hat{\sigma}^2_{P,k}$ can be obtained by substituting the unknown quantities entering these, that is, $\sigma^2(x)$ and $\pi(x)$, for their estimates. As part of the proof of Theorem 7, we derive asymptotic expansions of the two test statistics similar to those stated for the semiparametric test statistics in Theorem 3. These expansions include additional higher-order terms which vanish under the restrictions imposed on the bandwidth in Theorem 7.

In contrast to the transition-based tests, $T_{P,1}$ and $T_{P,2}$, the above alternative tests converge with nonparametric rates and have standard normal distributions. This owes to the fact that in $\bar{T}_{P,1}$ and $\bar{T}_{P,2}$, the semi-nonparametric estimators, $\hat{\mu}_{SP,1}(x)$ and $\hat{\sigma}^2_{SP,2}(x)$, are not integrated over, and as such the asymptotic properties are similar to other kernel-based test statistics, c.f. Theorems 1 and 3.

One could consider a number of modified versions of the above test statistics by following the ideas of Kristensen (2007) and replace the parametric estimators of the drift (in $\bar{T}_{P,1}$) or diffusion (in $\bar{T}_{P,2}$) with kernel smoothed versions. As showed in that study, this removes some of the higher-order terms in the asymptotic expansions of the resulting test statistics such that weaker restrictions on allowable bandwidth sequences are needed. However, as demonstrated in Fan (1994), these modifications alter the power properties of the tests.

We now analyze the power properties of the tests to add further insight to their (asymptotic) performance. We do this by revisiting the sequence of alternatives specified in eqs. (23)-(24).

Theorem 8 Assume (A.1)-(A.5), (B.1) and (B.4) hold. Then:

(i) Under $H_{P,1}^*$, as $nh^3 \to \infty$, and $nh^{3/2+2m} \to 0$:

$$nh^{5/2} \{ \bar{T}_{P,1} - \bar{m}_{P,1} \} = \bar{v}_{P,1} U_{n,1} + nh^{5/2} \int I g_n^2(x) \bar{\omega}(x) \, dx + o_P(1),$$

where $U_{n,1} \sim d N(0,1)$.

(ii) Under $H_{P,2}^*$, as $nh \to \infty$, and $nh^{1/2+2m} \to 0$,

$$nh^{1/2} \{ \bar{T}_{P,2} - \bar{m}_{P,2} \} = \bar{v}_{P,2} U_{n,2} + nh^{1/2} \int I g_n^2(x) \bar{\omega}(x) \, dx + o_P(1),$$

where $U_{n,2} \sim d N(0,1)$.

The above expressions reveal that $\bar{T}_{P,1}$ and $\bar{T}_{P,2}$ can only detect global alternatives on the form $g_n(x) = a_n g((x-x_0)/b_n)$ for which $\lim_{n \to \infty} nh^{5/2} \sigma_n^2 > 0$ and $\lim_{n \to \infty} nh^{1/2} a_n^2 b_n > 0$ respectively. Thus, they are less powerful than $T_{P,k}$, $k = 1, 2$, in this regard. However, they are better at detecting local deviations from the null: For alternatives on the form $g_n(x) = a_n g((x-x_0)/b_n)$, we obtain

$$\int I g_n^2(x) \bar{\omega}(x) \, dydx = a_n^2 \int I g^2 \left(\frac{x-x_0}{b_n} \right) \bar{\omega}(x) \, dx = a_n^2 b_n \bar{\omega}(x_0) \int I g^2(z) \, dz.$$

Thus, the tests can detect alternatives for which $\int I g(z) \, dz = 0$, and the rates at which they can detect alternatives are $\lim_{n \to \infty} nh^{5/2} \sigma_n^2 b_n > 0$ and $\lim_{n \to \infty} nh^{1/2} a_n^2 b_n > 0$ respectively. For suitable choices of h, high-frequency alternatives can therefore be detected by $\bar{T}_{P,1}$ and $\bar{T}_{P,2}$ at a better rate compared to $T_{P,1}$ and $T_{P,2}$; see Rosenblatt (1975) and Ghosh and Huang (1991) for related results.

The results of Theorems 6 and 8 are comparable to the ones found in the literature on testing for correct specifications of distributions using either nonparametric kernel density estimators or cumulative density function estimators (see e.g. Eubank and LaRiccia, 1992). In conclusion, depending on the type of alternatives of interest, one should either employ $T_{P,k}$ or $\bar{T}_{P,k}$, $k = 1, 2$.

Finally, we compare the above tests with the one proposed in Aït-Sahalia (1996b) which is on the form \(I_0 (m) \) as given in eq. (27). This test was originally proposed to test \(H_P \) against \(H_{NP} \), but as noted above it seems more suitable for testing the parametric hypothesis against either \(H_{SP,1} \) or \(H_{SP,2} \). Consider the contiguous alternative \(H_{SP,1}^0 \): Using eq. (3), we obtain the following marginal density implied by the null,
\[
\pi_P (x) = \frac{M_x \cdot}{\sigma_P^2 (x)} \exp \left[2 \int_{x^*}^x \frac{\mu_P (y)}{\sigma_P^2 (y)} dy \right],
\]
while the sequence of alternative densities are given by
\[
\pi_n (x) = \frac{M_x \cdot}{\sigma_P^2 (x)} \exp \left[2 \int_{x^*}^x \frac{\mu_P (y) + g_n (x)}{\sigma_P^2 (y)} dy \right] = \pi_P (x) \exp \left[2 \int_{x^*}^x \frac{g_n (x)}{\sigma_P^2 (y)} dy \right].
\]
Thus, by using the same arguments as in the proof of Theorem 8, we obtain under \(H_{SP,1}^0 \) that
\[
\varphi_{1/2} \{ I_0 (m) - c_0 \} = v_0 U_n + \varphi_{1/2} \int \left\{ \exp \left[2 \int_{x^*}^x \frac{g_n (x)}{\sigma_P^2 (y)} dy \right] - 1 \right\} \pi_P (x) m (x) dx + o_P (1),
\]
for suitably defined parameters \(c_0 \) and \(v_0 \), and where \(U_n \rightarrow d \) \(N (0, 1) \). This shows that \(I_0 (m) \) is not tailored to detect the deviation, \(g_n (x) \). In particular, \(g_n (x) \) is integrated over twice which has as consequence that \(I_0 (m) \) will suffer from similar issues as the transition-based tests. In contrast, \(T_{P,1} \) is designed to directly capture any deviations between \(\mu_P (x) \) and \(\mu (y) \), c.f. Theorem 8(1). A similar analysis can be carried out under \(H_{SP,2}^0 \).

4 Markov Bootstrap Tests

The asymptotic distributions of the proposed test statistics derived in the previous section ignore several higher-order terms that will affect the finite-sample distributions: First, all asymptotic distributions, except the ones of \(T_{P,1} \) and \(T_{P,2} \), do not involve the estimation error due to unknown parametric components and additional covariance terms due to dependence in data. Second, they all are based on first-order linearizations of the test statistics and thereby ignore second-order terms. Third, various bias terms due to the kernel smoothing are not present. Fourth, in the implementation, we need to estimate unknown quantities entering the asymptotic distributions, which adds additional estimation errors to the tests.

In finite samples, the distributions will clearly depend on these additional components, and as such one could fear that the asymptotic distribution stated in the theorems may deliver a poor finite sample approximations. We therefore propose Markov bootstrap versions of the tests which are expected to perform better than the ones relying on approximations based on the asymptotic distribution. The simulation studies in Aït-Sahalia et al (2009) and Li and Tszask (2006) of Bootstrap versions of their nonparametric tests support this conjecture.

In the Markov bootstrap versions of the tests, we draw a new sample from the transition density under the relevant null, and use this sample to approximate the relevant distributions. The proposed bootstrap is similar to the one proposed by Fan (1995) in a cross-sectional setting and Li and Tszask (2006) in a time series setting. We also note that our proposal shares some similarities with the Markov bootstrap procedures examined in Horowitz (2003) and Andrews (2005) but in different settings, while Bhardwaj et al (2008) and Corradi and Swanson (2005) propose to use a block bootstrap in conjunction with their specification tests for diffusion models.

Let in the following \(T_n \) denote any one of the test statistics developed in the previous section, and \(\hat{p}_0 (y|x) \) and \(\hat{\pi}_0 \) denote the transition density and stationary density estimated under the relevant null (\(H_{SP,1} \), \(H_{SP,2} \) or \(H_P \)). The proposed bootstrap then proceeds as follows:

Step 1 Draw \(X_0^* \sim \hat{\pi}_0 \), and recursively \(X_i^* \sim \hat{p}_0 (\cdot | X_{i-1}^*) \), \(i = 1, \ldots, n \).
Step 2 Replace the data \(\{X_i\}_{i=1}^n \) with the bootstrap sample \(\{X_i^*\}_{i=1}^n \) in the computation of estimators and test statistics; we denote the resulting test statistic \(T_n^* \).

Step 3 Repeat Step 1-2 \(B \geq 1 \) times, each new sample being independent of the previous ones, yielding \(T_{n,1}^*, \ldots, T_{n,B}^* \). Use the empirical distribution of these to estimate the distribution of \(T_n \).

The initialization in Step 1 could be exchanged for \(X_0^* = X_0 \) since we have a geometrically ergodic Markov chain. Since \(\hat{p}_0(y|x) \) in general is not available on closed form, we propose to draw from it by utilizing an Euler discretization scheme (see e.g. Corradi and Swanson, 2005; Gourieroux, Monfort and Renault, 1993). This will involve an additional error, but this can be controlled for by choosing a sufficiently small time step.

By relying on arguments similar to those in Bhardwaj et al (2008), Corradi and Swanson (2005) and Li and Tszask (2006), one should be able to show that the proposed Bootstrap versions of the parametric tests are consistent under suitable conditions. It should be noted thought that in order to show consistency of the Bootstrap versions of the semiparametric tests, we first need to ensure that the bootstrap sample as generated by \(\hat{p}_{SP,k}(y|x) \) is stationary and \(\beta \)-mixing. To this end, we need to further modify the semiparametric estimator of the drift functions, to ensure mean reversion.

One could potentially also use the Markov bootstrap to construct confidence bands for the semiparametric estimators.

5 A Simulation Study

We here examine how the nonparametric estimators perform in finite samples. We choose as data generating models the CKLS model of Cha, Karolyi, Longstaff and Sanders (1992),

\[
 dX_t = (\beta_1 + \beta_2 X_t) \, dt + \sqrt{\alpha_1 X_t^{\alpha_2}} \, dW_t, \quad \text{(CKLS)}
\]

and a restricted version of the model proposed in Aït-Sahalia (1996b),

\[
 dX_t = \left\{ \beta_1 + \beta_2 X_t + \beta_3 X_t^2 + \beta_4 X_t^{-1} \right\} dt + \sqrt{\alpha_1 X_t^{\alpha_2}} \, dW_t. \quad \text{(AS)}
\]

The data-generating parameters are chosen to match the estimates obtained when fitting the model by MLE to the Eurodollar interest rate data considered in Aït-Sahalia (1996a,b). The parameter estimates satisfy the \(\beta \)-mixing conditions found in Aït-Sahalia (1996b) such that (A.1) holds. We measure time in years and set the time distance to \(\Delta = 1/252 \), thereby effectively ignoring holidays and weekends, and consider two sample sizes, \(n = 2500, 5000 \).

For each sample, we estimate the two following semiparametric models when either CKLS or AS is the data generating process respectively: CKLS 1: \(\mu(x) \) unknown and \(\sigma^2(x) = \alpha_1 x^{\alpha_2} \); CKLS 2: \(\mu(x) = \beta_1 + \beta_2 x \) and \(\sigma^2(x) \) unknown; AS 1: \(\mu(x) \) unknown and \(\sigma^2(x) = \alpha_1 x^{\alpha_2} \); and AS 2: \(\mu(x) = \beta_1 + \beta_2 x + \beta_3 x^2 + \beta_4 x^{-1} \) and \(\sigma^2(x) \) unknown. The parameters of the semiparametric models are estimated using the method proposed in Kristensen (2010). Once the parametric component has been estimated, we calculate \(\hat{\mu}(x) \) and \(\hat{\sigma}^2(x) \) for models in Class 1 and 2 respectively. We also estimate the fully parametric models (CKLS)-(AS) by MLE which allows us to compare the semiparametric and parametric estimates. In order to evaluate the likelihood in both the parametric and semiparametric case, we employ the simulated likelihood method of Kristensen and Shin (2008). This is implemented by simulating \(N = 100 \) values for each observation, using the Euler scheme with a step length of \(\delta = \Delta/10 \) (see Kristensen, 2010, for more details).

We first investigate the behaviour of the nonparametric estimators for the CKLS model. We consider two sets of data generating parameter values, (i) \(\alpha = (1.8207, 2.6217) \), \(\beta = \ldots \)
(0.0344, −0.2921) and (ii) \(\alpha = (0.1547, 1.7079) \), \(\beta = (0.0271, −0.4455) \). These are estimates from the Eurodollar data set using (i) the full sample 1973-1995 and (ii) the subsample 1982-1995. The first parameter set generates high volatility and low mean reversion while the second one generates just the opposite behaviour. In Figure 1-2, pointwise means and confidence bands of the fully parametric and nonparametric drift estimates are plotted for the parameters (i) and (ii) respectively. For (i), Figure 1 shows that the nonparametric drift estimator performs well in the range \(x \in [0.03, 0.12] \) while it is rather imprecise in tails. This is probably a consequence of that the process rarely visits outside this interval and that the strong persistence makes the nonparametric density estimator more biased. This is confirmed by the performance reported in Figure 2 where the nonparametric drift estimator becomes more precise in the tails with increased mean reversion. In Figure 3-4, the diffusion estimators are plotted. For both choices of parameter values, the estimator is very imprecise out in the right tail of the support. Moreover, a decrease in the volatility seemingly leads to a further deterioration of the performance. Interestingly, the shape of the mean of the nonparametric diffusion estimator in Figure 4 is very similar to the one reported in Aït-Sahalia (1996a).

Next, we examine the behaviour of the AS model. We do this with the parameters fitted to the full sample. In Figure 5 and 6 respectively, the drift and diffusion estimators are plotted. The parametric drift estimator is not very precise which owes to the fact that the drift parameters in the AS model are difficult to pin down, see also Kristensen (2010, Section 6). The nonparametric drift estimator performs fairly well, and has more or less the same level of precision as the parametric one. The performance of the nonparametric diffusion estimator is not quite so good though.

6 Concluding Remarks

Extensions of our results to multivariate diffusion models would be of interest. However, our identification scheme cannot readily be extended to general multivariate diffusion models, since the link between the invariant density, the drift and the diffusion term utilised here does not necessarily hold in higher dimensions. However, if one is willing to restrict attention to multivariate models which does satisfy this relation, the proposed estimation and testing procedures should still work. For example, one may consider the class of \(d \)-dimensional diffusions with drift \(\mu : \mathbb{R}^d \mapsto \mathbb{R}^d \) and diffusion \(\sigma^2 : \mathbb{R}^d \mapsto \mathbb{R}^{d \times d} \), where the following relationship holds between the drift and diffusion,

\[
\mu_i(x) = \frac{1}{2\pi(x)} \sum_{j=1}^{d} \frac{\partial}{\partial x_j} \left[\sigma^2_{ij}(x) \pi(x) \right].
\]

(28)

This restriction is for example imposed by Chen, Hansen and Scheinkman (2010) in their nonparametric study of multivariate diffusion models. Again, \(\pi(x) \) can be estimated by kernel density methods which together with a parametric specification for \(\sigma^2 \) will lead to the same type of estimators considered here.

As revealed in the power analysis in Section 3.1 and 3.2, a more suitable class of tests for testing a fully nonparametric diffusion alternative against either the semiparametric or fully parametric nulls would be one that obtain fully nonparametric estimators of the drift and diffusion functions and then compare those to the ones obtained under the relevant null. The development and analysis of such tests would be an interesting task.
References

A Proofs

Proof of Theorem 1. To show the first part of the theorem, write

\[
\hat{\mu}(x) - \mu(x) = \frac{1}{2} \sigma^2(x; \theta) \left[\frac{\pi^{(1)}(x)}{\hat{\pi}(x)} - \frac{\pi^{(1)}(x)}{\pi(x)} \right] + \frac{1}{2} \left[\frac{\partial \sigma^2(x; \theta)}{\partial x} - \frac{\partial \sigma^2(x; \theta)}{\partial x} \right] + \frac{\pi^{(1)}(x)}{2\pi(x)} \left[\sigma^2(x; \hat{\theta}) - \sigma^2(x; \theta) \right]
\]

\[
=: A_1(x) + A_2(x) + A_3(x).
\]

We have \(A_i(x) = O_P(1/\sqrt{n})\), \(i = 2, 3\), since, by (A.4),

\[
\frac{\partial \sigma^2(x; \theta)}{\partial x^i} - \frac{\partial \sigma^2(x; \theta_0)}{\partial x^i} = \frac{\partial^{i+1} \sigma^2(x; \theta)}{\partial x^i \partial \theta^i} (\theta - \theta_0) = O_P(1/\sqrt{n}),
\]

for some \(\bar{\theta}_1 \in [\theta_1, \bar{\theta}_1]\), \(i = 0, 1\). We expand \(A_1(x)\) in terms of \(\pi^{(1)}(x), i = 0, 1:\)

\[
\sqrt{nh^3} A_1(x) = \frac{\sigma^2(x; \theta)}{2\pi_0(x)} \sqrt{nh^3} \left[\frac{\pi^{(1)}(x)}{\hat{\pi}(x)} - \frac{\pi^{(1)}(x)}{\pi(x)} \right] - \frac{\pi^{(1)}(x) \sigma^2(x; \theta)}{2\pi_0(x)} \sqrt{nh^3} \left[\hat{\pi}(x) - \pi_0(x) \right]
\]

\[
\quad + \sqrt{nh^3} O \left(\left| \frac{\pi^{(1)}(x)}{\hat{\pi}(x)} - \frac{\pi^{(1)}(x)}{\pi(x)} \right|^2 + \hat{\pi}(x) - \pi_0(x) \right)^2.
\]

Using standard methods for kernel estimators, see Robinson (1983), we obtain, as \(nh^{1+2i} \to \infty\) and \(nh^{1+2(1+m)} \to 0\),

\[
\sqrt{nh^{1+2i}} \left(\hat{\pi}^{(i)}(x) - \pi_0^{(i)}(x) \right) \overset{d}{\to} N(0, V_i(x)), \quad i = 0, 1,
\]

(29)

where \(V_0(x) = \pi(x) \int K^2(z) \, dz\) and \(V_1(x) = \pi(x) \int K^{(1)}(z)^2 \, dz\), while the two remainder terms in \(A_1(x)\) are \(O_P(1)\). The weak convergence result in the first part of the theorem now follows from Slutsky’s Theorem.

To show the second part of the theorem, write

\[
\hat{\sigma}^2(x) - \sigma^2(x) = 2 \int_0^x \mu(y; \theta_2) \pi(y) \, dy \left\{ \frac{1}{\hat{\pi}(x)} - \frac{1}{\pi(x)} \right\}
\]

\[
+ \frac{2}{\hat{\pi}(x)} \frac{1}{n} \sum_{i=1}^n \left\{ \mu(X_i; \theta_2) - \mu(X_i; \theta_1) \right\} \mathbb{I} \{ X_i \leq x \}
\]

\[
+ \frac{2}{\hat{\pi}(x)} \frac{1}{n} \sum_{i=1}^n \left\{ \mu(X_i; \theta_1) \mathbb{I} \{ X_i \leq x \} - \int_0^x \mu(y; \theta_2) \pi(y) \, dy \right\}
\]

\[
=: B_1(x) + B_2(x) + B_3(x),
\]

where \(B_3(x) = O_P(1/\sqrt{n})\) by the CLT for mixing processes, c.f. Doukhan et al (1994), and

\[
B_3(x) = \frac{2}{\hat{\pi}(x)} \left\{ \frac{1}{n} \sum_{i=1}^n \frac{\partial \mu(X_i; \theta_2)}{\partial \theta} \mathbb{I} \{ X_i \leq x \} \right\} (\theta_2 - \theta_1) = O_P \left(n^{-1/2} \right),
\]

for some \(\bar{\theta}_2 \in [\theta_2, \bar{\theta}_2]\). Regarding \(B_1(x)\), first note that

\[
\frac{1}{\hat{\pi}(x)} - \frac{1}{\pi(x)} = -\frac{1}{\pi(x)} \left[\hat{\pi}(x) - \pi(x) \right] + \frac{[\hat{\pi}(x) - \pi(x)]^2}{4 (\lambda \pi(x) + (1 - \lambda) \pi(x))^3},
\]

for some \(\lambda \in [0, 1]\). Using standard results for kernel estimators, see Robinson (1983), the second term on the left hand side is \(O_P(h^{2m}) + O_P(1/\sqrt{nh})\). The weak convergence result now follows from eq. (29) combined with Slutsky’s Theorem.
Proof of Lemma 2. Define $\bar{\mu}_{SP,k}(x; \theta_k) = \tau_a(\pi(x))\mu_{SP,k}(x; \theta_k)$ and $\bar{\sigma}^2_{SP,k}(x; \theta_k) = \tau_a(\pi(x))\sigma^2_{SP,k}(x; \theta_k) + \sigma^2(1 - \tau_a(\pi(x)))$, and let $\bar{p}_{SP,k}(y|x; \theta_k)$ denote the transition density corresponding to these trimmed versions. In the following we suppress their dependence on the parameter when evaluated at the true value. We employ Kristensen (2010, Lemma 5) in conjunction with the uniform convergence results in Lemma 9 to obtain that

$$\bar{p}_{SP,k}(y|x) = \bar{p}_{SP,k}(y|x) + \nabla \bar{p}(y|x) \left[\bar{\mu}_{SP,k} - \bar{\mu}_{SP,k}; \bar{\sigma}^2_{SP,k} - \bar{\sigma}^2_{SP,k} \right] + o_P(1/\sqrt{n}),$$

under the conditions imposed on the bandwidth in (H,k), $k = 1, 2$, where $\nabla \bar{p}(y|x) [d\mu, d\sigma^2]$ is the pathwise derivative of $\bar{p}_{SP,k}(y|x)$ w.r.t. the drift and diffusion function in the direction $(d\mu, d\sigma^2)$. It is the solution (at $t = 1$) to the following PDE,

$$\frac{\partial \nabla \bar{p}(y|x; t)}{\partial t} = A[\mu_{SP,k}, \sigma^2_{SP,k}] \nabla \bar{p}(y|x; t) + A[d\mu, d\sigma^2] \bar{p}_{SP,k}(y|x; t),$$

(30)

with $\nabla \bar{p}(y|x; 0) [d\mu, d\sigma^2] = 0$. The solution at $t = 1$ can be represented as:

$$\nabla \bar{p}(y|x) [d\mu, d\sigma^2] = \int_0^1 \int_I d\mu(w) \frac{\partial \bar{p}_{SP,k}(y|w; t)}{\partial w} \bar{p}_{SP,k}(w|x; t) dw dt$$

(31)

$$+ \int_0^1 \int_I d\sigma^2(w) \frac{\partial^2 \bar{p}_{SP,k}(y|w; t)}{\partial w^2} \bar{p}_{SP,k}(w|x; t) dw dt.$$

Using Kristensen (2010, Lemma 5), it follows that $\partial^i \bar{p}_{SP,k}(y|x) / \partial x^i = \partial^i \bar{p}_{SP,k}(y|x) / \partial x^i + O(a^q)$, $i = 0, 1, 2$, where $q > 0$ is given in Assumption (A.3). Thus, as $\sqrt{n}a^q \rightarrow 0$, $\partial^i \bar{p}_{SP,k}(y|x) / \partial x^i = \partial^i \bar{p}_{SP,k}(y|x) / \partial x^i + o(1/\sqrt{n})$, which in turn implies that

$$\nabla \bar{p}(y|x; 0) [d\mu, d\sigma^2] = \nabla \bar{p}(y|x) [d\mu, d\sigma^2] + o(1/\sqrt{n}),$$

where $\nabla \bar{p}(y|x) [d\mu, d\sigma^2]$ is the pathwise derivative of the untrimmed transition density, $p_{SP,k}(y|x)$. This pathwise derivative has the same representation as $\nabla \bar{p}(y|x) [d\mu, d\sigma^2]$ given in eq. (31), but with $p_{SP,k}(y|x; t)$ replacing $\bar{p}_{SP,k}(y|x; t)$ on the right hand side.

We now analyze the two integrals appearing in the representation of $\nabla \bar{p}(y|x) [d\mu, d\sigma^2]$ with $(d\mu, d\sigma^2) = (\bar{\mu}_{SP,k} - \bar{\mu}_{SP,k}; \bar{\sigma}^2_{SP,k} - \bar{\sigma}^2_{SP,k})$ for the two classes of semiparametric estimators. First consider the estimators under $H_{SP,1}$: Proceeding as in Kristensen (2010, Proof of Theorem 2), under the conditions imposed on bandwidth and the trimming sequence,

$$\int_0^1 \int_I [\bar{\mu}_{SP,1}(w) - \bar{\mu}_{SP,1}(w)] \frac{\partial p_{SP,1}(y|w; t)}{\partial w} p_{SP,1}(w|x; t) dt = \frac{1}{n} \sum_{i=1}^n D_{1,1}(X_i, y, x) + o_P(1/\sqrt{n}),$$

while, by the mean-value theorem and again using that the trimming is negligible as $\sqrt{n}a^q \rightarrow 0$,

$$\int_0^1 \int_I [\bar{\sigma}^2_{SP,1}(w) - \bar{\sigma}^2_{SP,1}(w)] \frac{\partial^2 p_{SP,1}(y|w; t)}{\partial w^2} p_{SP,1}(w|x; t) dw dt$$

$$= \frac{1}{n} \sum_{i=1}^n D_{1,2}(X_i, X_{i-1}, y, x) + o_P(1/\sqrt{n}),$$

where

$$D_{1,1}(z_1, y, x) = -\frac{1}{2\pi_0(z_1)} \int_0^1 \sigma_{SP,1}^2(z_1) \frac{\partial p_{SP,1}(y|z_1; t)}{\partial z_1} p_{SP,1}(z_1|x; t) dt,$$

$$D_{1,2}(z_1, z_2, y, x) = \psi_{SP,1}(z_1|z_2) \int_0^1 \sigma_{SP,1}^2(w; \theta) \frac{\partial^2 p_{SP,1}(y|w; t)}{\partial w^2} p_{SP,1}(w|x; t) dw dt.$$
Next, consider the estimators under $H_{SP,2}$: Again, proceeding as Kristensen (2010, Proof of Theorem 2), we obtain under the conditions imposed on the bandwidth and the trimming sequence that

$$
\int_0^1 \int_{I} \left[\sigma^2_{SP,2}(w) - \sigma^2_{SP,2}(w) \right] \frac{\partial^2 p_{SP,2}(y|w; t)}{\partial w^2} p_{SP,2}(w|t) \, dw \, dt = \frac{1}{n} \sum_{i=1}^{n} D_{2,1}(X_i, y, x) + o_P \left(\frac{1}{\sqrt{n}} \right),
$$

while, by the mean-value theorem,

$$
\int_0^1 \int_{I} \left[\hat{\mu}_{SP,2}(w) - \mu_{SP,2}(w) \right] \frac{\partial p_{SP,2}(y|w; t)}{\partial w} p_{SP,2}(w|x; t) \, dw \, dt = \frac{1}{n} \sum_{i=1}^{n} D_{2,2}(X_i, X_{i-1}, y, x) + o_P \left(\frac{1}{\sqrt{n}} \right),
$$

where

$$
D_{2,1}(z_1, y, x) = 2 \mu_{SP,2}(z_1) \int_0^1 \int_{I} \frac{1}{\pi(w)} \frac{\partial^2 p_{SP,2}(y|w; t)}{\partial w^2} p_{SP,2}(w|x; t) \, dw \, dt - 2 \frac{\sigma^2_{SP,2}(z_1)}{\pi^2(z_1)} \int_0^1 \frac{\partial^2 p_{SP,2}(y|z_1; t)}{\partial z_1^2} p_{SP,2}(z_1|x; t) \, dt,
$$

$$
D_{2,2}(z_1, z_2, y) = \psi_{SP,2}(z_1, z_2) \int_0^1 \int_{I} \frac{\partial \mu_{SP,2}(w; \theta)}{\partial \theta} \frac{\partial p_{SP,2}(y|w; t)}{\partial w} p_{SP,2}(w|x; t) \, dw \, dt.
$$

The claimed result now holds with

$$D_{k,i}(y|x) = D_{k,1}(X_i, y, x) + D_{k,2}(X_i, X_{i-1}, y, x), \quad k = 1, 2. \quad (32)$$

Proof of Theorem 3. First note that we can replace $\hat{p}_{SP,k}(y|x)$, $k = 1, 2$, by $p_{SP,k}(y|x) = p(y|x)$ in the following since it converges with \sqrt{n}-rate, c.f. Lemma 2, and we now proceed to analyze

$$T_{SP} := \int_{I} \int_{I} [p(y|x) - \hat{p}_{NP}(y|x)]^2 w(y, x) \, dy \, dx.$$

By a Taylor expansion in terms of f and π,

$$T_{SP} = \int_{I} \int_{I} \left[\frac{f(y|x)}{\pi_0(x)} - \frac{f_{NP}(y, x)}{\pi_{NP}(x)} \right]^2 w(y, x) \, dy \, dx = I + \tilde{I} + R,$$

where

$$I := \int_{I} \int_{I} [f(y, x) - f_{NP}(y, x)]^2 m(y, x) \, dy \, dx, \quad \tilde{I} := \int_{I} \int \left[\pi(x) - \pi_{NP}(x) \right]^2 \tilde{m}(x) \, dx,$$

with $m(y, x) := w(y, x)/\pi^2(x)$ and $\tilde{m}(x) := \int_{I} f(y, x) w(y, x) \, dy/\pi^4(x)$, and

$$R = O_P \left(\sup_{x,y \in I} |f(y, x) - f_{NP}(y, x)|^4 \right) + O_P \left(\sup_{x \in I} |\pi(x) - \pi_{NP}(x)|^4 \right).$$

Under the requirement that $\lambda^2 = \lim_{n \to \infty} nh_{NP}^{2m+2} < \infty$, it follows from Gourieroux and Tenreiro (2001, Theorem 4.1) that

$$nh_{NP} \{ I - \mu - B \} = v_{SP} U_n + \sqrt{n} h_{NP}^{m+1} \sigma_V N + o_P \left(\sqrt{n} h_{NP}^{m+1} \right) + o_P(1), \quad (33)$$

$$nh_{NP}^{1/2} \{ \tilde{I} - \tilde{\mu} - \tilde{B} \} = \tilde{v}_{SP} \tilde{U}_n + \sqrt{n} h_{NP}^{m+1/2} \sigma_{\tilde{V}} \tilde{N} + o_P \left(\sqrt{n} h_{NP}^{m+1/2} \right) + o_P(1) \quad (34)$$
where

\[\mu = \frac{1}{nh_{NP}^2} \left[\int_R K^2(z) \, dz \right]^2 \times \int_{I \times I} f(y, x) m_1(y, x) \, dy \, dx, \]

\[\bar{\mu} = \frac{1}{nh_{NP}} \int_R K^2(z) \, dz \times \int_I \pi(x) m_2(x) \, dx, \]

\[B = \int_{I \times I} \left[\int_{I \times I} \frac{1}{h_{NP}^2} K \left(\frac{u_1 - y}{h_{NP}} \right) K \left(\frac{u_2 - y}{h_{NP}} \right) f(u_1, u_2) du_1 du_2 - f(y, x) \right] \, dy \, dx, \]

\[\bar{B} = \int_I \int_I \frac{1}{h_{NP}^2} K \left(\frac{u - x}{h_{NP}} \right) \pi(u) du - \pi(x) \, dx, \]

\[v_{SP}^2 = 2 \left[\int_R (K * K)^2(z) \, dz \right] \times \int_{I \times I} f(y, x) m^2(y, x) \, dy \, dx, \]

\[\bar{v}_{SP}^2 = 2 \int_R (K * K)^2(z) \, dz \times \int_I \pi^2(x) \bar{m}^2(x) \, dx, \]

and \((U_n, V_n)\) and \((\bar{U}_n, \bar{V}_n)\) both converge towards a bivariate standard Normal distribution.

Due to the smoothness conditions imposed on \(p(y|x)\) and \(\pi(x)\) and \(K\) being an \(m\)th order kernel,

\[B = \int_{I \times I} \int_R K(z_1) K(z_2) [f(y + z_1 h_{NP}, x + z_2 h_{NP}) - f(y, x)] \, dz_1 dz_2 \, m(y, x) \, dy \, dx, \]

\[B = \int_{I \times I} \sum_{i,j \leq m} h_{NP}^{i+j} \frac{\partial^{i+j} f(y, x)}{\partial x^i \partial y^j} \int_R K(z_1) K(z_2) z_1^i z_2^j dz_1 dz_2 + o \left(h_{NP}^m \right) \, m(y, x) \, dy \, dx \]

\[B = h_{NP}^{2m} \times \int_{I \times I} \left[\frac{\partial^{2m} f(y, x)}{\partial x^m \partial y^m} \right]^2 \, m(y, x) \, dy \, dx \times \left[\int_R K(z) z^m \, dz \right]^4 + o \left(h_{NP}^{2m} \right) \]

and similarly

\[\bar{B} = h_{NP}^{2m} \times \int_{I \times I} \left[\frac{\partial^m \pi(x)}{\partial x^m} \right]^2 \, \bar{m}(x) \, dx \times \left[\int_R K(z) z^m \, dz \right]^2 + o \left(h_{NP}^{2m} \right) \]

Finally, applying Kristensen (2009, Theorem 1) together with standard arguments for the bias components of the kernel density estimators,

\[nh_{NP} R = O_P \left(nh_{NP}^{4m+1} \right) + O_P \left(\frac{\log(n)}{nh_{NP}^3} \right). \]

In total,

\[nh_{NP} \{ T_{SP} - \mu - \bar{\mu} \} = nh_{NP} \{ I - \mu - B \} + nh_{NP} \{ I - \bar{\mu} - \bar{B} \} + nh_{NP} \bar{B} + nh_{NP} R \]

\[= v_{SP} U_n + \sqrt{h_{NP} v_{SP} \bar{U}_n} + \lambda_n \left\{ \sigma_v V_n + \bar{\sigma}_v \bar{V}_n \right\} + nh_{NP}^{2m+1} \left(b + \bar{b} \right) + O_P \left(\frac{\log(n)^2}{nh_{NP}^3} \right). \]
where λ_n^2 is defined in the theorem; this proves the first part of the theorem. The second part is a direct consequence of this representation.

Proof of Theorem 4. Consider the local alternative $H_{SP,k}^S (k = 1, 2)$: Define the deviations from the null hypothesis, $d\mu_n (x) = \mu_n (x) - \mu_{SP,k} (x)$ and $d\sigma_n^2 (w) = \sigma_n^2 (x) - \sigma_{SP,k}^2 (x)$, where $\mu_{SP,k} (x)$ and $\sigma_{SP,k}^2 (x)$ are the drift and diffusion term implied by the null as given in eqs. (11) and (12) respectively. By Kristensen (2010, Lemma 5),

$$\left| p_n (y|x) - p_{SP,k} (y|x) - \gamma_{SP,k}^{(n)} (y|x) \right| \leq CB (x),$$

where $\gamma_{SP,k}^{(n)} (y|x) = \nabla p_n (y|x)[d\mu_n, d\sigma_n]$ is the pathwise derivative r.w.r.t. the drift and diffusion term, c.f. Proof of Lemma 2, and

$$B (x) = \int \left(|d\mu_n (w)|^2 + |d\sigma_n^2 (w)|^2 \right) \tilde{\gamma} (w|x) dw.$$

Next, by the same arguments as in the Proof of Lemma 2,

$$\gamma_{SP,k}^{(n)} (y|x) = \int d\mu_n (w) \bar{p}_{nk} (y, x, w) dw + \int d\sigma_n^2 (w) \bar{p}_{nk^2} (y, x, w) dw,$$

where $\bar{p}_{nk} (y, x, w)$ and $\bar{p}_{nk^2} (y, x, w)$ are defined in eq. (21).

Consider first $H_{SP,1}^S$: In this case, $d\sigma_n^2 (x) = g_n (x)$, while

$$d\mu_n (x) = \frac{1}{2\pi (x)} \frac{\partial}{\partial x} \left[(\sigma_n^2 (x) - \sigma_{SP,1}^2 (x)) \pi (x) \right] = \frac{1}{2\pi (x)} \frac{\partial}{\partial x} \left[g_n (x) \pi (x) \right].$$

Plugging these two expressions into $\gamma_{SP,1}^{(n)} (y|x)$ above we obtain the expression in eq. (19). Next, consider $H_{SP,2}^S$. Here, $d\mu_n (x) = \mu_n (x) - \mu_{SP,2}^2 (x) = g_n (x)$, and

$$d\sigma_n^2 (x) = \frac{2}{\pi_0 (x)} \int_1^x d\mu_n (y) \pi (y) dy = \frac{2}{\pi_0 (x)} \int_1^x g_n (y) \pi (y) dy.$$

Substituting those into $\gamma_{SP,2}^{(n)} (y|x)$, we obtain the expression in eq. (20).

We now proceed as in the Proof of Theorem 3:

$$T_{SP,k} = \int \int \left[f_{SP,k} (y|x) - \hat{f}_{NP} (y|x) \right] w (y, x) dydx = I_1 + I_2 + R,$$

where R is a higher-order remainder term,

$$I_1 := \int \int \left[f_{SP,k} (y|x) - \hat{f}_{NP} (y|x) \right]^2 m_{n,1} (y, x) dydx, \quad I_2 := \int \int \left[\pi (x) - \hat{\pi}_{NP} (x) \right]^2 m_{n,2} (x) dx,$$

with $m_{n,1} (y, x)$ and $m_{n,2} (x)$ given in the Proof of Theorem 3, and $f_{SP,k} (y|x) = p_{SP,k} (y|x) \pi (x)$ denoting the joint density under the null. Also let $f_n (y, x) = p_n (y|x) \pi (x)$ denote the sequence of joint densities under the alternative. Substituting the expression of $p_{SP,k} (y|x)$ given in eq. (18) into I_1 and ignoring the higher-order term $R_{SP,k}^2$,

$$I_1 = \int \int \left[f_{SP,k} (y|x) - \hat{f}_{NP} (y|x) \right]^2 m_{n,1} (y, x) dydx$$

$$= \int \int \left[f_n (y|x) - \hat{f}_{NP} (y|x) - \gamma_{SP,k}^{(n)} (y|x) \pi (x) \right]^2 m_{n,1} (y, x) dydx$$

$$= \int \int \left[f_n (y|x) - \hat{f}_{NP} (y|x) \right]^2 m_{n,1} (y, x) dydx + \int \int \gamma_{SP,k}^{(n)} (y|x)^2 \pi^2 (x) m_{n,1} (y, x) dydx$$

$$+ 2 \int \int \left[\hat{f}_{NP} (y|x) - f_n (y|x) \right] \gamma_{SP,k}^{(n)} (y|x) \pi (x) m_{n,3} (y, x) dydx$$

$$= : I_{11} + I_{12} + I_{13},$$

30
Due to the assumptions imposed on \(g_n(x) \), we note that Assumptions (A.1)-(A.2) remains true for the diffusion model corresponding to \((\mu_n, \sigma_n^2)\). Thus, we can recycle the same arguments used in Proof of Theorem 3 to obtain \(n h_{NP} \{ I_1 - \mu_1 \} = v_{SP} U_1 + o_P(1) \), while, using the same arguments as in Gourieroux and Tenreiro (2001), \(I_{13} = O_P\left(n^{1/2} \right) \). Since we consider alternatives where the marginal density remains correctly specified, the second term, \(I_2 \), still satisfies eq. (34). In total, as \(n h_{NP}^3 \to \infty \) and \(n h_{NP}^{4m+1} \to 0 \),

\[
 n h_{NP} \{ T_{SP, k} - m_{SP} \} = n h_{NP} \{ I_{11} - \mu_1 \} + n h_{NP} I_{12} + n h_{NP} I_{13} \\
+ n h_{NP} \{ I_2 - \mu_2 \} + n h_{NP} R \\
= v_{SP} U_1 + n h_{NP} I_{12} + o_P(1).
\]

\[
\]

Proof of Theorem 5. Under Assumption (A.6), the parametric estimator satisfies

\[
\hat{p}_P(y|x) - p(y|x) = \frac{\partial p(y|x; \theta)}{\partial \theta} (\hat{\theta} - \theta) + O_P\left(||\hat{\theta} - \theta||^2 \right) \\
= \frac{\partial p(y|x; \theta)}{\partial \theta} \frac{1}{n} \sum_{i=1}^{n} \psi_{P,i} + o_P\left(\frac{1}{\sqrt{n}} \right),
\]

where \(p_P(y|x; \theta) = p(y|x) \) under the null, while Lemma 2 supplies us with an expansion of \(\hat{p}_{SP,k}(y|x) \). Substituting these two expansions into \(T_{P,k} \) yields:

\[
T_{P,k} = \int_I \int_I [\hat{p}_P(y|x) - \hat{p}_{SP,k}(y|x)]^2 w(y, x) dy dx \\
= \int_I \int_I [[\hat{p}_P(y|x) - p(y|x)] - \{\hat{p}_{SP,k}(y|x) - p(y|x)\}]^2 w(y, x) dy dx \\
= \frac{1}{n} \int_I \int_I Z_{n,k}^2(x, y) w(y, x) dy dx + o_P\left(\frac{1}{n} \right),
\]

where \(Z_{n,k}(x, y) \) is an empirical process,

\[
Z_{n,k}(x, y) := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \frac{\partial p(y|x; \theta)}{\partial \theta} \psi_{P,i} - D_{k,i}(y|x) \right\} . \tag{35}
\]

Let \(C \subseteq I \times I \) denote the (compact) support of \(w(y, x) \). We then wish to show that \(Z_{n,k}(x, y) \) weakly converges on \(C \) towards the stochastic process \(Z_k(x, y) \) defined in the theorem. By Lemma 2, Assumption (A.5) and the CLT for stationary and mixing sequences (Doukhan et al, 1994), \(Z_{n,k}(x, y) \to^d Z_k(x, y) \) for any given \((x, y) \in C\). Appealing to standard arguments from empirical process theory, see e.g. Doukhan et al (1995), it follows by Lemma 2 and Assumption (A.6) that \(Z_{n,k}(x, y) \) is stochastically equicontinuous. The result now follows by the Continuous Mapping Theorem.

Proof of Theorem 6. The representation of the sequence of transition densities given in eq. (25) follows by the same arguments as in the Proof of Theorem 4. We then obtain

\[
T_{P,k} = \int_I \int_I [\hat{p}_P(y|x) - \hat{p}_{SP,k}(y|x)]^2 w(y, x) dy dx \\
= \int_I \int_I [[\hat{p}_P(y|x) - p_P(y|x)] - \{\hat{p}_{SP,k}(y|x) - p_P(y|x)\}]^2 w(y, x) dy dx \\
= \int_I \int_I [[\hat{p}_P(y|x) - p_P(y|x)] - \{\hat{p}_{SP,k}(y|x) - p_P(y|x)\}]^2 w(y, x) dy dx \\
+ \int_I \int_I \frac{1}{n} \int_I \int_I [\hat{p}_P(y|x) - p_P(y|x)]^2 w(y, x) dy dx \\
+ 2 \int_I \int_I \int_I [\hat{p}_P(y|x) - p_P(y|x)] - \{\hat{p}_{SP,k}(y|x) - p_P(y|x)\}] [p_P(y|x) - p_P(y|x)] w(y, x) dy dx \\
= : I_1 + I_2 + I_3
\]
The first term, I_1, can be analyzed analogously to Proof of Theorem 5, while, by eq. (25),

$$I_2 = \int I \int \int P_{m,k} (y|x)^2 w(y,x) \, dy \, dx + O \left(R^2_P \right).$$

Finally, with $Z_{n,k} (x,y)$ defined in eq. (35), I_3 can be written as

$$I_3 = \frac{2}{\sqrt{n}} \int I \int \int Z_{n,k} (x,y) \gamma_{m,k} (y|x) w(y,x) \, dy \, dx + O_P \left(R_P/\sqrt{n} \right).$$

Proof of Theorem 7. First consider $\hat{T}_{P,1}$: Since the drift estimator under the null and the diffusion estimator under the alternative both converge with parametric rate we may replace them with the true, unknown ones and redefine our estimators as:

$$\hat{\mu}(x) = \frac{1}{2} \frac{\partial \sigma^2 (x)}{\partial x} + \frac{1}{2} \sigma^2 (x) \frac{\pi'(x)}{\pi(x)}, \quad \hat{\mu}(x) = \frac{1}{2} \frac{\partial \sigma^2 (x)}{\partial x} + \frac{1}{2} \sigma^2 (x) \frac{\pi'(x)}{\pi(x)}.$$

Next, by a Taylor expansion w.r.t. $\pi(x)$ and $\pi'(x)$,

$$\hat{T}_{P,1} = \int I \left[\hat{\pi}'(x) - \pi'(x) \right]^2 \tilde{m}_1 (x) \, dx + \int I \left[\hat{\pi}(x) - \pi(x) \right]^2 \tilde{m}_2 (x) \, dx + R$$

where $\tilde{m}_1 (x) := \sigma^4 (x) \tilde{w}(x)/(4\pi^2 (x))$, $\tilde{m}_2 (x) := \sigma^4 (x) \tilde{w}(x) \pi'(x)^2/(4\pi^4 (x))$, and

$$R = O_P \left(\sup_{x,y \in I} |\hat{\pi}'(x) - \pi'(x)|^4 \right) + O_P \left(\sup_{x \in I} |\hat{\pi}(x) - \pi(x)|^4 \right).$$

First, consider I_1: With $\hat{\pi}'(x) = E \left[\hat{\pi}'(x) \right]$, write

$$I_1 = \int I \left[\hat{\pi}'(x) - \pi'(x) \right]^2 \tilde{m}_1 (x) \, dx + 2 \int I \left[\hat{\pi}'(x) - \pi'(x) \right] \left[\hat{\pi}'(x) - \pi'(x) \right] \tilde{m}_1 (x) \, dx$$

$$+ \int I \left[\hat{\pi}'(x) - \pi'(x) \right]^2 \tilde{m}_1 (x) \, dx$$

$$= : I_{11} + I_{12} + I_{13}.$$

Using that uniformly over $x \in I$,

$$\hat{\pi}'(x) = \pi'(x) + h^m \pi^{(m)}(x) + o \left(h^m \right), \quad (36)$$

the first term can be written as

$$I_{11} = h^{2m} \int I \pi^{(m)}(x)^2 \tilde{m}_1 (x) \, dx + o \left(h^{2m} \right).$$

The second term, again using eq. (36), satisfies

$$I_{12} = 2 \frac{h^m}{n h^2} \sum_{i=1}^n \left\{ K' \left(\frac{x_i - X_i}{h} \right) - E \left[K' \left(\frac{x_i - X_i}{h} \right) \right] \right\} \left\{ \pi^{(m)}(x) + o(1) \right\} \tilde{m}_1 (x) \, dx$$

$$= 2 \frac{h^m}{n} \sum_{i=1}^n G_n (X_i) + o_P \left(\frac{h^m}{\sqrt{n}} \right),$$

32
where $G_n(u)$ is given by

$$G_n(u) = \frac{1}{h^2} \int_I \left\{ K' \left(\frac{x-u}{h} \right) - E \left[K' \left(\frac{x-X_0}{h} \right) \right] \right\} \pi^{(m)}(x) \tilde{m}_1(x) \, dx$$

$$= \frac{1}{h} \int_I \left\{ K \left(\frac{x-u}{h} \right) - E \left[K \left(\frac{x-X_0}{h} \right) \right] \right\} \pi^{(m+1)}(x) \tilde{m}_1'(x) \, dx.$$

The third term can be rewritten as

$$I_{13} = \int_I \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^2} \left\{ K' \left(\frac{x-X_i}{h} \right) - E \left[K' \left(\frac{x-X_0}{h} \right) \right] \right\} \right]^2 \tilde{m}_1(x) \, dx$$

$$= \frac{1}{n^2 h^{5/2}} \sum_{i,j=1}^{n} H_n(X_i, X_j),$$

where

$$H_n(u, v) = \frac{1}{h^{3/2}} \int_I \left\{ K' \left(\frac{x-u}{h} \right) - E \left[K' \left(\frac{x-X_0}{h} \right) \right] \right\} \times \left\{ K' \left(\frac{x-v}{h} \right) - E \left[K' \left(\frac{x-X_0}{h} \right) \right] \right\} \tilde{m}_1(x) \, dx.$$

Combining these expressions and following the arguments Gourieroux and Tenreiro (2001, p. 182-184) (see also Huang, 1997), we then obtain

$$I_1 = \frac{1}{n^2 h^{5/2}} \sum_{i,j=1}^{n} \left\{ H_n(X_i, X_j) - E[H_n(X_i, X_j)] \right\} + \frac{2 h^{m-1}}{n} \sum_{i=1}^{n} G_n(X_i)$$

$$+ \frac{1}{h^{5/2}} E[H_n(X_0, X_0)] + \frac{1}{n^2 h^{5/2}} \sum_{i \neq j}^{n} E[H_n(X_i, X_j)]$$

$$+ \frac{1}{h^{2m}} \int_I \pi^{(m)}(x)^2 \tilde{m}_1(x) \, dx + o(h^{2m})$$

$$= \frac{1}{n h^{5/2}} H_n + \frac{h^m}{\sqrt{n}} G_n + \frac{1}{nh^{5/2}} E[H_n(X_0, X_0)] + \frac{1}{nh^{5/2}} \int_I \pi^{(m)}(x)^2 \tilde{m}_1(x) \, dx$$

$$+ o\left(\frac{1}{nh^{5/2}} \right) + o\left(\frac{h^{m-1}}{\sqrt{n}} \right) + o\left(h^{2m} \right),$$

where

$$H_n := \frac{2}{n} \sum_{i<j} \{ H_n(X_i, X_j) - E[H_n(X_i, X_j)] \}, \quad G_n := \frac{2}{\sqrt{n}} \sum_{i=1}^{n} G_n(X_i).$$

The mean component satisfies

$$E[H_n(X_0, X_0)] = \frac{1}{h^{3/2}} \int_I \left\{ E \left[K' \left(\frac{x-X_0}{h} \right)^2 \right] - \left[E \left[K' \left(\frac{x-X_0}{h} \right) \right] \right]^2 \right\} \tilde{m}_1(x) \, dx$$

$$= \frac{1}{h^{1/2}} \int_I \left[K'(u)^2 \tilde{m}_1(x+uh) \pi(x+uh) \, du dx + O \left(h^{1/2} \right) \right.$$

$$= \frac{1}{h^{1/2}} \int_{\mathbb{R}} K'(z)^2 \, dz \times \int_I \tilde{m}_1(x) \pi(x) \, dx + o \left(\frac{1}{h^{1/2}} \right) + O \left(h^{1/2} \right),$$

such that $E[H_n(X_0, X_0)] / (nh^{5/2}) = \mu_1 + O(1)$, where

$$\mu_1 = \frac{1}{nh^3} \int_{\mathbb{R}} K'(z)^2 \, dz \times \int_I \tilde{m}_1(x) \pi(x) \, dx = \frac{1}{4nh^3} \int_{\mathbb{R}} K'(z)^2 \, dz \times \int_I \frac{\sigma^4(x) \tilde{w}(x)}{\pi(x)} \, dx$$

$$= 33$$
We can now appeal to the arguments of Gourieroux and Tenreiro (2001, Proof of Theorem 3.2) to conclude that

$$I_1 = \mu_1 + \frac{1}{nh^{5/2}} \mathcal{H}_n + \frac{h^m}{\sqrt{n}} \mathcal{G}_n + O_P \left(\frac{h^{2m}}{nh^{5/2}} \right) + o_P \left(\frac{h^m}{\sqrt{n}} \right).$$

Given that \mathcal{H}_n and \mathcal{G}_n converge towards a bivariate normal distribution with covariance zero and marginal variances v_0^2 and σ_P^2 (see Gourieroux and Tenreiro, 2001, Theorem 3.1 for their expressions), it follows that

$$nh^{5/2} \{I_1 - \mu_1\} = v_{P,1} U_n + \sqrt{nh^{m+5/2}} \sigma_{P,1} V_n + O_P \left(nh^{2m+5/2} \right) + o_P \left(\sqrt{nh^{m+5/2}} \right).$$

Here, one can verify that

$$v_{P,1}^2 = 2 \int_{\mathbb{R}} (K' * K')^2(z) dz \times \int I \pi^2(x) \mu_1^2(x) dx = \frac{1}{8} \int_{\mathbb{R}} (K' * K')^2(z) dz \times \int \frac{\sigma^1(x) \bar{w}^2(x)}{\pi^2(x)} dx.$$

Next, by a direct application of Gourieroux and Tenreiro (2001, Theorem 3.2),

$$nh^{1/2} \{I_2 - \mu_2\} = v_{P,1} \bar{U}_n + \sqrt{nh^{m+1/2}} \bar{\sigma}_{P,1} \bar{V}_n + O_P \left(nh^{2m+1/2} \right) + o_P \left(\sqrt{nh^{m+1/2}} \right) \quad (37)$$

where (\bar{U}_n, \bar{V}_n) converge in distribution towards a bivariate standard Normal distribution, and

$$\mu_2 = \frac{1}{nh} \int_{\mathbb{R}} K^2(z) dz \times \int I \pi(x) \bar{\mu}_2(x) dx = \frac{1}{4nh} \int_{\mathbb{R}} K^2(z) dz \times \int I \frac{\sigma^1(x) \bar{w}(x) \pi'(x)^2}{\pi^3(x)} dx,$$

and

$$v_{P,1}^2 = 2 \int_{\mathbb{R}} (K * K)^2(z) dz \times \int I \pi^2(x) \bar{\mu}_2^2(x) dx = \frac{1}{8} \int_{\mathbb{R}} (K * K)^2(z) dz \times \int I \frac{\sigma^1(x) \bar{w}(x) \pi'(x)^4}{\pi^{14}(x)} dx.$$

Finally, by Kristensen (2009, Theorem 1) and standard kernel bias evaluations,

$$nh^{5/2} R = O_P \left(nh^{4m+5/2} \right) + O_P \left(\frac{\log(n)^2}{nh^{1/2}} \right).$$

In total,

$$nh^{5/2} \{\bar{T}_{P,1} - \mu_1 - \mu_2\} = nh^{5/2} \{I_1 - \mu_1\} + nh^{5/2} \{I_2 - \mu_2\} + nh^{5/2} R$$

$$= v_{P,1} U_n + h^2 v_{P,1} \bar{U}_n + \sqrt{nh^{m+5/2}} \{\sigma_{P,1} V_n + \bar{\sigma}_{P,1} \bar{V}_n\}$$

$$+ o_P \left(\sqrt{nh^{m+5/2}} \right) + O_P \left(nh^{4m+5/2} \right) + o_P \left(\frac{\log(n)^2}{nh^{1/2}} \right).$$

The first part of the theorem now follows under the conditions imposed on the bandwidth.

Next, consider $\bar{T}_{P,2}$: By the same arguments as before, we may set

$$\bar{\sigma}^2(x) = \frac{2}{\pi(x)} \int I \mu(y) \pi(y) dy, \quad \bar{\sigma}^2(x) = \frac{2}{\pi(x)} \int I \mu(y) \pi(y) dy$$

in the following. Thus, using that $\int I \mu(y) \pi(y) dy = \pi(x) \sigma^2(x)$ together with the mean-value theorem,

$$\bar{T}_{P,2} = \int I \bar{\sigma}^2(x) - \bar{\sigma}^2(x) \bar{w}(x) dx$$

$$= 4 \int I \left[\frac{1}{\pi(x)} - \frac{1}{\tilde{\pi}(x)} \right]^2 \pi^2(x) \sigma^4(x) \bar{w}(x) dx$$

$$= 4 \int \left[\pi(x) - \tilde{\pi}(x) \right]^2 \frac{\sigma^4(x) \bar{w}(x)}{\pi^2(x)} dx + R,$$

34
Proof of Theorem 8. Consider first $\bar{T}_{P,1}$, where the drift under the null, $\mu_P(x)$, say, can be written as $\mu_P(x) = \mu_n(x) + g_n(x)$. Then,

$$\bar{T}_{P,1} = \int [\dot{\mu}(x) - \mu_n(x)] \bar{w}(x) \, dx + \int g_n^2(x) \bar{w}(x) \, dx + 2 \int [\dot{\mu}(x) - \mu_n(x)] g_n(x) \bar{w}(x) \, dx.$$

The first term is treated as in the Proof of Theorem 7, while the third term is a higher-order term which can be ignored. Regarding $\bar{T}_{P,2}$, the diffusion term under the null can be written as $\sigma_P^2(x) = \sigma_n^2(x) + g_n(x)$ such that

$$\bar{T}_{P,2} = \int [\dot{\sigma}(x) - \sigma_n^2(x)] \bar{w}(x) \, dx + \int g_n^2(x) \bar{w}(x) \, dx + 2 \int [\dot{\sigma}(x) - \sigma_n^2(x)] g_n(x) \bar{w}(x) \, dx,$$

and we proceed as with $\bar{T}_{P,1}$. □

B Auxiliary Lemmas

Lemma 9 Assume that (A.1)-(A.4) and (B.1)-(B.2) hold. Then:

$$\sup_{x \in I} |\tilde{\mu}_{SP,1}(x) - \tau_\mu(\pi(x)) \mu_{SP,1}(x)| = \sum_{k=0}^{1} \left\{ O_P \left(n^{-1/2} \sqrt{\log(n)} a^{-2+k} h^{-(1+2k)/2} \right) + O_P \left(a^{-2+k} h^m \right) \right\},$$

$$\sup_{x \in I} |\tilde{\sigma}_{SP,2}^2(x) - \tau_\sigma(\pi(x)) \sigma_{SP,2}^2(x)| = O_P \left(n^{-1/2} \sqrt{\log(n)} a^{-2} h^{-1/2} \right) + O_P \left(a^{-2} h^m \right).$$

Proof. This follows along the same lines as Kristensen (2010, Proofs of Lemmas 9-10). □

C Figures
Figure 1: Estimates of $\mu(x)$ for the CKLS(i) model.

Figure 2: Estimates of $\mu(x)$ for the CKLS(ii) model.
Figure 3: Estimates of $\sigma^2(x)$ for the CKLS(i) model.

Figure 4: Estimates of $\sigma^2(x)$ for the CKLS(ii) model.
Figure 5: Estimates of $\mu(x)$ for the AS model.

Figure 6: Estimates of $\sigma^2(x)$ for the AS model.