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Abstract

This paper explores a generalized spatial voting model in which
parties are not supposed to be identical before the game. This new
approach to the political market leads to substantial changes in par-
ties’ss strategies. Our model provides new explanations of why parties
may choose non median policies, i.e. other than that preferred by the
median voter. It also provides explanations on why elections may not
lead to close races.
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1 Introduction.

According to Downs (1957), political parties are mainly interested in winning
per se and differ in their electoral platforms. The partisan politics approach
(Wittman 1977, 1990) accept the idea that parties may have other goals
but still assume that voters decide who to vote for according to the parties
platforms. However, the retrospective voting approach! emphasizes the role
played by other variables, such as the action held while on power, in the
determination of the voters choice. This paper is an attempt to associate
the retrospective approach and the work on party’s strategic behavior.. Our
model thus captures the fact that factors outside the parties control may
affect the number of vote received by parties or candidates: one candidate
could be more charismatic than the other, the incumbent may be viewed as
more efficient than his/her challenger while in power, etc. All this information
is supposed to be summarized in a single parameter, representing the quality
of a party. Our model is asymmetric in the sense that we study competition
between two parties that may have a different quality parameter.

The paper is organized as follows : in the next section we briefly recall
existing results and show how our approach is situated in the stream of
research on spatial models of voting. Section 3 presents the model and main
assumptions and section 4 presents the main results.

2 Convergence in spatial models.

Some models aim to explain why parties may choose non median platforms
(see Roemer 1994 for a survey). Alesina and Rosenthal (1995) show that
two main criteria are needed in order to produce divergence at equilibrium.
The first criterion is partisan politics as proposed by Wittman (1977, 1983):
parties are not interested in winning per se, they defend a partisan view
of the world. The second criterion is the existence of uncertainty in the
behavior of the electorate: parties do not know with certainty where the
median policy is located. By introducing an extra parameter that parties
do not control, we obtain divergence at equilibrium without introducing any
uncertainty. Furthermore, taking this additional parameter into account (one
may consider this parameter as an indicator of the quality of the party) is
more realistic since parties are not always engaged in close races.

'Main references are listed in Mueller (1995).



3 The model.

The parties. Our first assumption concerns the goal of parties. A usual
way to model partisan politics (Roemer 1994) is to suppose that parties seek
to minimize the distance between their preferred platform and the winning
one. We use here a slightly different version called ”light partisanship”:
parties are supposed to be mainly interested in winning the election, as in
Downs model, but once they are assured of winning the election, they try
to promote a program as close as possible to their preferred policy. This
two-step definition rules out unsatisfactory equilibria in which a party may
choose to lose the election in order to promote a policy closer to its ideal
point?. An example of such an equilibria is presented in appendix.

Formally, a party, or candidate j, is represented by a triple (6, p;,z;) €
IR x X x X. 8; represents the exogenous parameter, say the quality of can-
didate j, p; its preferred policy and x; denotes the platform it announces.
The set of available platforms, X, is supposed to be a compact subset of IR™.
The proportion of voters who prefer party j to its opponent is given by the
function S;(z1, 61, 22, 02). Thus, the light partisanship assumption is formally
given by:

e Assumption 1:

Sj(xl,ﬁl,xg,ﬁg) if Sj(.’El,el,.’Ez,eg) S ]_/2
vj(1, 23) =
— ||z —pill +C if Sj(@1,601,22,02) > 1/2

C is a constant chosen in order to have parties preferring to win the
election rather than losing it. That is to say, C'is chosen so that — ||x; — p;||+
C > 1/2 for every x; € X. Note that we have no guaranty that v; is a
continuous function.

The electorate. A voter i has a utility function of the form u(6;, ||z; — a;||)
where a; € X designates his bliss point. Voters’ bliss points are distributed
according to some probability distribution f : X — [0, 1] continuous with

In the unidimensional setting, those equilibria are usually ruled out because of the
assumption made on p;. They are supposed to be on each side of the median. As we
intend to address the more general multidimensional case, there are no straightforward
assumptions on the p; that eliminate such equilibria.



respect to Lebesgue measure (thus, [ « df = 1). Other things being equal, a
voter prefers a party that announces a platform closer to his bliss point and
a higher quality party. At this stage, we have to make explicit the nature
of the voters trade-off between quality and platforms. Following Mussa and
Rosen (1978) and more generally the work on quality in industrial economics,
we choose a multiplicatively separable form :

e Assumption 2: u(;, ||z; —ai||) =6, |z; —ail|, 0 <O0.

As usual in spatial models of voting, voters differs only in terms of their
bliss points a;. All of them arbitrate between quality and platforms in the
same way. Thus, a voter will be identify only by its bliss point.

We define the support the parties as the sets :

N ={a; € X |01 ||lz1 — ail| > 02 ||v2 — ail }
and QQ = {CLZ' c X |02 ||.’E2 — CLZH Z 91 ||ZE1 — CLZH}

ThU.S, Sj (1'1, 91, ZTa, 92) = fQj df

The game of asymmetric competition. We define k = 92 and assume,
without loss of generality, that 8, < 6; < 0. Then party 1 gets a clear
advantage. The game of asymmetric electoral competition is now defined
and its main elements are summarized by the triple (p,, k, f).

4 Main results.

Before stating our main theorem, we prove a series of lemmas in order to
explore the properties of the sets 2;. The basic idea is that in order to
compute the score of a party, we need to explore the properties of the sets
(2;. The reader will get much of the intuition of these results by referring to
Figure 1.

Lemma 1 The set Qy(z1,01,22,05) is a hyperball centered at c(x1,0,,x9,0,) =

ﬁfl‘l 1kk2I2 Of ’f’adZ'U,S T(Il,el,fEQ,eg) = l~c2| ||.’E1 .’EQH .

e Proof.



Consider the set I(x1,01,22,02) = {a; € X/01||z1 — ai|| = 02|22 — as||}
representing the boundary of the sets 2; i.e. the set of voters indifferent
between the two parties.

This leads to the following equations :

01 [|zy — CLH2 =0 [|lz2 — all )
& |lzr — al]” =k ||lzz — af
Recalling the property of the euclidean inner product,

(21 —a, 21 — a) = ||z1]|* = 2 (x1,a) + ||a]|®, we obtain:

lal® = 24z, a) + all” = K(lz2l® - 2 (22, a) + all”)
(1= ) lall* = 2(a 21 = KPzz) = K |laa]|* — |||

x, — k*x k2 ||ao||? = ||z
Ha”2—2<a/, 1 2> — || 2|| || 1||

1— k2 1 — k2
a— ("Tl_—k%) ’ _ R [z2]|* = [|z1] (£E1 - k2x2) 2
1 — k2 1 — k2 1 — k2 ’

Thus, (21, 01, 22, 02) is the boundary of a hyperball of center ¢(x1, 01, x2,05) =

1 k2 - 2 _ Ko~z 1 —k2x9
—= %1 + 5y and radius r? = e + | (=)

check that Q(xy, 61, x2,605) consist of the whole hyperball.
After simplification?:

2
‘ . It is easy to

c:ﬁm1+(1—ﬁ)mgwhereﬁzﬁ<0
r=ggllen -zl ¢

Voters supporting the favored party have their bliss point included in a
hyperball’. Our next lemma shows how the hyperball Qy(z1, 01, xs,0s) can
be constructed.

Lemma 2 Suppose that v, is on a line A containing x,. The sets
Qo(x1,01,x9,05) are then hyperballs tangent to the cone of vertex x; and
angle 2a such that sina = ﬁ

3The details of the calculations are given in the Appendix.
“Voters having their bliss point exactly on the frontier of the hyperball Q, are of
negligible importance since the measure of the set I is zero.
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e Proof.

Let x5 and :c; be elements of X such that x; z2 and xlg belong to a line
A (as depicted in Figure I). We define @ and o’ to be the angles formed by
A and the tangents T and 7" to the hyperballs Qy = Q(x1, 61, x2,0,) and
Q) = Qo(x1,01, 25, 05) passing through x;1. Let ¢t and ¢ be the intersection
points of A and the tangents T and T” respectively. The triangles x;tco and
zit'd, are right angled. Thus we get sina = T(wnlx’fﬂizi'@) = 7 fk2| = sind’.

The points ¢t and ¢’ are then aligned. This concludes the proof.4

It is natural to ask how the model behaves when parties tend toward
symmetry, i.e. when k& — 1. Recall that ¢ = (21 + (1 — B)xs where § =
ﬁ < 0. So # — 400 as k — 1. Thus, €2, becomes bigger but its center c
goes to infinity. In the limit, {25 tends to be the half-space delimited by the
median hyperplane® between z; and x5 as in the symmetrical model. Again,
Figure I provides the geometrical intuition.

Let us now move to the analysis of the game. We define :

Xf = {231 S X‘Vl‘g € X, 51(231,91,232,92) > 1/2}

to be the set of player’s 1 strategies that guarantees him, or her, a score
over 1/2.

Lemma 3 X| s a closed, convez set.
First, we prove that X7 is a closed set.

e Consider the function ¢, ,,4,) : T1 — S1 (21,601, x9,05). This function
is continuous with respect to x; for every value of 6;, x5 and 6. This a
direct consequence of the assumption made on the distribution f and
the properties of Lebesgue’s integral.

) go(’ell 29,02) ([1/2,1]) is then closed because it is the inverse image of a
closed set under a continuous function.

o X =Nge XSO(_ei 22,05) ([1/2,1]) is thus an intersection of closed sets and
so it is a closed set itself.

5The median hyperplane of z; and x5 is the set of points in IR" that are equidistant
from xz; and xs.



Let us now turn to the convexity problem.

e Consider z and y € X7, a point z € [z,y] and the mapping ¢ : x5 —
c(xy, 01, x9,05), which associates with each strategy of player 2 the cen-
ter of the hyperball Qo (z1, 01, 22, 02). Note that the mapping ¢ from X
to X is one to one. Consider a hyperball €2, of center ¢ € X. The
radius of this hyperball is uniquely determined by the rule of the game.
x and y € X7, thus there exists no xy such that Si(z, 61, 29,6s) > 1/2
or S1(y, 01, xs,02) > 1/2. Consider a fixed point ¢. We study the func-
tion r : z — r(z) associating to every z € [x,y] the length of the
radius of Qy(z, 01, 22(2), 02) where x5(2) is chosen so that the center ¢
of Qy(z, 01, x5, 09) remains fixed when z moves. The function r reaches
its maximum either in x or in y when z varies from = to y. Thus, the
following equation is satisfied by every z € [z,y].

So(z, 61, 22(2),02) < max [52(55,91,332(37);92),52(3/, 91,332(@);92)] <1/2

Then there exists no ¢ in X such that the hyperball of center ¢ guar-
antees player 2 a score greater than 1/2. Since the mapping c is one
to one, for any z € [x,y] player’s 2 best reply gives him/her a score
strictly less than 1/2. So z and y € X7, implies that any z € [z, y| also
belongs to X7, which proves that X7 is convex.4

We now turn to our main results:
Theorem 4 FExistence and uniqueness of the equilibrium.
For every game, one of the following two propositions hold:

e The set X| is not empty and there exists a unique Nash equi-
librium which is a dominant strategy equilibrium.

e The set X| is empty and there exists no Nash equilibrium in
pure strategy.

e Proof.

Suppose X7 is not empty. Player 1's optimal strategy is to choose x;
in X7 minimizing the distance between z; and his/her preferred platform
p1- Thanks to the convexity property of the set X proved in our previous
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lemma, such a minimum exists and is unique. 7} = argming, cx; ||71 — p1| -
The function Sy(xF, 01, x9,0) is continuous with respect to xo, thus it attains
its maximum over the compact set X. So, their exists a best reply =5 =
arg maxg,c x So (2%, 01, 9, 05). This conclude the proof of the theorem® ¢

Corollary 5 If X} is not empty, either p; € X and 1 wins the election by
a score above 1/2 or py ¢ X{ and player 1 wins the election by a score of
1/2.

e Proof

The proof follows from theorem 1. Either p; € X7 and 1’s optimal strat-
egy is to choose 27 = p1. Or p; ¢ X{ and then 27 = argming, cx: |71 — p1|
lies on the boundary of X7 implying a score of 1/2.

Theorem 6 For every distribution f, there exists a unique number k* (f)
such that the game (p1,k, f) possesses a unique Nash equilibrium in
pure strategies whenever k < k*(f), and no equilibrium in pure
strategy whenever k > k* (f).

e Proof

e Let us prove that every strategy of player 1 belongs to X7 when k —
~+00. In order to do so, consider the following expression : f92 (21,01,29,62) df <
maxecx f(x) X (n—’_bl)m“(xl, 01, 2, 02)™ and recall that r(xq, 01, xe,0,) =
|1_—'€,€2‘ ||x1 — z2|| and that X is a bounded set. Thus whenever k — o0,
r(z1,01,T2,02)" — 0 and so, Sa(xy, 01, x2,05) — 0.

e Suppose now that k tends to one. Then the game tends to the sym-
metric game. In such case X7 shrinks to the Condorcet winner when
it exists, and is empty otherwise.

e The last step consists of proving that Xj(k) is strictly included in
Xik(k’l) if and only if £ < k’. Since QQ(ZEl, 0/1, T, 6/2) C QQ(.’El, 01, Za, 02)
if and only if Z—f < z—f smaller values of k£ induce higher scores for player

1. This concludes the proof of the last step.4
k* (f) represents a bound above which the set X is not empty.

6The best reply of player 2 may not be uniquely defined. Since this does not affect
the outcome of the game, we maintain the assertion that the equilibrium is unique. It is
possible to be more precise by assuming that player 2 selects the platform that is closer
to his ideal one ps.



4.1 Computing £* (f).

Corollary 7 k*(f) = 1 if and only if the distribution f admits a
Condorcet winner.

e Proof.

The proof is obvious and can be omitted$

This corollary proves that an equilibrium does not always exist in our
general framework but existence is guaranteed in a broader range of cases
than in the symmetrical model. In that sense, our model is a real generaliza-
tion of the symmetrical model. Getting an explicit form for k* (f) remains
an open question we wish to address in further work. Intuition suggests that
k* (f) is a sort of symmetry index of f. The more f is symmetrical around
a point the bigger is X7.

5 Conclusion

As mentioned, further research may deepen our understanding of the logic
of the asymmetric model. Another line of research is to extend the model
to a dynamic model where the 6 parameters are fixed endogenously. More
generally, our model yields a fresh look at the existing literature on spatial
models of voting.
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5.1 Appendix.

Proof of lemma 1.
Let us simplify the expression of r.

2 _ k2”$2||2_|’$1||2+ T 2_2 1 K%z, n K2z, ||?
1 — k2 1 — k2 1— k21— k2 1 — k2

B ol — eall® | llaal® kel _2< x1 K >
1

- (1-# K2 (1= &%) + & k?
- (1(——162)2) HleQ ((1 — kZ)Q ||x2|]2 - QW (@1, x2)
? 2 2 9 ]{32
(1-— k‘2)2 @1 ]] (1- k,g)Q |22 (1— k‘2)2 (21, T2)
k2
= Ty (s |+ [Jal* = 2 (21, 2)]
L2
R [
Finally, we get r = \1_kk—2| |lx1 — 22| = ﬁ |21 — 2,]| , since k > 1.
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