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Summary 
 

 

 

 

 

This project has focused on biomarkers in herbicide exposed plants. The idea for this 

originated from the wish to find alternative screening methods to the traditional soil 

analyses, when soil pollution is to be mapped. The thesis is build up of three main 

chapters. The first chapter deals with the subject of biomarkers, more specifically 

environmental biomarkers. This chapter gives an introduction to the term plant 

biomarker, and an overview of the work within this field. The second chapter gives a 

presentation of the approaches used in the field of plant metabolomics. This covers both 

the different theoretical approaches, analytical approaches and chemometric approaches. 

Where the traditional approach to plant biomarkers is mainly a targeted approach towards 

one – or a few – metabolites known to alter in concentration in response to herbicide 

exposure of the plant, plant metabolomics provides the idea of an untargeted search for 

biomarkers among “all” metabolites in the plant. The third chapter presents two case 

studies summarising the three papers presented in this thesis.  

 

In order to evaluate the possibilities for using plant biomarkers to screen for herbicide 

exposure, glyphosate (Round-up®) has been used as a test herbicide, and rapeseed 

(Brassica napus L.) as a model plant. The plants have been growing in a hydroponic 

system, facilitating an easy dosage of glyphosate to the roots. The work presented in this 

thesis is based on an experimental setup with rapeseed seedlings exposed to a range of 

glyphosate concentrations (0, 1, 5, 10, 20, 30, 50 µM) supplied every 3 days over a 

period of 9 days. The main opbjective has been to detect a biomarker, or biomarker 

pattern, in plants exposed to sublethal concentrations of glyphosate via roots, and to 

determine whether it is possible to establish a quantitative measure of the glyphosate 

exposure using the biomarker(pattern). Two approaches have been used in order to search 

for a biomarker or biomarker pattern in response to glyphosate exposure of rapeseed (B. 

 vii



napus L.) seedlings: a targeted approach (metabolite profiling), searching for biomarkers 

within known affected metabolites, and an untargeted approach (metabolic 

fingerprinting), searching for biomarkers within “all” metabolites using chemometric 

tools.    

 

The targeted approach is the basis for the results presented in PAPER I and PAPER II. In 

PAPER I “Determination of shikimate in crude plant extracts by micellar electrokinetic 

capillary chromatography” published in Journal of Chromatography A (2006), a method 

based on micellar electrokinetic capillary chromatography (MECC) for the determination 

of shikimate in water and crude plants extracts was developed. Glyphosate is a well-

known inhibitor of the shikimate pathway, and in crude extracts of plants exposed to 

glyphosate, shikimate was found to accumulate in the leaves. The analytes were separated 

in a cholate-taurine buffer by MECC at pH 7.3 and measured by direct UV at 206 nm. 

Shikimate showed linearity up to 12.5 mM, and had a concentration limit of detection 

(cLOD) and concentration limit of quantification (cLOQ) at 24.4 µM and 67.8 µM, 

respectively, corresponding to detection in the femtomol range. The detection of 

shikimate has been used in order to confirm an actual uptake of glyphosate by, and 

inhibition of the shikimate pathway in, the plants.  

 

PAPER II “Metabolic effects in rapeseed (Brassica napus L.) seedlings after root 

exposure to glyphosate” published in Pesticide Biochemistry and Physiology (2007), 

presented an evaluation of the possibilities of using a response pattern in plants as a 

measure of exposure to glyphosate through the growth media, more sensitive than the 

well-known biomarker shikimate. The shoots of the seedlings were analysed with respect 

to the effects on selected metabolites downstream from the primary affected metabolite 

shikimate, which accumulated linearly in response to glyphosate exposures from 10 to 50 

µM. The selected metabolites analysed, comprising the free amino acids, and the 

glucosinolates derived therefrom, showed complex patterns in response to glyphosate 

exposure. Most noteworthy was that they responded at the lowest concentrations of 

exposure to glyphosate (1 µM), where no visual effects, decrease in shoot DW or 
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shikimate could be detected, indicating that a biomarker response more sensitive than that 

of shikimate can be established for plants exposed to glyphosate.   

 

The untargeted approach is the basis for the work presented in PAPER III “The use of 

environmental metabolomics to determine glyphosate level of exposure in rapeseed 

(Brassica napus L.) seedlings”  submitted to Environmental Science and Technology 

(2009). Here, the approach of metabolic fingerprinting is exploited to differentiate between 

treatments and to search for potential plant biomarkers for exposure. A description of a 

methodology used for processing metabolic fingerprint chromatograms from liquid 

chromatography is presented. The description includes all the steps to be considered, 

starting with the import and the processing of raw data, the use of ANOVA filtering to 

select relevant retention times and the final multivariate data analysis. The results 

demonstrate that metabolic fingerprints combined with multivariate data analysis enables 

the differentiation between glyphosate exposed plants and controls, with a clear 

separation between four clusters/groups according to exposure, ‘50’, ‘30’, ‘20’ and ‘low 

exposures’  (corresponding to ‘10’, ‘5’, ‘1’ and ‘0’), and within the ‘low exposure’ 

cluster, the PCA model was also capable of making a separation with the ‘0’ and ‘1’ 

exposures in one group, and the ‘5’ and ‘10’ exposures in another group. The method 

also showed that the features responsible for the separation within the “low exposures” 

appear to be different from those specific for high exposure samples, which supports the 

finding of PAPER II, where different responses to glyphosate was also seen in rapeseed, 

depending on the level of exposure Furthermore, it was possible to identify the peaks 

responsible for the differentiation between glyphosate exposed plants and controls, which 

can be used to identify novel plant biomarkers for glyphosate exposure. 
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Resumé (in Danish) 
 

 

 

 

 

Dette projekt har fokuseret på biomarkører i herbicideksponerede planter. Ideen til dette 

stammer fra ønsket om at finde alternative screeningsmetoder til de traditionelle 

jordanalyser der benyttes når en jordforurening skal kortlægges. Afhandlingen er bygget 

op omkring tre overordnede kapitler. Det første kapitel behandler emnet biomarkører, 

mere specifikt miljøbiomarkører. Dette kapitel giver en introduktion til fagområdet 

vedrørende plantebiomarkører, og giver samtidigt et overblik over arbejdet indenfor dette 

fagområde. Det andet kapitel præsenterer de tilgange, der benyttes indenfor fagområdet 

plantemetabolomics. Dette dækker både de forskellige teoretiske, analytiske og 

kemometriske tilgange. Hvor den traditionelle tilgang til plantebiomarkører hovedsaligt 

sigter efter en – eller få – metabolitter, der vides at ændre sig som respons på 

herbicideksponeringen af planten, leverer plante metobolomics ideen om en ikke-

målrettet søgen efter biomarkører blandt ”alle” metabolitter i planten. Det tredje kapitel 

præsenterer to case studies, som opsummerer de tre artikler der er præsenteret i denne 

afhandling.  

 

For at kunne evaluere mulighederne for at benytte plantebiomarkører til at screene for 

herbicidpåvirkning blev glyphosat (Round-up®) brugt som testherbicid og raps (Brassica 

napus L.) som modelplante. Planterne blev dyrket i et vandkultursystem, hvilket har 

muliggjort en nem dosering af glyphosat til planterødderne. Arbejdet præsenteret i denne 

afhandling er baseret på et eksperimentelt setup med rapsspirer som er eksponeret for en 

række glyphosatkoncentrationer (0, 1, 5, 10, 20, 30, 50 µM) som blev tilsat hver 3. dag i 

en periode på 9 dage. Hovedformålet har været at detektere en biomarkør, eller et 

biomarkørmønster, i planter som har været eksponeret for ikke-dødelige koncentrationer 

af glyphosat via rødderne, og at fastslå hvorvidt det er muligt, at etablere et kvantitativt 
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mål for glyphosateksponeringen ved at benytte biomarkøren/biomarkørmønsteret. To 

tilgange har været benyttet til at søge efter en biomarkør eller biomarkørmønster i blade 

og stængler, som respons på glyphosateksponering af rapsspirer (B. napus L.): en 

målrettet tilgang (”metabolite profiling”), hvor der blev søgt efter biomarkører indenfor 

metabolitter der vides at være påvirket, og en ikke-målrettet tilgang (”metabolic 

fingerprinting”), hvor der blev søgt efter biomarkører blandt ”alle” metabolitter ved at 

bruge kemometriske værktøjer.  

 

Den målrettede tilgang er grundlaget for resultaterne der præsenteres i ARTIKEL I og 

ARTIKEL II. I ARTIKEL I “Determination of shikimate in crude plant extracts by 

micellar electrokinetic capillary chromatography”, som er publiceret i Journal of 

Chromatography A (2006), blev der udviklet en metode baseret på ”micellar 

electrokinetic capillary chromatography” (MECC) til at bestemme shikimisyre i vand og 

rå planteekstrakter. Glyphosat er en velkendt inhibitor af shikimisyrebiosyntesevejen, og i 

rå planteekstrakter fra planter eksponeret for glyphosat blev der konstateret en 

akkumulering af shikimisyre i bladene. Analytterne blev separeret i en cholat-taurin 

buffer ved MECC ved pH 7,3 og målt ved direkte UV ved 206 nm. Shikimisyre 

demonstrerede en linearitet op til 12,5 mM, og havde en koncentrations detektionsgrænse 

og kvantificerings detektionsgrænse på henholdsvis 24,4 µM og 67,8 µM, svarende til en 

detektion i femtomol området. Detektionen af shikimisyre har været benyttet til at 

konfirmere et reelt optag af glyphosat i planterne, samt inhibering af 

shikimisyrebiosyntesevejen.   

 

ARTIKEL II “Metabolic effects in rapeseed (Brassica napus L.) seedlings after root 

exposure to glyphosate” publiceret i Pesticide Biochemistry and Physiology (2007), 

præsenterede en evaluering af mulighederne for at bruge et responsmønster i planterne 

som et mål for deres eksponering til glyphosat gennem dyrkningsmediet, mere sensitivt 

end den velkendte biomarkør shikimisyre. Skuddene af spirerne blev analyseret med 

henblik på at undersøge effekterne på udvalgte metabolitter nedstrøms i 

metabolismevejen fra den primære påvirkede metabolit shikimisyre, som akkumulerede 

lineært som respons på glyphosateksponeringer fra 10 til 50 µM. De udvalgte analyserede 
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metabolitter, bestående af de frie aminosyrer, og glucosinolaterne stammende derfra, 

viste et komplekst mønster som respons på glyphosateksponeringen. Mest 

bemærkelsesværdigt var det at de responderede ved den laveste koncentration af 

glyphosateksponering (1 µM), hvor der ikke var nogen visuelle påvirkninger, ingen 

nedgang i skud tørvægt, og ingen detektion af shikimisyre, hvilket indikerer at et 

biomarkør respons som er mere sensitivt end shikimisyre kan etableres for planter 

eksponeret for glyphosat.    

 

Den ikke-målrettede tilgang er grundlaget for det arbejde der præsenteres i ARTIKEL III 

“The use of environmental metabolomics to determine glyphosate level of exposure in 

rapeseed (Brassica napus L.) seedlings” indsendt til Environmental Science and 

Technology (2009). Her udnyttes fremgangsmåden i “metabolic fingerprinting” til at 

differentiere mellem behandlinger samt til at søge efter mulige plantebiomarkører. En 

beskrivelse af metodologien der anvendes til at bearbejde “metabolic fingerprinting” 

kromatogrammer fra væskekromatografi præsenteres. Beskrivelsen omfatter alle de trin 

der skal tages i betragtning, lige fra import og bearbejdning af rådata, til anvendelsen af 

ANOVA filtrering til at udføre variabel selektion og til den endelige multivariate data 

analyse. Resultaterne viser at ”metabolic fingerprint” kombineret med multivariabel 

dataanalyse gør det muligt at differentiere mellem glyphosateksponerede planter og 

kontrolplanter, med en klar adskillelse i fire grupper svarende til eksponering, ’50’, ’30’, 

’20’ og ’lave eksponeringer’ (svarende til ’10’, ’5’, ’1’ og ’0’), og indenfor gruppen af 

’lave eksponeringer’ kunne PCA modellen også separere ’0’ og ’1’ eksponeringerne i én 

gruppe, og ’5’ og ’10’ eksponeringerne i en anden gruppe. Metoden viste også at de 

elementer der lå til grund for separationen indenfor de ’lave eksponeringer’ viste sig at 

være anderledes end dem der var specifikke for de høje eksponeringer, hvilket 

understøtter resultaterne fra ARTIKEL II, hvor der også blev observeret forskellige 

reaktioner, afhængig af niveauet af glyphosateksponering i rapsplanterne. Derudover var 

det muligt, at identificere de toppe, som var ansvarlige for differentieringen mellem 

glyphosateksponerede planter og kontrolplanter, hvilket kan anvendes til at identificere 

hidtil ukendte plantebiomarkører for glyphosateksponering.     
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1. Introduction 
 

 

 

 

 

Overall aim and motivation 

The overall aim with this PhD-project has been to evaluate the possibilities for using 

plant biomarkers to screen for herbicide exposure. This idea was born out of the search to 

find alternative ways to detect and map pesticide contaminated sites. Whenever it is 

monitored, that a groundwater supply is contaminated with a pesticide, it is necessary to 

locate the source of contamination. This is relevant both for public and private water 

supplies. The classic approach in order to identify the point source is to conduct a great 

range of soil analyses – and following to monitor the contamination. This can be both 

time-consuming and costly. Therefore, this approach calls for other – less time-

consuming and less expensive – alternatives to screen for contaminated sites, which could 

be a plant biomarker approach. Pesticide contamination covers both herbicides, 

insecticides and fungicides, but in this project, it has been chosen to focus only on 

herbicide contamination, since herbicides are known to affect the plant growth, and often 

the mode of action on plants is also known. This is not the case for insecticides and 

fungicides.  

 

Different herbicides were originally considered for the investigations of this project – 

both herbicides that were already banned but known to cause groundwater contamination, 

as well as herbicides in use. The herbicide of choice for this study became glyphosate 

(Round-up ®), partly due to its widespread use worldwide (Woodburn, 2000), partly 

because the mode of action for glyphosate is well-described. Glyphosate is a foliar 

applied herbicide, but it is also known to act upon uptake via plant roots (Khan & 

Marriage, 1979; Amrhein et al., 1980; Pline et al., 2001). In this project, focus has been 

on the uptake of glyphosate via roots, since the results then offers the possibility to be 
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extrapolated to a soil pollution scenery, where plants are growing in herbicide 

contaminated soil.  

 

Plant biomarkers are – by nature – limited to pollution sceneries at sublethal 

concentrations. But where detection limits might limit the detection of pollutants present, 

an advantage of plant biomarkers is that they sometimes can turn out to be more sensitive 

than specific chemical analyses. Furthermore, plant biomarkers have the very important 

advantage of measuring the bioavailable fraction which is critical information in relation 

to the assessment of the environmental risk (Bartell, 2006). But where chemical analyses 

are very quantitative, it is not clear how quantitative a plant biomarker response can be 

expected to be.  

 

 

 
Figure 1. Illustration of the two approaches - targeted and untargeted - used in this project in order: “To 
detect a biomarker, or biomarker pattern, in plants exposed to sublethal concentrations of glyphosate via 
roots, and to determine whether it is possible to establish a quantitative measure of the glyphosate 
exposure”. 

Targeted approach  
Untargeted approach 

searching for 
biomarkers within all 

metabolites using  

searching for 
biomarkers within  

chemometric tools 

known affected 
metabolites 

Glyphosate 
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Objective 

With the overall aim and motivation in mind, this has resulted in one main objective: 

To detect a biomarker, or biomarker pattern, in plants exposed to sublethal 

concentrations of glyphosate via roots, and to determine whether it is possible to 

establish a quantitative measure of the glyphosate exposure using the 

biomarker(pattern). 

This has been approached in two ways as illustrated in Figure 1:  

• In a targeted approach, searching for suitable biomarkers within the metabolites 

known and expected to have altered concentrations upon glyphosate exposure. 

• In an untargeted approach, searching for suitable biomarkers within “all” 

metabolites, by using chemometric tools.   

 

Outline of thesis 

The subject of biomarkers is dealt with in the first chapter, more specifically 

environmental biomarkers. This chapter is included in order to give an introduction to the 

term plant biomarker, and an overview of the work within this field, as well as to link it 

to other examples of environmental biomarkers and environmental assessment. This is 

important since it represents the traditional approach to the idea of biomarkers in e.g. 

plants. The second chapter is a presentation of the approaches used in the field of plant 

metabolomics. This covers both the different theoretical approaches, analytical 

approaches and chemometric approaches. Plant metabolomics provides the idea of an 

untargeted search for biomarkers, and is therefore also an essential part of this thesis. 

Following is a short chapter giving an introduction to environmental metabolomics, a 

developing research field, e.g. using metabolomics to identify biomarkers.  The fourth 

chapter gives a summary of the case study and the two approaches used in this project. 

PAPER I & PAPER II represents the targeted approach to search for biomarkers, and 

PAPER III represents the untargeted approach to search for biomarkers. This is followed 

by a chapter with a discussion, both general and in relation to the two specific 

approaches, and the thesis is completed with a chapter outlining the conclusions and 

giving perspectives on the subject “biomarkers in herbicide exposed plants”. 
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2. Environmental biomarkers 
 

 

 

 

 

2.1 Introduction 

 

“Biomarker” is a term widely used and many scientific fields have a range of biomarker 

categories – some better established than others. This chapter treats the broad term 

environmental biomarkers, and focuses on narrowing the environmental biomarkers 

down to plant biomarkers and finally to plant biomarkers for herbicide exposures. 

Finally, alternative screening methods to biomarkers are mentioned in short.    

 

Definition 

The term biomarker is used within many scientific fields, e.g. for disease diagnostics in 

humans (Grandjean et al., 1995; Johnston et al., 2006; Matharoo-Ball et al., 2007), for 

the identification of the origin of crude oils (Pang et al., 2003; Yessalina et al., 2006), and 

for the assessment of the state of the environment (Walker, 1992; Peakall, 1994a; Peakall, 

1994b; Amiard et al., 2000). Here, the focus is solely on biomarkers related to the state of 

the environment. An environmental biomarker can be defined as “a biological response 

to an environmental chemical which gives a measure of exposure, and sometimes 

also of toxic effect” (Walker, 1995). The response can for example be biochemical, 

physiological or morphological.  

 

Motivation 

The interest for environmental biomarkers was intensified around late 1980’s and early 

1990’s (Peakall, 1994b), and the evolution of its use as a tool to monitor and evaluate the 

environmental state is closely linked to progress in our knowledge of molecular toxicity 

mechanisms of pollutants in different animal and plant species in the ecosystem 
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(Narbonne, 2000). Pollution of the environment has been a subject of interest for decades, 

and with the ever increasing number and amounts of agricultural and industrial chemicals 

released to the environment, there has been a need to monitor the presence and effect of 

these chemicals on the environment.  

 

Approach 

The classical approach to environmental monitoring is that of measuring the amount of a 

chemical present, either in the organism or the environment, and relating that to adverse 

effects (Peakall, 1994b). In soils, a classical approach is to analyse soil samples 

quantitatively for the presence of pollutants, and then relate the results to leaching 

potentials or other types of risk assessment. This approach faces its limitations though, 

since the estimation of the bioavailable pool can be a difficult task, as well as the 

difficulties of extrapolating toxicity from laboratory studies to field conditions (Peakall, 

1994b). Furthermore, the measurements of chemicals in the environment or in the 

organisms are often expensive and time-consuming – and sometimes even below the 

detection limits, while still potentially constituting a risk in the environment. These 

difficulties can partly be overcome with the biomarker approach, where, as defined 

above, a measure of exposure is given corresponding to the bioavailable pool, and if 

possible, also a measure of toxic effect (Walker, 1992; Peakall, 1994b; Walker, 1995). In 

comparison to the soil analyses, plant biomarkers can furthermore have an advantage 

when it comes to sampling, because plant roots can cover a greater area, and thereby give 

a more representative picture of the pollution, than a soil sample.  

 

Purpose 

Apart from the advantages mentioned above, the idea behind biomarkers has also been to 

detect rapid and cost-effective biochemical responses for the early recognition of 

contaminants in the environment. In this way, biomarkers can provide signals of potential 

damage in ecosystems due to environmental stress, and – if perceived early enough – 

possibly prevent eventual damage in the ecosystems, such as contamination of ground 

water resources (Hansen, 2003). Ideally, a biomarker should not only indicate the 

presence of a contaminant, but also give a quantitative measure of the contamination state 
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(Bartell, 2006). Furthermore, biomarkers should enable recognition of environmental 

stress earlier than visible damage, and they should help to reconstitute a dynamic picture 

of variations in the quantities of bioavailable pollutants, considering either the original 

molecules or their products of degradation (Amiard et al., 2000).  
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Figure 2. Dendrogram indicating which biomarkers are appropriate for which xenobiotic stress type. Solid 
arrows indicate a strong association whereas dotted arrows indicate a weak or less established association. 
This diagram does not represent the extent of application of any biomarker, simply the groups of 
contaminants which have been evaluated most appropriately by a given biomarker. Biomarkers followed by 
(All) indicate that the biomarker is potentially appropriate for all types of stressors; the association arrows 
have purposefully not been incorporated to increase readability for other biomarker/stress associations 
(Reproduced from (Brain & Cedergreen, 2009)). 
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In this respect, biomarkers should provide an “early warning system”. Biomarkers should 

be either specific towards one pollutant or broad towards a group of pollutants – both 

cases can be of interest. More importantly, the biomarkers should be stable and robust in 

relation to the effects from other stressors, whether biotic or abiotic. Figure 2 shows a 

dendrogram giving an impression of a range of different biomarker types – ranging from 

general to specific – and relates these biomarkers to different types of xenobiotic stress.  

  

Examples 

In order to understand the span of environmental biomarkers, a few selected examples 

covering different categories of biomarkers are given. Examples of plant biomarkers are 

treated in more detail below. One example of environmental biomarkers is the use of 

metallothioneins as biomarkers of exposure to heavy metals in several groups of 

organisms, such as birds, fish, mammals, molluscs and plants (Tohyama & Shaikh, 1978; 

Hennig, 1986; Cosson, 1989; Cosson, 1994; Labra et al., 2006). The metallothioneins 

represents a group of biomarkers that are found across different organisms due to a 

common mode of action. In humans/mammals, the increased urinary excretion of 

xanthurenic acid has been proposed as a biomarker of exposure to organophosphorus 

insecticides (Seifert, 1996). Another example of an environmental biomarker is the use of 

EROD (ethoxyresorufin O-deethylase) enzymatic activity to measure the induction of 

cytochrome P450A, which again is induced in organisms exposed to e.g. polycyclic 

aromatic hydrocarbons (PAH) or polychlorobiphenyls (PCB) (Flammarion et al., 2000). 

These contaminants are widespread in aquatic environments, and this biomarker can be 

detected both in freshwater and marine fish, and thereby used as a tool to assess 

environmental quality, and detect polluted areas (Burgeot & Galgani, 2000; Flammarion 

et al., 2000). Also, the use of retinoids as biomarkers in the yolk of bird eggs has been 

reported, where the retinoid concentrations showed a high correlation with tissue levels of 

dioxins, coplanar PCB, and related organochlorine compounds (Spear & Bourbonnais, 

2000). The use of hepatic and intestinal retinoids as biomarkers in birds, fish and aquatic 

mammals was also investigated (Spear & Bourbonnais, 2000).   
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2.2 Plant biomarkers 

 

The group of plant biomarkers applies to a broad variety of environmental pollutants as 

also indicated in Figure 2. Some plant biomarkers are specific to only one pollutant or 

group of pollutants, while others respond to a wide range of pollutants and/or stressors. 

Most of the work conducted on plant biomarkers concerns terrestrial plants, but examples 

of biomarkers in aquatic plants will also be given. As with environmental biomarkers in 

general, the aim for plant biomarkers is to provide an early warning system of specific or 

general stressors, and they should preferably exhibit a more sensitive response than 

visible symptoms.  

 

General plant biomarkers 

From the class of general biomarkers, both concerning plant species and pollutant in 

question, are the plant glutathione S-transferases (GSTs) to be found (Marrs, 1996; Van 

Eerd et al., 2003). They are also known as the “green liver” (Sandermann, 1994), since 

these enzymes have an important function in the xenobiotic metabolism and antioxidative 

protection of plants. The glutathione S-transferase enzyme activities within 59 plant 

species (terrestrial and freshwater plant species, and marine macroalgae) towards model 

substrates and two herbicides (atrazine and fluorodifen) have been investigated 

(Pflugmacher et al., 2000). The enzyme activities were widely distributed over the plant 

kingdom, but the results also showed a great variation in the response both within plant 

species and within substrates (Pflugmacher et al., 2000). Concerning the enzyme activity 

towards the two herbicides, it was found that the activity with fluorodifen was usually at 

least two to three times higher than that with atrazine (Pflugmacher et al., 2000).  

Another example of a general plant biomarker is the use of fluorescence of chlorophyll as 

a biomarker to evaluate the biochemical and physiological conditions of plants. Some 

advantages of using fluorescence is that the underlying method is well-documented, the 

biomarker response is sensitive and reliable, the method can easily be applied in the field 

and it is non-destructive (Vangronsveld et al., 2000). Samson and Popovic (1988) 

described the use of algal fluorescence to determine the phytotoxicity of two heavy 

metals and four pesticides as environmental pollutants. They presented dose-response 
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data using the alga Dunaliella tertiolecta, and they identified stressor-specific differences 

in fluorescence profiles, as well as gave an illustration of the sensitivity of the technique 

(Samson & Popovic, 1988). Another example using fluorescence of plants as a response 

to herbicides is given below.  

 

Plant biomarkers for metal soil contamination 

Many reports on plant biomarkers are related to the evaluation of soil contamination by 

(heavy) metals (Vangronsveld et al., 2000), fluorescence, as described above, being one 

example (Samson & Popovic, 1988). In many plant species, exposure to increasing levels 

of metals appear to induce the production of metal-binding polypeptides known as 

phytochelatins, which for example can be induced by cadmium (Patra & Panda, 1998). 

Effects at the level of the genome are other possibilities of detecting biomarkers for metal 

toxicity (Labra et al., 2003; Labra et al., 2004). Enzyme activities and chlorophyll 

contents have also been used as biomarkers for heavy metal contamination of the growth 

media (Mocquot et al., 1996; MacFarlane, 2002). Furthermore, the metallothioneins, 

belonging to the general biomarkers, are reported to show a dose-response induction in 

response to dichromate in Zea mays (Labra et al., 2006). An example of a very specific 

metal biomarker is the selenoproteins produced in selenium-sensitive plants incapable of 

differentiating between S and Se, thereby providing a biomarker for selenium 

contamination (Ernst & Peterson, 1994; Vangronsveld et al., 2000). 

 

Plant biomarkers for herbicide exposure 

Finally, a developing field is that of plant biomarkers of herbicide exposure. One of the 

most well-established plant biomarkers is the accumulation of shikimate in response to 

glyphosate application/efficacy/uptake to different higher plant species (Harring et al., 

1998; Anderson et al., 2001; Petersen et al., 2006; Petersen et al., 2007; Trenkamp et al., 

2009). This is an example of a specific biomarker, since glyphosate inhibits the shikimate 

pathway, resulting in an accumulation of high levels of shikimate (Amrhein et al., 1980; 

Lydon & Duke, 1988), as early as 5 hours after treatment (Harring et al., 1998). The 

group of acetolactate synthase (ALS)-inhibitor herbicides (e.g. sulfonylureas, 

imidazolines, triazolopyrimidine sulfonanilides and pyrimidyloxy salicylic) can be 
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detected by using the resulting accumulation of 2-aminobutyric acid as a biomarker 

(Loper et al., 2002; Li & Wang, 2005). The biomarker 2-aminobutyric acid has been 

shown to respond to sub-lethal levels of herbicide, with a response time of 6 hours (Loper 

et al., 2002; Li & Wang, 2005). A final example of a single biomarker for herbicide 

exposure in plants is the use of ammonium accumulation as a biomarker to detect 

glufosinate residues in soil and water (Zhou & Wang, 2006). Glufosinate inhibits the 

glutamine synthetase, thereby resulting in the accumulation of ammonium, but also 

glyoxylate accumulates and can be used as a biomarker for glufosinate (Zhou & Wang, 

2006). As opposed to single biomarkers, Ravn et al. (2005a) reports of biomarker 

patterns in eight aquatic plant species exposed to the herbicide metsulfuron-methyl. The 

report stresses that there is a large inter-specific difference in the biomarker pattern 

included in the experimental setup (Ravn et al., 2005a). Recently, Ravn et al. (2005b) 

proposed a phytochemical screening method for biomarkers in plants exposed to 

herbicides, where High Performance Planar Chromatography (HPPC) is used to detect 

biomarkers in raw ethanol extracts of plants exposed to an herbicide and to identify 

biomarkers in different phytochemical groups by their functional groups (Ravn et al., 

2005b). In higher plants (Sinapis alba and Beta vulgaris), Christensen et al. (2003) 

showed that there is a dose-response relationship between fluorescence induction curve 

and biomass for three herbicides, thereby offering a fast and non-invasive method for 

screening for herbicide efficacy. The earliest response was measured between 4 and 24 

hours after treatment, dependent on herbicide mode of action, herbicide dose and plant 

species (Christensen et al., 2003). The study showed differences in results from repeating 

the same experiments, and explained these differences due to differences in temperature 

and radiation in the greenhouse where the experiments were conducted (Christensen et 

al., 2003). The authors concluded that by using fluorescence induction curves in response 

to herbicide application, it is possible to discern between differing modes of action of 

PSII photo inhibition (Christensen et al., 2003). In another study, Hjorth et al. (2006) 

reports on the use of fluorescence microscopy to determine a response to herbicide effect 

before visual signs of damage can be detected in five Poaceae weeds. The authors used 

microscopy and ultraviolet and blue light to detect colour changes in the leaves due to 

herbicide exposure, and concluded that the method could be used e.g. for predicting the 
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effect of a herbicidal application before macroscopic symptoms appear (Hjorth et al., 

2006). 

 

2.3 Other methods to screen for soil contamination 

 

Other biomarker screening methods 

Instead of using plant biomarkers to screen for herbicide contaminated soils, other 

screening methods have also been proposed, e.g. to use an in vitro fish cell line to 

evaluate sediment and landfill leachates (Fent, 2003; Fent, 2004), to use rat hepatoma cell 

lines in vitro to identify biomarkers of organic pollution in extracts of environmental soil 

(Ostby et al., 2006) or as part of a battery of in vitro cell bioassays to screen soil for the 

identification of ecological risk stressors (Xiao et al., 2006). Further examples are the use 

of photosynthetic activity in soil algae as a marker for xenobiotic soil contamination 

(Berard et al., 2004), or the use of molecular genetic biomarkers in earthworms to detect 

copper and cadmium polluted soil (Galay-Burgos et al., 2003). 

 

Bioindicators 

The term bioindicator can sometimes be confused with the term biomarker. The presence 

(or absence) of certain species or group of species, and/or their abundance, can provide 

information about the environmental state of the ecosystem to which they belong, and 

these species are referred to as bioindicators (Jamil, 2001). Bioindicators are often 

divided into two types of species, bioaccumulator species and sentinel species (Amiard et 

al., 2000; Jamil, 2001). Bioaccumulator species have the ability to accumulate certain 

contaminants, whereas sentinel species include species that can be used as indicators of 

the presence and toxicity of at least one contaminant, either by being present or absent 

(Amiard et al., 2000). An example of a bioaccumulator bioindicator is the marine and 

fresh water molluscs, who – because of their strong capacity for bio-concentration of 

contaminants – function as excellent indicators of contamination (Jamil, 2001). Another 

example is the use of human breast milk to monitor human exposure to environmental 

pollutants (Saleh et al., 1996). An example of a sentinel bioindicator is the use of soil 

algae as indicator for xenobiotic contamination in soils (Berard et al., 2004), or 
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earthworms, whose presence/absence and relative abundance generally is viewed as an 

indicator of the health of the soil (Rochfort et al., 2009). Also plants have been used as 

bioindicators to monitor contamination of subsurfaces, e.g. soils and ground water. In line 

with the motivation for this project, others have also exploited the idea to use samples of 

vegetation for monitoring subsurface pollution (Ma & Burken, 2002; Gopalakrishnan et 

al., 2007; Larsen et al., 2008). They have used trees to monitor subsurface pollution with 

volatile organic compounds (VOCs), either tree cores (Ma & Burken, 2002; Larsen et al., 

2008) or tree branches (Gopalakrishnan et al., 2007). Ma & Burken (2002) conclude that 

tree core analysis can become a useful tool in site characterisation and monitoring, and 

that the method can provide a simple and cost-effective method to monitor contaminated 

sites. Larsen et al. (2008) conclude that tree core sampling should be used for assessing 

the presence of pollutants rather than determining exact subsurface concentrations. As 

with tree core analysis, Gopalakrishnan et al. (2007) finds that tree branches can 

potentially be used to assess the distribution of subsurface contamination in a qualitative 

way, except in areas of low soil contamination where the sampling technique cannot be 

used. There will be no further elaboration on bioindicators here, but the reader is referred 

to Markert et al. (2003) and Jamil (2001) for comprehensive reviews. 
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3. Plant metabolomics 
 

 

 

 

 

3.1 Introduction 

 

As described in the introduction, the search for a biomarker or biomarker pattern has in 

this project been approached in two ways; that is a targeted approach and an untargeted 

approach. In the targeted approach, the search for a biomarker (pattern) took place among 

metabolites known and expected to have altered concentrations upon glyphosate exposure 

– what below is mentioned “metabolite profiling”. The measurement of shikimate as a 

response to glyphosate exposure, is what below is described as “metabolite target 

analysis”. In the untargeted approach, a raw plant extract was analysed and all the 

information therein was following used in a chemometric analysis, in an attempt to find a 

suitable biomarker (pattern) within “all” metabolites. This is below described as 

“metabolite fingerprinting”. This chapter is included in order to give the reader an 

overview of the rapidly developing field of “plant metabolomics”, including the different 

approaches, analytical techniques and multivariate statistical tools (chemometrics). The 

aim of plant metabolomics are highly diverge, ranging from attempts to elucidate 

biochemical pathways in the plants, to discriminating samples subjected to different 

treatments, growth conditions etc.   

 

Metabolites in plants 

Metabolites are bioactive low-molecular chemical compounds that regulate key 

processes, growth and development and define the fundamental basis of the biochemical 

composition of the plant. Furthermore, metabolites are the (end)product of cellular 

regulatory processes, and their levels can be regarded as the ultimate response of 

biological systems to genetic or environmental changes. Additionally, many intracellular 
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metabolites participate in a large number of biochemical reactions, and, hereby tie many 

different parts of the cellular metabolism together as a tightly controlled metabolic 

network (Nielsen, 2003). It is estimated that up to 200,000 different metabolites exist in 

the plant kingdom, and in the order of up to 15,000 metabolites within a given species 

(Dixon, 2001; Hartmann et al., 2005). In parallel to the terms transcriptome and 

proteome, the set of metabolites synthesized by an organism constitute its metabolome. 

The goal of plant metabolomics is to give a comprehensive evaluation of the plant 

metabolome (Fiehn, 2002).    

 

Approaches to metabolite analysis 

Dependent on the aim of the metabolite analysis, two main approaches can be defined: i) 

targeted metabolite analysis, and ii) untargeted metabolite analysis, as also argued by 

Villas-Bôas et al. (2005). These two approaches can then be sub-divided into further four 

groups in order to answer specific types of questions, based on the four definitions given 

by Fiehn (Fiehn, 2001; Fiehn, 2002; Weckwerth & Fiehn, 2002) and others (Villas-Boas 

et al., 2005; Dunn & Ellis, 2005; Dunn et al., 2005a) as outlined below: 

1) Metabolite target analysis is defined as an analysis restricted exclusively to the 

substrate and/or the direct product of the corresponding enzyme, which is the direct 

result of a given alteration. Extensive sample clean-up may be used to avoid 

interference from major accompanying compounds.  

2) Metabolite profiling is aimed at selected biochemical pathways, where the analytical 

procedure is restricted to the identification and quantification of a selected number of 

pre-defined metabolites. For example, these pre-defined metabolites can be chosen 

based upon a class of compounds (such as amino acids, organic phosphates, or 

carbohydrates) or based upon their association with a specific pathway. This approach 

is used e.g. to elucidate the function of a whole pathway or intersecting pathways.   

3) Metabolomics covers over the comprehensive analysis in which all the metabolites of 

a biological system are identified and quantified. The approach should aim at 

avoiding exclusion of any metabolite during the sample preparation procedure and 

analytical techniques. The resolving power of the chosen analytical method(s) must 

be high enough to maintain sensitivity, selectivity, matrix independence, and 
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universal applicability. Furthermore, the approach should include strategies to 

identify unknown metabolites. The metabolomics approach is considered when trying 

to understand complex systems where metabolites/metabolite levels of seemingly 

unrelated biochemical pathways may be altered, e.g. due to a single genetic alteration 

or blockage of a single enzyme.  

4) Metabolic fingerprinting involves the rapid analysis, often not quantitative, of a 

large number of different metabolites from crude metabolite mixtures, with the 

objective to rapidly discriminate between samples from different groups, e.g. treated 

versus non-treated. By definition, all metabolites detected by a selected analytical 

technique or by a combination of different techniques, should not all be identified and 

quantified, but “raw” data (e.g. full chromatogram) can be used. It should be noted 

that sometimes, metabolic fingerprints have enough resolving power to distinguish 

between individual signals related to sample classification, but it cannot be assumed 

that this approach will lead to the identification of the most important effects, since 

major metabolic events might be obscured due to matrix effects and lack of analytical 

resolution and sensitivity. Parallel to metabolic fingerprinting is the metabolic 

footprinting approach, where metabolites excreted from the cells into a 

growth/culture medium are sampled and analysed. Whereas the objective for 

metabolic fingerprinting is to give a snapshot of the metabolome at the time of 

sampling, metabolic footprinting will give a picture of metabolic activity over a given 

period of time. Metabolic footprinting is often used within microbiology, and will 

therefore not be treated further in this context.    

 

Of these sub-groups, metabolite target analysis (1) and metabolite profiling (2) belongs to 

the targeted metabolite approach, since the aim for both is to identify and quantify pre-

defined metabolites. On the other hand, both metabolomics (3) and metabolic 

fingerprinting (4) belong to the untargeted approach. For metabolomics, a truly 

comprehensive analysis of the metabolome is currently not feasible (Hall, 2006). This is 

due to the great complexity of the metabolome, with chemical properties of metabolites 

ranging from ionic inorganic species to hydrophilic carbohydrates, hydrophobic lipids, 

and complex natural products (Sumner et al., 2003). The bottom line of metabolic 
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fingerprinting is to obtain enough information to solve (otherwise hidden) metabolic 

alterations, without aiming to get quantitative data for all biochemical pathways (Fiehn, 

2001).  

 

3.2 Analytical approaches 

 

Choice of extraction procedure and analytical technique is dependent on the aim of the 

metabolite analysis. For targeted metabolite approaches, the extraction procedure and 

analytical technique will be rather specific and well-defined, and often clean-up prior to 

analysis is included. For untargeted approaches, it is desirable to achieve as much 

information in one analysis as possible and therefore crude extracts are most often used. 

In order to achieve the most comprehensive analysis of the metabolome as possible, 

selective extraction and parallel analyses using a combination of analytical techniques are 

often employed for metabolomics. The examples given below focus mainly on metabolic 

approaches related to plants. 

 

Sample preparation and extraction 

Due to the different objectives, sample preparation and extraction should always be 

designed and validated for the metabolites of interest. Furthermore, for untargeted 

approaches, the methods applied should be as unbiased as possible. As a first step, the 

metabolic processes must be stopped (immediately), by inactivating enzymatic activities 

(Fiehn, 2002). This can be done for example by freezing in liquid nitrogen (Moco et al., 

2006), or by freeze drying (Petersen et al., 2007), which is though a less rapid approach. 

Freezing in liquid nitrogen is the most widespread method used, but care should be taken 

not to partly thaw plant tissues before extraction (Fiehn, 2001). Enzymatic activity can be 

inhibited after freezing in liquid nitrogen by either freeze drying (Boccard et al., 2007) or 

by adding organic solvent and applying heat (Fiehn et al., 2000). Before extraction, 

homogenization of the plant tissues can be introduced e.g. by grinding freeze dried 

material (Petersen et al., 2007) or grinding in liquid nitrogen (Aranibar et al., 2001), both 

using a mortar and pestle, or by using a ball mill in pre-chilled holders (de Vos et al., 

2007), or simply together with the extraction solvent using ultra-turrax devices (Gong et 
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al., 2004). After homogenization, different methods 

of extraction can be applied. Most frequently is the 

extraction of plant metabolites with organic 

solvents. Often, more than one solvent is used, so 

that polar metabolites are extracted with methanol 

or methanol-water mixtures (sometimes methanol is 

replaced by ethanol) (Mattoli et al., 2006; de Vos et 

al., 2007), and lipophilic components are extracted 

with non-polar solvents like chloroform, hexane or 

ethyl acetate (Fiehn et al., 2000). Different methods 

can be used to enhance the extraction, such as 

pressurized liquid extraction (PLE) (Petersen et al., 

2007), where organic solvents are used at 

temperatures above their atmospheric boiling points, 

or by using ultrasound- or microwave-assisted 

extraction (Hendriks et al., 2005). The automated 

extraction methods pose a potential for high 

reproducibility. After extraction, it is often 

necessary to preconcentrate the metabolites and 

remove the solvents, either partially or totally, from 

the samples. Solvents can be evaporated under 

compressed air or nitrogen (Petersen et al., 2006), or 

under vacuum using a rotary evaporator (Roessner 

et al., 2001). Other methods can be freeze drying 

(Aliferis & Chrysayi-Tokousbalides, 2006) or solid-

phase extraction (SPE) . 
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Figure 3. Schematic overview of the experimental setup and 
data flow for plant metabolic fingerprinting. The different steps 
are described throughout this chapter. 
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Metabolite analysis 

It is possible to choose between a great range of different methods for the analysis of 

either a specific group of metabolites or all metabolites present in a crude extract. The 

choice of analysis can be dependent on the scope and resolution needed, as well as the 

need for sensitivity. The metabolome is estimated to extend over 7-9 magnitudes of 

concentration (pmol-mmol) (Dunn & Ellis, 2005). The different methods most frequently 

used for metabolomics will briefly be discussed in the following. For identification 

purposes (i.e. metabolite target analysis, metabolite profiling or metabolomics), a 

separation step can be included prior to detection (Roessner et al., 2001; Moco et al., 

2006). For metabolic fingerprinting, a rapid analysis is often requested, and therefore a 

separation step prior to detection is often not included (Goodacre et al., 2003; Gray & 

Heath, 2005; Dunn et al., 2005b). A schematic overview of the experimental setup and 

data flow for plant metabolic fingerprinting is given in Figure 3.   

 

Liquid chromatography 

Liquid chromatography (LC) is a frequent choice of separation of plant metabolites, often 

in combination with mass spectrometry (MS) for detection and identification. LC 

includes both traditional high performance LC (HPLC), capillary HPLC and more 

recently introduced ultra performance LC (UPLC), utilizing reduced particle size (1.7 

µm), resulting in increased peak capacity and sensitivity, as well as reduced separation 

times. Various ionization techniques are available with LC-MS, the most often used 

being electrospray ionisation (ESI), or atmospheric pressure chemical ionisation (APCI), 

but other possibilities are the atmospheric pressure photoionisation (APPI) and 

atmospheric pressure ionisation (API) (Looser et al., 2005). For metabolic fingerprinting, 

conventional HPLC with UV detection, in combination with chemometrics, has been 

used in order to identify the differences and similarities between commercial willow 

(Salix sp.) samples from different suppliers and batches (Hendriks et al., 2005). HPLC in 

combination with ESI time-of-flight MS (ESI-TOF-MS) has also been used for metabolic 

fingerprinting (Vorst et al., 2005; Boccard et al., 2007). A new approach is presented, 

making it possible to compare multiple full-scan LC-MS metabolic profiles, which has 

been used in order to differentiate eight genotypes of potato tubers harvested at two 
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different times in the growing  season (Vorst et al., 2005). The other method is using LC-

TOF-MS metabolic fingerprinting to detect metabolomic modifications occurring in 

Arabidopsis thaliana upon stress induction by wounding (Boccard et al., 2007). Also, 

HPLC combined with APCI ion-trap MS has been used for the rapid screening and 

detection of polyphenol antioxidants from Helichrysum stoechas (Carini et al., 2001). For 

metabolic profiling and metabolomics approaches, LC-MS and LC-MS-MS methods 

have been reported (Arnoldi et al., 2004; Yang et al., 2005; Stobiecki et al., 2006; Moco 

et al., 2006). By applying capillary-HPLC-MS to crude plant extracts, Tolstikov et al. 

(2003) showed that it was possible to detect several hundreds of peaks (Tolstikov et al., 

2003). De Vos et al. (2007) presents a thorough protocol for untargeted large-scale plant 

metabolomics using LC-MS, with thorough descriptions of all steps from sample 

preparation/extraction, over analysis and finalizing with a description of data-analytical 

steps (de Vos et al., 2007). Application of LC separation prior to MS detection reduces 

suppression by matrix effects, thereby increasing the numbers of metabolites that can be 

identified. It is though not all metabolites that can be detected by MS due to problems 

with ionization.  

 

Gas chromatography 

Another very well established separation method often applied for metabolite approaches 

is gas chromatography (GC) often in combination with MS. A major prerequisite for GC-

MS is sample volatility which is necessary to enable separation in the gas phase. Analytes 

can either be naturally volatile or chemically derivatised to yield volatile compounds, 

though a large number of metabolites are not amenable to GC-MS even after 

derivatisation (Sumner, 2006). One of the first examples of GC-MS in plant 

metabolomics was published in 1991, describing the classification of metabolite profiles 

following the application of known and unknown herbicides to barley seedlings (Sauter et 

al., 1991). For each treatment, peak intensities in the resulting profiles were compared 

with those from untreated plant profiles, and computer assisted evaluation of the resulting 

data revealed that, generally, the treatments gave reproducible “response patterns” 

characteristic of the respective treatment. The authors conclude that metabolic profiling 

has shown to be useful in classifying compounds of known or unknown modes of action 
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on the basis of the characteristic response patterns (Sauter et al., 1991). Where Sauter et 

al. (1991) were able to resolve between 100 to 200 peaks, approximately 10 years later, 

Fiehn et al. (2000) showed that GC-MS allowed an automatically quantification of 326 

distinct compounds from leaf extracts, and that it was possible to assign a chemical 

structure to approximately half of these compounds (Fiehn et al., 2000). More recently, 

GC-MS was used for metabolic fingerprinting to differentiate between transgenic and 

non-transgenic lettuce, and to identify the pleiotropic responses (Garratt et al., 2005).  

 

Capillary electrophoresis 

Capillary electrophoresis-MS (CE-MS) has the potential to be widely applied in the field 

of plant metabolomics, since the technique offers a high chromatographic resolution, 

sensitivity and fast separation of charged metabolites, but as of yet, the technique is not 

well developed within this field (Dunn et al., 2005a). One reason for this could be that 

migration time shifts can pose a great challenge when a large number of samples have to 

be analysed (Ramautar et al., 2009). Sato et al. (2004) have though developed a high-

throughput CE-MS technology that can simultaneously quantify a large number of 

primary metabolites. Parallel use of a capillary electrophoresis-diode array detector (CE-

DAD) system further enables almost all water-soluble intracellular metabolites to be 

analysed. This is demonstrated with rice leaves (Oryza sativa L. ssp. japonica), where the 

method enables a measurement of the levels of 88 main metabolites involved in the 

glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, photorespiration 

and amino acid biosynthesis (Sato et al., 2004). Sato et al. (2008) have also used CE-MS 

together with CE-DAD to analyse the dynamic changes in the level of 56 basic 

metabolites in rice foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr 

period (Sato et al., 2008). Other examples of CE and CE-MS are to be found within the 

targeted approaches (Jia & Terabe, 2005; Petersen et al., 2006). 

 

Direct infusion mass spectroscopy 

As mentioned above, rapid screening methods are often requested for metabolic 

fingerprinting approaches. Direct infusion MS (DI-MS) offers a rapid, overall impression 

of the composition of the biological extract in an unbiased analysis. Ion suppression can  
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pose a problem, why DI-MS is suited for classification studies rather than quantification 

studies (Dunn & Ellis, 2005). The only selective property is whether positive or negative 

ionization is used, as well as e.g. ESI, API or APCI. Several groups have reported on the 

use of DI-MS methods for metabolic fingerprinting approaches, such as Goodacre et al. 

(2003) who analysed unfractionated leaf sap (30 s per sample) in order to discriminate 

between plants subjected to different photoperiod treatments (Goodacre et al., 2003), or 

Scholz et al. (2004) who reported on a microchip-based nanoflow-DI-MS technique for 

plant metabolite fingerprinting purposes (Scholz et al., 2004). Dunn et al. (2005) 

analysed polar tomato fruit extracts by DI-MS using ESI-TOF-MS and were subsequently 

able to differentiate between cultivated tomatoes and wild tomatoes (Dunn et al., 2005b). 

Where FT-IR lack in resolving power (see below), Fourier-transform ion cyclotron 

resonance MS (FT-MS) employs an enormous resolving power (Fiehn, 2001). Gray and 

Heath (2005) were able to examine the effects of cold acclimatization on the metabolome 

using an untargeted metabolic fingerprinting approach with FT-MS (Gray & Heath, 

2005).  

 

Nuclear magnetic resonance spectroscopy 

Another largely applied rapid technique for metabolite detection is nuclear magnetic 

resonance (NMR) spectroscopy, which is capable of detecting a broad range of 

metabolites in an untargeted way, despite a relatively low sensitivity. NMR spectroscopy 

is non-destructive, and the possibility exists to analyse samples in vivo (Ratcliffe & 

Shachar-Hill, 2005). Aranibar et al. (2001) and Ott et al. (2003) have used 1H-NMR 

spectra of crude plant extracts to classify corn plants based on treatments with herbicides 

affecting 19 different biochemical pathways (based on mode of action) (Aranibar et al., 

2001; Ott et al., 2003). In resemblance with these reports, Aliferis and Chrysayi-

Tokousbalides (2006) used 1H-NMR fingerprinting to investigate the mode of action of a 

phytotoxin on plants, and to discriminate these plants from other plants treated with 

different herbicides (Aliferis & Chrysayi-Tokousbalides, 2006). Furthermore, 1H-NMR 

has been proven useful for both metabolite fingerprinting and profiling in plants  

(Krishnan et al., 2005). 
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Infrared spectroscopy 

Fourier transform-infrared spectroscopy (FT-IR) is a well established analytical tool that 

can be used to obtain spectral fingerprints of biological samples, enabling a rapid, 

reagentless, non-destructive analysis for unbiased screening purposes (Dunn et al., 

2005a). FT-IR has for example been used for the identification of potential salt-stress 

biomarkers in tomato (Johnson et al., 2003). The plant metabolic fingerprinting potential 

of near infrared (NIR) spectroscopy should also be recognised, even though it has not 

been widely used within plant metabolomics this far (Dunn & Ellis, 2005). 

 

Thin layer chromatography 

Thin layer chromatography (TLC) is a low resolution tool, which has not been used 

within plant metabolomics. A method has been presented though, using High 

Performance Planar Chromatography (HPPC) to detect biomarker patterns in plants 

exposed to a herbicide (Ravn et al., 2005b). Within the field of bacterial metabolomics on 

the other hand, TLC has developed fast (Ferenci & Maharjan, 2005), since the first report 

in 1998 by Tweeddale et al. who used two-dimensional-TLC (2D-TLC) to follow the 

changes in the 70 most abundant compounds in E. coli under varying culture conditions 

(Tweeddale et al., 1998).  

 

3.3 Chemometrics 

 

Regardless of which analytical method is used, metabolomic analyses will result in large 

collections of raw data. To handle and interpret the complexity of the data generated, 

multivariate statistical tools (chemometrics) are very suited. Changes in metabolites may 

be easily recognised or subtle, and the subtle changes will require statistical processing to 

determine whether or not they are significant. The most popular approaches include 

unsupervised methods such as principal component analysis (PCA), hierarchical 

clustering (HCA) and K-means clustering, as well as more recently, the self-organizing 

maps (SOMs), and supervised methods such as partial least squares (PLS), and artificial 

neural networks (ANN) – see below for a description of these methods. Unsupervised 

analyses are mainly guided by the variance and covariance (or correlation) in the data 
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sets, and therefore useful for finding patterns, whereas supervised methods on the other 

hand are guided by the pre-existing knowledge, where each sample or variable is 

associated to an already known class (Mehrotra & Mendes, 2006). These statistical 

approaches require a careful experimental design, which includes biological replicates 

(sampling), as well as extraction replicates and analysis replicates (both analytical) 

(Sumner et al., 2003), in order to be able to have an estimation of the “noise” introduced 

by the different sources of variation. The chemometric step is independent on the nature 

of the origin of the samples, and therefore examples from different metabolomics fields 

(or even other applications) could 

be highlighted, but for the matter 

of simplicity, only examples 

within plant metabolomics will 

be given here. 
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Data processing 
Baseline removal by calculating 
the first derivative Before applying any multivariate 

data analysis to the data obtained, 

it is necessary – more or less 

extensively – to process the data. 

The processing steps needed are 

dependent upon the nature of the 

data, e.g. severely shifted 

chromatographic data, or minor 

shifts occurring in DI-MS and 

NMR, and the nature of the 

multivariate data analysis to be 

applied. Baseline correction is 

most often necessary, and 

dependent on the nature of the 

data, it can be done by e.g. 

estimation of the baseline, or 
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Figure 4. Illustration of data processing steps of UPLC 
raw profiles. First, the baseline is removed by 
calculating the first derivative, and then peak alignment 
is performed by correlation optimised warping (COW). 
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calculating the first derivative (Christensen et al., 2005). If the signal-to-noise ratio (S/N) 

is too low, it can be improved by the introduction of smoothing and filtering (Hansen & 

Smedsgaard, 2007). In order for the multivariate data analysis to be able to recognize the 

same component in different samples as the same component, peak matching is crucial 

when chromatograms or spectra are translated into data vectors. Concerning 

chromatographic data, classification and/or identification of samples have traditionally 

been performed using manual peak detection and identification, which is subjective. To 

achieve an unbiased peak matching, the chromatograms can be aligned automatically, 

using different warping algorithms available like e.g. correlation optimised warping 

(COW) (Nielsen et al., 1998; Tomasi et al., 2004) or the freeware MetAlign (de Vos et 

al., 2007). Figure 4 shows an illustration of baseline removal and peak alignment of 

UPLC-data. For NMR or MS based metabolomics, processing using “binning” can be 

employed, where a bin of fixed width is applied to a spectrum line or m/z-value, and 

following this bin is integrated and represented as a single variable (Boccard et al., 2007). 

Normalisation (also termed row-wise scaling) can in some circumstances be useful prior 

to data analysis, since it compensates for variation in the data due to differences in the 

sample size or optical path length (Hendriks et al., 2005). Finally, scaling (also termed 

column-wise scaling) can be necessary in order to unify the influence of all 

components/variables (Brereton, 2003). When scaling is performed in combination with 

mean centering, this is often termed autoscaling.  

 

Univariate methods 

Before applying multivariate data analysis methods, univariate methods can be applied in 

order to test for significant metabolites that are increased or decreased between different 

groups. These univariate methods for data that are normally distributed include e.g. 

ANOVA (analysis of variance), and Student t-tests (Walmsley, 2006).   

 

Principal component analysis 

Principal Component Analysis (PCA) is an unsupervised method, useful for providing a 

visual classification of multivariate data. PCA is designed to extract and display the 

systematic patterns of variation between samples in as few principal components as 
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possible, thereby reducing the dimensionality of the data set. When the captured variance 

is relevant to metabolic variations and sample classification, similar sample scores will 

cluster together on a score plot. The relation between the measured variables, which is the 

columns in the sample matrix, is defined by the loading vectors. In this way, the loading 

plot shows the influence (weight) of the individual X-variables in the model. Often, a 

small set of PCs (2 or 3) account for over 90% of the total variance. For more information 

on PCA, the reader is referred to Brereton (Brereton, 2003). PCA is until now the most 

widely applied multivariate data analysis tool to evaluate and classify plant metabolomic 

data.   

 

 
Figure 5. PCA score plot (PC1 x PC2). C, control plants; W, wounded plants; A, day A; B, day B; S, 
spiked samples. (Reproduced from (Boccard et al., 2007)).   
 

PCA has been used to classify four different genotypes of   Arabidopsis plants based on 

GC-MS data (Fiehn et al., 2000), as well as four potato genotypes (Roessner et al., 2001), 

to classify eight potato genotypes harvested at two developmental stages according to 

genotype and harvest time, based on LC-MS data (Vorst et al., 2005). PCA has also been 

used to discriminate between stressed (by wounding) versus control plants based on a 

LC-MS metabolic fingerprint (Boccard et al., 2007), which is illustrated in Figure 5 

showing a PCA score plot of PC1 versus PC2. The control samples (CA and CB) were 
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clearly separated from the wounded plant samples (WA and WB). The control samples 

share a negative coordinate on PC1, while wounded plant samples present a positive 

score (Boccard et al., 2007). This can be used when inspecting a loading plot in order to 

understand the metabolic differences among the samples.     

 

Hierarchical cluster analysis 

Hierarchical cluster analysis (HCA) is used as another method of unsupervised 

multivariate data analysis. HCA allows for a visualisation of the model in the form of a 

dendrogram that illustrates the relationships between samples. The similarity of two 

samples can be determined from the value on the distance axis at which they join a single 

cluster (the smaller the distance, the more similar the sample). Further details on HCA 

can be found in Brereton (Brereton, 2003).  

 

 

 

 

 

 

 

 

 

Reproduced from (Boccard et al., 2007)). 

Figure 6. HCA analysis with PCs. PC1 (1st branch) clustered control (C) vs. wounded plants (W), PC2 
(2nd branch) separated samples of day A (A) from samples of day B (B) and PC4 (4th branch) 
discriminated between raw (−) and spiked plant samples (s). (
 

HCA has been used, together with PCA, to classify four different potato genotypes 

(Roessner et al., 2001), and to discriminate between stressed (by wounding) versus 

control plants based on a LC-MS metabolic fingerprint (Boccard et al., 2007). The 

discrimination between wounded plants and controls are shown in Figure 6, where HCA 
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using Euclidean distances and complete linkage aggregation method was used for 

clustering (Boccard et al., 2007). K-means clustering is another method of grouping data, 

where a fixed number (K) of groups are used. The principal is similar to HCA, but the 

way in which the grouping is made is different (Sumner et al., 2003). Self-organizing 

maps (SOMs) are unsupervised artificial intelligence methods that are designed to group 

data within a predefined number of groups that data will be classified within (Sumner et 

al., 2003). 

 

Artificial neural network 

Artificial neural network (ANN), often just termed neural network (NN), is a supervised 

non-linear statistical modelling tool, which can be used to model complex relationships 

between inputs and outputs or to find patterns in the data. ANN consists of a layered 

network of nodes, each of which performs a simple operation on several inputs to 

produce a single output (Ebbels, 2007). ANN has been applied in metabolic profiling of 

plants to classify NMR spectra of plant extracts according to the mode of action affected 

by different herbicides (Aranibar et al., 2001; Ott et al., 2003), as well as to discriminate 

between plants subjected to different photoperiod treatments (Goodacre et al., 2003).  

 

Partial least squares  

Partial least squares (PLS) is a supervised regression extension of PCA, where the 

information in two blocks of variables, X and Y, are connected to each other by a linear 

multivariate tool. It is one of the most common methods used to determine a quantitative 

relationship between a descriptor matrix X and a response matrix Y. The Y matrix can 

contain both quantitative and qualitative information. For details on PLS, see Brereton 

(Brereton, 2003). PLS has not yet found broad use within plant metabolomics, though 

new PLS-based methods are being reviewed (Gabrielsson & Trygg, 2006).   
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4. Environmental metabolomics 
 

 

 

 

 

4.1 Introduction/overview    

 

This chapter is included only to draw the attention to the emerging field of 

“environmental metabolomics”, and it is not intended to give any specific examples from 

the literature. Environmental metabolomics can very shortly be defined as the application 

of metabolomics to characterise the interactions of organisms with their environment 

(Bundy et al., 2009). In line with metabolomics in general, the approach analyses changes 

in the concentration of metabolites, which are the precursors and products of enzymatic 

activity, and then attempts to associate these changes with biological function and/or 

regulation (Lin et al., 2006). Environmental metabolomics began in earnest around the 

turn of the century (Bundy et al., 2009), where metabolomic studies of earthworms is the 

most well-established (Bundy et al., 2004; Lin et al., 2006; Rochfort et al., 2009; Viant, 

2009). As such, metabolomics is finding an increasing number of applications in the 

environmental sciences, ranging from understanding organismal responses to abiotic 

stressors, including both natural factors such as temperature and anthropogenic factors 

such as pollution, to investigating biotic-biotic interactions, such as infection and 

herbivory (Bundy et al., 2009). The approach has been used to suggest biomarkers for the 

risk assessment of chemicals, and it can in principle allow scientist to better understand 

the underlying mechanisms of action of toxic compounds in the environment (Lin et al., 

2006). Some of the primary goals of environmental metabolomics are to distinguish the 

metabolic fingerprints of environmentally stressed organisms from healthy controls, and 

to identify the most critical biochemical differences between these groups (Lin et al., 

2006).  
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Lately, a special issue of the journal “Metabolomics” has focussed on the applications of 

metabolomics to the environmental sciences in order to recognise and highlight the 

growing interest in applying metabolomic techniques to the environmental sciences, and 

the diversity of the nature of such studies (Viant, 2009). In summary, the eleven original 

articles reported in this issue include studies on two fish and two aquatic invertebrate 

species (including marine and freshwater), five terrestrial invertebrate species (of which 

four are earthworms), three plant species, and multiple microbial strains (Viant, 2009). 

The applications focus upon ecotoxicology, chemical risk assessment and biomarker 

discovery, tools for assessing ecological and soil health, and investigations into the 

effects of other biotic and abiotic environmental stressors (Viant, 2009).  
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5. Case study 
 

 

 

 

 

5.1 Introduction 

 

This chapter presents the experimental setup (including background theory) that has been 

the basis for the papers included in this thesis (PAPERS I, II and III). At first, we have 

searched for biomarkers within a known affected pathway (PAPER I and II), and then we 

have approached the search for biomarkers in an untargeted way by applying the idea of 

metabolic fingerprinting (PAPER III).  

 

Experimental setup 

 

The experimental setup is described in detail in PAPER 

II. Seeds of Brassica napus L. cv. Pollen (rapeseed) have 

been germinated and then transferred to hydroponic 

nutrient solutions as illustrated in Figure 7. After 7 days 

of acclimatisation to the nutrient solution, treatment with 

glyphosate was started, with concentrations of 0, 1, 5, 10, 

20, 30 and 50µM. Each treatment consisted of five 

seedlings in one pot, and four replicates were made of 

each treatment. After 9 days of treatment, the plants were 

harvested, shoots from each pot were pooled and freeze 

dried. The visual fitness of the plants at the day of harvest is 

 
 

 

Figure 7. Photograph of
rapeseed (B. napus L.)
seedlings in the hydroponic set-
up, at the first day of transfer. 
 

shown in Figure 8.  
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Figure 8. Photograph of rapeseed (B. napus L.) seedlings grown in hydroponic solutions with varying 
glyphosate concentrations as indicated, 9 days after treatment start. A-D denotes the four replicates (=pots) 
made for each treatment (Reproduced from (Petersen et al., 2007)).  
 
 
 
Glyphosate – Mode of Action 

Glyphosate (N-(Phosphonomethyl)glycine) is a nonselective herbicide that is rapidly 

translocated throughout the plant via the phloem. Even though it can take up to several 

days or weeks for plant death to occur, specific biochemical effects can often be observed 

within a few hours following glyphosate application (Foley et al., 1983). The biochemical 

target of glyphosate is described to be the transformation of shikimic acid into 

chorismate, and thereby the inhibition of the synthesis of aromatic compounds produced 

through the shikimate and chorismate pathway (Jaworski, 1972; Amrhein et al., 1980).  
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Figure 9. Shikimate pathway in plants. EPSPS indicates the enzyme 5-enolpyruvylshikimate 3-phosphate 
synthase, the primary target of glyphosate in plants. 
 

 

The enzyme EPSP (5-enolpyruvylshikimate 3-phosphate) synthase (EPSPS, E.C. 

2.5.1.19), which catalyzes the formation of EPSP from phosphoenolpyruvate (PEP) and 

shikimate-3-phosphate (S3P), is thus the primary target of glyphosate in plants 

(Steinrucken & Amrhein, 1980). The shikimate pathway shown in Figure 9 produces the 

important branch point intermediate, chorismate, from erythrose-4-phosphate and PEP. 

Chorismate is then the biosynthetic precursor for anthranilate (o-aminobenzoic acid), 

prephenate, isoprephenate and various other aromatic compounds as illustrated in Figure 

10. Prephenate is a precursor for tyrosine and phenylalanine, anthranilate is precursor for 

tryptophan and isoprephenate is precursor for the group of m-carboxysubstituted aromatic 

amino acids and metabolites thereof (Bjergegaard et al., 1999). The aromatic amino acids 

and chorismate are also precursors for a great range of aromatic compounds (Bjergegaard 

et al., 1999), and it is assumed that up to 60% or more of the ultimate plant mass (dry 

weight) is represented by molecules once shuffled through the shikimate pathway 

(Jensen, 1985). In plants belonging to the Brassicaceae (Cruciferae) family (to which 

rapeseed belongs), a special important group of compounds that derive partly from the 

aromatic amino acids, namely the glucosinolates, are found. This group of bioactive 

compounds is characteristic for, and always present in, this plant family (Bjerg et al., 

1984; Sørensen, 1990; Rodman, 1991; Sørensen, 2001; Hill et al., 2003). 
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Figure 10. Essential plant metabolites derived from chorismate. The metabolites analysed in Case study I 
are highlighted with grey (Reproduced from (Petersen et al., 2006)).     
 

Initially, shikimate-3-phosphate (S3P) is the compound expected to accumulate to the 

highest level due to the inhibition of EPSP synthase by glyphosate (Figure 9), and not 

shikimic acid as detected in response to glyphosate treatment.  This aspect has only been 

discussed briefly by Amrhein et al. (Amrhein et al., 1980) and later by Harring et al. 

(Harring et al., 1998), proposing an idea similar to Boudet et al. (Boudet et al., 1985). 
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According to this idea the reason for the possibility of shikimate detection as opposed to 

S3P in glyphosate treated plants could be, that S3P is transferred to phosphatase 

containing vacuoles in higher plants (Boudet et al., 1985), thereby facilitating a 

hydrolysis of the phosphate ester with transformation of S3P into shikimic acid.  

 

4.2 Two approaches 

 

Metabolite profiling 

In this study we targeted our analysis against some of the metabolites known to be 

affected by glyphosate. We were able to identify and quantify shikimate, the primary 

affected metabolite, in the crude plant extract by high performance CE (HPCE) (PAPER I 

& II). Furthermore, after a simple clean-up procedure, we made a quantitative screening 

of the aromatic amino acids, and the glucosinolates derived there from, in order to 

investigate how the metabolites downstream from the affected site of action developed in 

response to glyphosate treatment (PAPER II). In addition to this, we also analysed the 

non-aromatic amino acids, as well as the aliphatic glucosinolates (PAPER II). 

 

This study demonstrates that the trend in metabolic changes can differ significantly from 

plants exposed to very low concentrations of glyphosate compared to plants exposed to 

higher, but still sublethal, concentrations of glyphosate. The present study confirms the 

potential of shikimate as a biomarker for the exposure of plants to glyphosate both taken 

up via roots and/or leaves, and the results show that shikimate has a linear response to the 

glyphosate dose applied to the roots. Finally, it is demonstrated that glyphosate even at 

the lowest sublethal concentration (1 µM) greatly affects the composition and 

concentrations of the metabolites in the shoots derived from the shikimate pathway, even 

when no visual effects can be seen, or shikimate can be detected. Since these responses 

have not shown a linear dose-response pattern, it is not possible to use one single 

metabolite as a biomarker of glyphosate exposure. In order to achieve a more sensitive 

response than shikimate can offer, it is necessary to utilise a combination of a range of 

metabolites sensitive to glyphosate exposure, and for this purpose, post-analytical 

methods like multivariate data analysis could turn out to be a sensible choice of tool. 
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Metabolic fingerprinting 

One of the conclusions from above (PAPER II) was that the selected metabolites 

analysed showed complex patterns in response to glyphosate exposure, and that they 

responded at the lowest concentrations of exposure to glyphosate (1 µM), where no visual 

effects, decrease in shoot DW or shikimate could be detected, indicating that a biomarker 

response more sensitive than that of shikimate could be established for plants exposed to 

glyphosate. Therefore, the second approach was to apply the idea of metabolic 

fingerprinting in the search for a biomarker response to glyphosate exposure. For this 

purpose, we analysed the same plant crude extracts as analysed in PAPER I and II, but 

this time by UPLC with diode array detection (UPLC-DAD), and used multivariate data 

analysis to exploit the data (PAPER III). Prior to multivariate data analyses, it was 

necessary to apply a number of processing steps, such as baseline correction, retention 

time alignment (warping), normalisation and scaling (see PAPER III for a detailed 

description). These processing steps are of crucial importance in order to be able to 

perform PCA or other chemometric analyses, and the different steps (choice and quality 

of the processing) greatly affect the quality of the results of these analyses. 

 

This study has presented a novel approach to detect biomarkers in plants in response to 

herbicide exposure. Using a protocol including LC metabolic fingerprints, ANOVA 

variable selection and PCA, it is possible to make a clear separation of plants exposed to 

20 µM glyphosate or more from the control plants. Furthermore, it was also possible to 

discriminate exposures to 5 and 10 µM glyphosate from exposures to 0 and 1 µM 

glyphosate. The study also demonstrates that it is possible to identify the peaks 

responsible for the differentiation between treated and control samples. If the analytical 

sensitivity is increased, e.g. by DI-MS, LC-MS or NMR, the separation of this group will 

most likely improve, as preliminary results with DI-MS have indicated (data not shown).  
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6. Discussion  

 

 

 

 

 

In general 

Whether we are talking of a single biomarker or metabolic fingerprint/multiple 

biomarkers, a range of general conditions should be considered and investigated, before it 

can be used as a realistic alternative to e.g. soil analyses. At first, it is important to be able 

to extrapolate results obtained under laboratory conditions to true environmental 

conditions of the ecosystem under investigation. Laboratory conditions are often highly 

controlled (e.g. growth chambers), and limitations might arise when transferring 

biomarker results from here to the field: how are the biomarker(s) affected by other 

abiotic and biotic stressors, such as nutrient status, heat/cold, drought/wet, other 

pesticides, insects etc. This is also argued by Bundy et al. (2004), in connection with 

environmental metabolomics, where they highlight the necessity to validate the response 

of a potential biomarker compound, not only at the field scale, but also with samples from 

an authentically contaminated site, before it could be considered for realistic use in 

ecotoxicity assessment. This is essential if the biomarker response is to be usable under 

the heterogeneous and temporally variable conditions typically found in the field (Bundy 

et al., 2004). As also indicated above, many environmental conditions and stressors can 

affect an organism’s metabolome. This again affects the complexity of studying 

organisms in the field, where their “normal metabolism” is a constantly moving target 

that changes (or cycles) as a response to annual cycling of environmental conditions 

(Bundy et al., 2009). Therefore, Bundy et al. (2009) argues that it is important to define 

the baseline metabolism (including the effects of site, seasonality, temperature, nutrient 

level and quality, etc.) of organisms that dwell in the natural environment prior to 

investigating, for example, the effects of anthropogenic stressors such as pollution.  
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This is where it becomes apparent how important it is to have a biomarker, or 

combination of biomarkers, that is stable, sensitive and reproducible, as well as ideally 

specific to a single contaminant or group of contaminants (Bartell, 2006). Subsequent, the 

choice of e.g. test plant can be central for the applicability of the biomarker to field 

conditions. It has to be tested whether the biomarker response is specific only for the 

plant species tested or if it applies to a broader range of plant species, and whether the 

response is quantitatively equal in different plant species. Also the adaptation of already 

present test plant populations to low concentrations of contaminants and the homogeneity 

of the plant population are critical factors for the efficiency and reliability of a biomarker. 

 

When using the “metabolomics” approach to search for e.g. biomarkers, not only does 

research potentially becomes more discovery driven with a greater likelihood of obtaining 

innovative insights, the metabolomic profile also offers the potential to develop 

biomarkers that indicate not only that exposure has occurred but also that there is a 

potential biological consequence of that exposure (Miller, 2007). Even though high-

throughput bioanalytical and statistical analyses have been developed or are under 

development to support the field of metabolomics (i.e. to distinguish between stressed 

and healthy organisms), many challenges still remain in order to obtain a clear separation 

between the metabolic fingerprints of stressed and control organisms. Besides the 

“technical variance” introduced by the sample extraction and data acquisition, 

considerable metabolic variation can also arise due to differences in the physiologies of 

the organisms under study, and this introduces yet more complexity in the metabolic 

fingerprint (Lin et al., 2006). Furthermore, it is possible that signal-to-noise problems 

resulting from inter- and intra-individual susceptibility will be too large to have 

predictive value and allow adequate data interpretation at environmentally relevant 

exposure levels. Although it has some limitations, metabolomics has great potential for 

facilitating a better understanding of the pathways involved in biological systems (Lin et 

al., 2006). It can, on the other hand, be more questionable whether the technology will be 

able to translate into something “useful” (e.g. for regulatory agencies) and not just 

academic (Miller, 2007).  
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In relation to the two approaches  

Both approaches – targeted and untargeted – proved capable of making a separation 

between glyphosate exposed plants and control plants with a detection limit between 10 

and 20 µM glyphosate in this specific experiment. At concentrations of 10 µM 

glyphosate and less, it was not possible to make a significant separation of glyphosate 

treated plants from the control plants. Though screening results from the targeted 

approach showed metabolic changes even at 1 µM glyphosate exposure, these changes 

could not be unravelled by the methods applied in case study II, though it was possible to 

make a separation with the ‘0’ and ‘1’ exposures in one group, and the ‘5’ and ‘10’ 

exposures in another group . As mentioned above, preliminary studies applying DI-MS 

using ESI-TOF-MS of the plant crude extracts has showed promising results with respect 

to increasing the detection limit (data not shown). This implies that there is a need for 

higher sensitivity than UPLC-DAD can provide, if it is wished to have a lower detection 

limit. On the other hand, it might not be necessary to have a lower detection limit, and 

then both methods might prove suitable to detect plants exposed to sub-lethal levels of 

glyphosate.     

 

Specificity, sensitivity and stability 

Ernst & Peterson (1994) has argued that ideally, biomarkers should be selected from the 

events of biochemical or physiological pathways in order to enhance specificity (Ernst & 

Peterson, 1994). From the results of the targeted approach, this makes sense both with 

respect to specificity and sensitivity. Shikimate must be considered to be very specific to 

glyphosate exposure, and from 20 µM and up, also very sensitive. It can of course be 

argued that other responses were more sensitive, but these metabolites were not showing 

a consistent response over the range of concentrations of exposure. On the other hand, the 

results from the untargeted approach also showed sensitivity comparable to that of 

shikimate, enabling a differentiation from control plants from 20 µM glyphosate exposure 

and upward, and possibly with lower exposures as well. The specificity is at first not 

expected to be comparable to that of shikimate, even though the identity of the peaks 

responsible for the separation is yet not clarified. But since the differentiation here is 

based on several peaks, it can be expected that this combination of responses is just as 
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specific as that of the single biomarker shikimate. Since shikimate build up is a pathway 

specific metabolic response to glyphosate, it can be expected to be specific both under 

laboratory and field conditions, as also argued by Brain & Cedergreen (2009). Another 

advantage highlighted by Brain & Cedergreen is that the pathway specific metabolites are 

relatively insensitive to growth conditions, which makes them suitable under field 

conditions (Brain & Cedergreen, 2009). Whether metabolic fingerprints can be expected 

to be as specific as shikimate, is not investigated. One can argue though, that a fingerprint 

must be very affected by growth conditions, since it reflects “all” metabolites measured. 

Whether the ANOVA filtering and PCA are able to detect the metabolites related to 

glyphosate exposure only cannot be said, since the peaks important for the model have 

not been identified yet. If the metabolic fingerprint does not prove specific and stable 

enough when transferred to field conditions, the method will still be of great value for 

identifying a biomarker or combination of biomarkers specific to the stressor under 

investigation (Shulaev et al., 2008; Weckwerth, 2008).      

 

Future studies 

Clearly, a well designed experiment that attempts to minimise background metabolic 

variation is extremely important (Lin et al., 2006), and therefore, future studies – partly 

already conducted – are designed in order to test the specificity, sensitivity and stability 

of both the single biomarker, shikimate, as well as the combination of biomarkers 

detected in the untargeted approach. These studies include: 1) exposure of plants to other 

stressors than glyphosate (e.g. nutrient deficiency, temperature, light), 2) exposure of 

plants to others stressors than glyphosate, but in combination with glyphosate, 3) 

exposure of plants to two or more stressors at a time, both in combination with 

glyphosate and without, and 4) the above mentioned experiment, conducted at three 

different lengths of exposure: 3 days, 9 days or 18 days.  The setup is illustrated in Table 

1. 
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Table 1. Design of experiments with rapeseed (B. napus L.) seedlings exposed to different treatments. All 
necessary nutrients have been added to the hydroponic solutions, except where separately stated that one or 
two nutrients have been left out of the hydroponic solution.  
 

  No. of replicates Glyphosate 
(µM)  

Treatment 
 3 days 9 days 18 days 

0  Control  7 7 7 
1    3 3 3 
5    6 6 6 

10    3 3 3 
15    3 3 3 
30    3 3 3 
0  - N  6 6 6 
0  - P  3 3 3 
0  - Fe  3 3 3 
0  Shadow  3 3 3 
0  10 °C  3 3 3 
5 - N  2 2 2 
5 - P  2 2 2 
5  - N, - P  2 2 2 
5  10 °C  2 2 2 
5  10 °C, - N  2 2 2 
5  10 °C, - P  2 2 2 
5  10 °C, -N, - P  2 2 2 

 

 

From experiments described in point 1, it is hoped to confirm that shikimate is not being 

produced, or that the combination of responses identified in PAPER III neither is being 

produced. This will confirm whether both approaches have resulted in a detected 

response specific to glyphosate exposure. The experiments described in the second and 

third points (2 and 3) are included in order to test the stability of the biomarker responses. 

The length of exposure, as mentioned in point 4, is included in order to test the stability 

of the responses over time. 
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7. Conclusions and perspectives 
 

 

 

 

 

The need to identify and monitor soil pollution is indisputable, and so is the need to find 

cost-effective alternatives to the traditional, costly soil analyses. The implementation of 

plant biomarkers is still in its infancy, despite that the interest and work within this field 

was intensified almost two decades ago. The explanation to this is probably due to the 

fact that plants respond to all changes in their environment, whether abiotic or biotic. In 

this respect, plant biomarkers – dependent on their nature – can also be expected to be 

affected by these abiotic and biotic influences. Therefore, if a plant biomarker is to be 

used under field conditions, it is necessary to have a biomarker with a specific, sensitive 

and stable response towards the specific contaminant.  

 

In this project, two approaches have been used in order to search for a biomarker or 

biomarker pattern in response to glyphosate exposure of rapeseed (B. napus L.) seedlings: 

the targeted approach (metabolite profiling), searching for biomarkers within known 

affected metabolites, and the untargeted approach (metabolic fingerprinting), searching 

for biomarkers within “all” metabolites using chemometric tools. For both approaches, an 

experimental set-up with rapeseed seedlings exposed to a range of glyphosate 

concentrations (0, 1, 5, 10, 20, 30, 50 µM) via hydroponic solutions was used.  

 

In the targeted approach (PAPER I and PAPER II), it was confirmed that shikimate is a 

specific biomarker in response to glyphosate exposure, and that shikimate has a linear 

response to the glyphosate dose applied to the roots at concentrations above 10 µM. 

Furthermore, it was demonstrated that glyphosate even at the lowest sublethal 

concentration (1 µM) greatly affects the composition and concentrations of the 

metabolites in the shoots derived from the shikimate pathway, even when no visual 
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effects can be seen, or shikimate can be detected. These responses did not show a linear 

dose-response pattern, and therefore it was not possible to use one single metabolite – 

apart from shikimate – as a biomarker of glyphosate exposure. 

 

In the untargeted approach (PAPER III), the results showed that by applying an ANOVA 

filter and following unsupervised analysis to the liquid chromatography fingerprints, it 

was possible to identify four clusters/groups according to exposure, ‘low exposures’  

(corresponding to 0, 1, 5 and 10 µM) and 20, 30 and 50 µM. Within the ‘low exposure’ 

cluster, the PCA model was also capable of making a separation with the ‘0’ and ‘1’ 

exposures in one group, and the ‘5’ and ‘10’ exposures in another group. Thus, this 

method reveals a clear “detection limit” somewhere between 10 and 20 µM, exactly like 

the targeted approach, but with indications of a “detection limit” as low as 5 µM. This 

study furthermore presented a novel approach to detect biomarkers in plants in response 

to herbicide exposure, based on metabolic fingerprints and multivariate data analysis, as 

well as to identify the peaks responsible for the differentiation between treated and 

control samples.  

 

The perspectives for using plant biomarkers to screen for herbicide exposure are still 

long-term. Plant biomarkers have this far not been implemented as a standard screening 

tool, and before this can be done, the sensitivity, specificity and stability of the 

biomarkers towards other biotic and abiotic stressors has to be tested. Without doubt, 

plant metabolomics, combining untargeted chemical analysis with multivariate data 

analysis, will serve a useful approach and tool for this purpose. It should, though, not be 

done at the expense of the biochemical knowledge on the mode of action of the herbicide 

investigated, but as a complementary approach. I do not think that it will be possible to 

establish a quantitative measure using plant biomarkers in the field, since plants are 

affected by a large number of factors. In my opinion, focus should instead be directed 

towards establishing a qualitative measure using plant biomarkers, and the method of 

using plant biomarkers should be applied as a preliminary screening method.  
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The link from hydroponics (as has been used in this project) to soil and field conditions 

has to be established before the approach using plant biomarkers to screen for herbicide 

contamination in soil can be applied. Furthermore, the aspect of having a natural plant 

habitat useful for sampling is yet another challenge to be overcome, since plants are not 

by nature present at sites expected to be contaminated, e.g. it can be a parking spot, 

housing area etc. Other challenges to be dealt with before the idea of plant biomarkers is 

becoming a reality is the question whether a biomarker(pattern) present in one plant 

species can also be found in another plant species, as well as the question of how the 

biomarker(pattern) might change following environmental or climatic changes.    
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