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Abstract

There is widespread agreement that given currently available data,
we cannot accurately estimate the parameters of intertemporal alloca-
tion using GMM on Euler equations, whether they be exact or approx-
imate. Our reading of this literature and our own results is that this is
a small sample (strictly, short panel) problem. The alternative seems
to be to move to full structural modelling. In the current state of the
art this is cumbersome, fragile and unable to deal with significant het-
erogeneity. We present a novel structural estimation procedure that
is based on simulating expectation errors; we refer to it as Simulated
Residual Estimation (SRE). We develop variants of the basic proce-
dure that allow us to account for measurement error in consumption,
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seminars at UCL and CREST for comments on the work reported in this paper. This pa-
per was written during a visit by Sule Alan to the Institute of Economics at the University
of Copenhagen. She thanks the Institute and the Centre for Applied Microeconometrics
(CAM) for support. We are grateful to the Danish National Research Foundation (Grund-
forskningsfond) for support through its grant to CAM.



the ‘news’ in interest rate realisations and for heterogeneity in discount
factors.

An investigation of the small sample properties of the SRE esti-
mator indicates that it dominates GMM estimation of both exact and
approximate Euler equations in the case when we have short panels
and noisy consumption data. An empirical application to two panels
drawn from the PSID are presented. The results are very encourag-
ing. We find that we can estimate the parameters of intertemporal
allocation much more precisely than with a conventional GMM on a
log-linearised model. For example,we find that the 95% confidence
interval for the EIS is [0.27,0.70] for the more educated whereas the
IGMM confidence intervals are [—0.38,0.90] and [—3.78,6.22] for the
linearized and nonlinear models respectively. Moreover, the parame-
ter estimates seem quite reasonable. For example, we find discount
factors that are less than, but close to unity. We also find a higher
discount factor for the more educated group. We find that the more
educated have a higher CRRA which we interpret to indicate that the
constant EIS assumption of the iso-elastic form is rejected. Finally
we present results for a model that allows for heterogeneity in the
discount factor within education groups. We reject strongly the ho-
mogeneity assumption and find that discount rates vary significantly
within groups.

1 Introduction.

Over the past quarter century many attempts have been made to estimate
the parameters governing intertemporal allocation using Fuler equation tech-
niques applied to micro data; Browning and Lusardi (1996) discuss the results
of 25 studies using micro data and conclude that the results are disappoint-
ing. A number of recent Monte Carlo based papers have investigated why we
experience this failure (Carroll 2001, Ludvigson and Paxson, 2001, Attanasio
and Low, 2002); in section 2 we present some supplementary evidence on this
issue. The problems identified are manifold but the most important seem to
be the paucity of appropriate data (long panels on consumption) and the
problem of dealing with the substantial measurement error in consumption
(see Shapiro (1984), Altonji and Siow (1987) and Runkle (1991)). The lat-
ter means that we cannot use the exact Euler equation for estimation if the
equation is non-linear in parameters (a point first made in the general con-



text of nonlinear GMM by Amemiya (1985)). The use of ’approximate’ Euler
equations (whether first order or second order) ’solve’ the measurement error
problem but bring with them new problems in that they introduce latent
variables that lead to violations of the orthogonality conditions exploited by
GMM methods. Thus Carroll (2001) concludes that “empirical estimation
of consumption Euler equations should be abandoned”. On the other hand,
Attanasio and Low (2002) present results that suggest that the Carroll con-
clusion is overly pessimistic if we have long panels (40 periods, say) and time
series variation in real rates. We do not find this conclusion too comforting
for empirical work since we do not have long consumption panels.

Thus the emerging consensus seems to be that we must give up on empir-
ical Euler equations and return to estimating consumption functions (‘struc-
tural models’) based on specifying the environment agents face (see Carroll
and Samwick (1997), Gourinchas and Parker (2001) and Attanasio, Banks,
Meghir and Weber (1999)). In practice these methods are very similar to
calibration (as used in, for example, Hubbard, Skinner and Zeldes (1995)).
The problems with this approach are that it is very cumbersome and can only
accommodate very limited sources of uncertainty and heterogeneity. More-
over, results may not be robust to small changes in the specification of the
structural model (for example, Browning and Ejrnzes (2001) show that the
Gourinchas and Parker and Attanasio et al. (1999) results are very sensitive
to how we account for family composition).

In this paper we focus on estimating the parameters of intertemporal al-
location. We propose an alternative approach to GMM estimation of Euler
equations that is based on simulating the distribution of expectations er-
rors. We term our new procedure ’simulated residual estimation’ (SRE).
The key to our approach is that associated with every structural model there
is a conditional expectations error distribution. We show that if we know
this distribution and observe consumption paths and interest rates, then we
can identify utility parameters (the discount factor and the elasticity of in-
tertemporal elasticity) without having to specify the underlying stochastic
environment. Without extra information the underlying model is not iden-
tified, but this is a strength rather than a weakness if we are only interested
in preference parameters, since it gives the method robustness as compared
with full-fledged structural estimation.

In section 3 we present an analysis of the distributions of expectations
errors associated with models that are widely used in the literature (for exam-
ple, nearly patient agents with unit root income processes, Deaton’s (1991)
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buffer stock model with explicit liquidity constraints and models with impa-
tient agents with self-imposed liquidity constraints). This serves to develop
intuition and to illustrate many of the points we wish to make. The main
conclusion from our investigations is that almost all models that have been
suggested in the literature give an expectations error distribution that can
be adequately modelled as a mixture of two lognormal distributions.

In section 4 we present our estimator. To estimate, we use a simulation
based method that is in the class of Simulated Minimum Distance (SMD)
estimators. This involves the specification of ‘auxiliary parameters’ which
are then matched to their theoretical predictions to estimate the parameters
of interest. We find that the conventional linearized Euler equation provides
a very simple and convenient vehicle to do this. The method suggested is
many orders of magnitude faster than full structural estimation. Above we
stated that we can recover the utility parameters if we know the expectations
error distribution. Since we never do know the distribution, we address
the problem of testing whether the distribution chosen for the estimation
procedure is a good approximation using goodness-of-fit tests applied to the
predicted distribution. We also briefly discuss the use of income and asset
information in identification and improving precision and in accounting for
heterogeneity in preferences and income processes.

In section 5 we present Monte Carlo evidence on our estimator and exact
and approximate (GMM based) estimators. We take as designs for these
simulations the designs used in the recent papers alluded to above. We
find that if consumption is measured with even moderate error, exact Euler
equation estimation performs poorly. We also replicate the previous finding
that approximate methods do poorly if we have short panels. By contrast,
our SMD estimator works well when other estimators do not. In particular,
when there is considerable measurement error (for example, half the observed
consumption growth variance is due to noise) our estimator works reasonably
well even for moderate sample sizes.

Finally, in section 6, we present an empirical application of SRE to two
panels drawn from the Panel Study of Income Dynamics (PSID) of the United
States. We divide a sample of households into two broadly defined education
groups and estimate the coefficient of relative risk aversion (and EIS), dis-
count factor and measurement error variance for each group separately. We
find that we can estimate the parameters of intertemporal allocation much
more precisely than with a conventional GMM on a log-linearized model. For
example,we find that the 95% confidence interval for the EIS is [0.27,0.70] for
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the more educated whereas the GMM confidence intervals are [—0.38, 0. 90|
and [—3.78,6.22] for the linearized and nonlinear models respectively. More-
over, the parameter estimates seem quite reasonable. For example, we find
discount factors that are less than, but close to unity. We also find a higher
discount factor for the more educated group. We find that the more educated
have a higher CRRA which we interpret to indicate that the constant EIS
assumption of the iso-elastic form is rejected.

The remainder of the paper is organized as follows: The next section pro-
vides a detailed analysis of Euler equation for consumption and econometric
issues regarding the estimation of such an equation. In Section 3 we present
a discussion of the expectational error distributions associated with various
models in the literature. Section 4 presents our SRE technique and presents
some Monte Carlo results. In Section 5, we discuss the small sample proper-
ties of the estimator we propose as well as the properties of the traditional
GMM based estimators. Section 6 presents an empirical application of two
panels drawn from PSID. Section 7 concludes.

2 Euler Equation Estimation.

2.1 Exact Euler equation estimation.

We consider a standard intertemporal optimization problem for which agent
h has expected utility at time ¢ of:

= 0(Chitj)
Eh,t [Z W

J=0

(1)

where C' is non-durable consumption, v(.) is an increasing, strictly concave
sub-utility function, ¢ is a discount rate and Ej; (.) denotes the expectations
operator conditional on the information that agent h has at time ¢. The
evolution of assets over time is given by:

Antjrr = (L4 Thisj) At + Yaies — Chytrg (2)

where A is assets, Y is stochastic labor income and r is the stochastic real
rate of interest. The first order condition for the optimization problem gives
the Euler equation for consumption:

/ o 1 r U
V'(Ch,t) = E] Ent [(1 4 7h041)0" (Chg1)] (3)



A widely used functional form for the sub-utility function is the iso-elastic
form:
(Ch7t)(1—7)
N )

(1—=7)

where the parameter v is the coefficient of relative risk aversion (CRRA),
which we assume is the same for everyone. Interest usually centres on the
inverse of this parameter, the elasticity of intertemporal substitution (EIS ):

() (Ch,t) =

1
o= (5)
g
Low values of the EIS indicate an aversion to fluctuating consumption
streams.! For the iso-elastic case with exponential discounting the only other
preference parameter in this program is the discount rate 6. From the above
we have the exact Fuler equation:

(Ch,t+1> (1 +rhe)
Ch (14 06)

This relationship has been the basis of very many estimates of the pref-
erence parameters and tests for the validity of the standard orthogonality
assumptions in general and for the “excess sensitivity” of consumption to
predictable income growth in particular. GMM estimation is based on the
assumed orthogonality of the error term e, to all variables dated t or
before, such as lagged consumption, interest rate and income variables. As
originally emphasized by Hall (1978), this is a very attractive procedure since
one can estimate the preference parameters without explicitly parameterizing
the stochastic environment that agents face.

Problems for GMM estimation on micro data arise if the consumption
data are measured with error. For example, if we allow for a multiplicative
measurement error so that observed consumption C}; is given by:

= €h7t+1 with Eh,t <€h,t+1> =1 (6)

Ch i = Chanp, with £ (nh,t) -1 (7)

then the exact Euler equation for observable consumption becomes

—y _
htt1 (14 7rp441) Nhte1\
) ) — ) 1+ 8
( o ) = ( L ) e )

1'We prefer to emphasise the role of this parameter as representing aversion to fluctua-
tions rather than to risk since it is operative even when there is no uncertainty.

6



The problem this gives is that the composite error term does not have a
conditional expectation of unity, even if we assume that 7, ., and €54, are
independent:

Ey

Mh,t+1 - Nh,t+1 -
($) (I4+epe1)| = E <i) Ei (enit1)

Mht Mt
= (nh,t)7 Ey (nh,t+1)_7 #1 (9)

It is now widely accepted that household level consumption data informa-
tion is likely to be very noisy. For example, Runkle (1991) estimates that
76% of the variation in the growth rate of food consumption in the PSID
is noise. Dynan (1993) reports that the standard deviation of changes in
log consumption in the CEX (American Consumer Expenditure Survey) is
0.2, which seems too large for ‘true’ variations. The other widely used data
resource are quasi-panels, constructed from cross-section expenditure survey
information by taking within-period means following the same population
(e.g. means over all the 25 year olds in one year and all the 26 year olds in
the next year). Although this averaging reduces the effect of measurement
error, the construction of quasi-panels from samples which change over time
induces sampling error which is very much like measurement error.

The presence of measurement error when estimating non-linear equations
is problematic. In our context, the basic problem is that measurement er-
ror makes it appear as though consumption is less smooth over time that
it actually is, which results in too low an estimate for the CRRA (with a
consequent bias of the EIS away from zero). Carroll (2001) shows this in
simulations with only cross-section variation in interest rates (r,; = 7y, for
all t). To show the extent of the problem when we have time varying interest
rates, we take a similar environment to Carroll (2001)? with the polar case
in which everyone faces the same stochastic interest rate (1, = r; for all h).
We construct optimal consumption paths with a CRRA of 4 and then add a
multiplicative error on the consumption values. Taking a measurement error
variance such that 50% of the time series variation in consumption growth is
noise, the average CRRA estimate is 2.78 which indicates substantial bias.
Increasing the number of cross section units does not affect the bias.

2Fuller details of our simulation procedures will be given below.



2.2 Approximate Euler equation estimation.

A natural alternative to GMM estimation of the exact Euler equation is
GMM estimation of the first or second order approximation to the nonlinear
Euler equation (the first derivation is due to Hansen and Singleton(1983);
see, for example, Carroll (2001) for the derivations we now present). From
equation (6) we have the following (log) quadratic consumption growth equa-
tion: ]

Alog Cpiy1 — o — ;rh,tJrl - % (Alog Ch,t+1)2 = €h,t+1 (10)
where the constant term « contains the discount rate and means of the third
and higher order unconditional moments of the error term &j4.;. The error
term e .41 contains the expectational error and also time varying compo-
nents of the higher conditional moments (conditional on past information).?
The first order log-linear approximation (equation (10) without the squared
term) has been used very extensively in the applied micro literature due to
the fact that a multiplicative measurement error becomes additive as a result
of log linearization. The usual (and uncontroversial.) assumption is that the
instruments other than consumption that are used in the estimation are un-
correlated with the measurement error. The M A(1) error structure induced
in the errors due to the measurement error is easily accounted for in GMM.
Most researchers use twice (or more) lagged variables for instruments (but
note that we could use first lags of any variable other than consumption since
these are assumed uncorrelated with the measurement error). The problem
with this approach is that the movements in the higher order moments (for
example, the skewness) that are subsumed into the error term will generally
cause it to be correlated with lagged variables, which leaves us without any
instruments for GMM.

Here we present a brief discussion of the findings of Carroll (2001), Lud-
vigson and Paxson (2001) and Attanasio and Low (2002); in our simulations
we shall replicate many of their results and discuss them in greater detail.
Ludvigson and Paxson (2001) solve and simulate a life cycle model with

3This brings out clearly that the one parameter vy controls attitudes to fluctuating
consumption paths (through the coefficient on the real rate) and prudence (through the
coefficient on the squared term). This close identification of fluctuation aversion and
prudence is solely a result of using the iso-elastic form; other forms break the link between
aversion to fluctuations and prudence (for example, the quadratic utility function has
fluctuation aversion but no prudence).



stochastic income and an additively separable iso-elastic utility function as-
suming a fixed interest rate of 3% and a discount rate of 5% (so that agents
are assumed to be impatient)*. They then follow Dynan (1993) and use the
simulated data to estimate relative prudence using the second order approx-
imation to the Euler equation (equation (10) with no interest rate)’. They
find that the estimate of the CRRA is downward biased; that is, it is es-
timated that agents are less averse to fluctuations than they actually are.
Carroll (2001) performs a similar analysis allowing for cross-section variation
in the interest rate, but no time series variation. He finds that the estimate
of the CRRA is upward biased.

Neither Ludvigson and Paxson nor Carroll allow for time variation in in-
terest rates to identify the EIS. Our own feeling is that trying to estimate
the intertemporal price elasticity (the EIS) without some intertemporal varia-
tion in price is almost certainly doomed to failure. Attanasio and Low (2002)
present results allowing for time series variation in interest rates. They solve
and simulate a simple life cycle model with stochastic income and interest
rates and then estimate first and second order approximations to the Euler
equation. They argue that one can estimate the EIS consistently if the time
period of the sample is long enough®.

However, for panel lengths of, say, 20 periods there is still considerable
bias, so that the Attanasio and Low results are not very encouraging em-
pirically. Attanasio and Low also show in their Monte Carlo study that the
precision of the estimates increases considerably with the variance of the
interest rate. A potential problem they identify is that even moderately
impatient agents will typically hold net wealth stocks that are close to any
borrowing limit they face. In this case consumption becomes very sensitive
to the income shocks and it is difficult to extract the relatively small varia-
tions in consumption growth due to interest rate changes. Note however that
this problem is not special to the approximate Euler equations; our simula-

4The term ‘impatient’ here and henceforth refers to the condition § —r > 0. Note that,
if income grows overtime, consumers can be impatient even if ¢ = r. But for all the models
considered in this paper zero income growth is assumed.

5In the case of iso-elastic utility, the relative prudence parameter is %1 Ludvison and
Paxson (2001) assume fixed interest rate and estimate the equation

Alog Chi1 = a+ 1L (Alog Ch,t+1)2 +en it

6They use the term ‘consistent’ as T — oo. They experiment with different 7 and show
that the mean estimate of the EIS approaches its true value while the estimated standard
errors become smaller as 7" increases.



tions presented below suggest that the same problem arises for exact Euler
equation with no measurement error.

2.3

The implications of these analyses.

We draw the following implications from the analyses of Ludvigson and Pax-
son (2001), Carroll (2001), Attanasio and Low (2000) and our own supple-
mentary investigations.

1.

There is not much point in trying to estimate price elasticities (such as
the EIS) without some variation in the price (in this context, variations
in the real interest rate).

Attempts to gauge the extent of prudence are more successful if agents
are impatient since then we will be observing the buffer stock savings
due to income uncertainty.

Attempts to measure the EIS (reactions to interest rate changes) are
more successful if agents are patient and build up wealth. In this case,
temporary changes in income do not lead agents to vary consumption
(since they have assets to smooth their consumption) so that the ex-
traction of the consumption growth/ interest rate signal is easier.

. If there is a liquidity constraint and agents are sometimes constrained,

then the Euler equation does not hold in periods of constraint and
consumption is not affected at all by the interest rate (an effective EIS
of zero). This leads to a downward bias in the estimate of the EIS if
we do not observe whether or not the agent is constrained and proceed
as if they never are.

Measurement error introduces considerable bias into GMM exact Euler
equation estimates of the EIS, even if there is substantial variation in
the interest rate. This problem does not reduce if we have a large
number of cross-section units.

Generally, approximate Euler equation methods do badly, but the re-
sults of Attanasio and Low show clearly that this is a small sample
(small T') problem. This requires a small-T" solution, for the typical
case in which we have short and noisy panels.
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The net result of the above is that we agree with Carroll (2001) and Lud-
vigson and Paxson (2001) that the econometric methods we currently have
to hand are not up to estimating the EIS (or the discount rate) on short
and noisy panels. What alternatives remain? One is to revert to old style
consumption studies that are only loosely linked to conventional life-cycle
theory. This is not very attractive to a generation raised on dynamic general
equilibrium models and empirical modelling that stays close to the theory. A
second alternative is to move to estimation based on structural models. Thus
Carroll and Samwick (1997) perform a structural estimation in which they
identify the discount rate; all of the other parameters are fixed at ‘reasonable’
values. Gourinchas and Parker (2001) use structural estimation to estimate
the EIS and the discount factor. They use CEX information and Method
of Simulated Moments estimation which matches the moments generated by
the data with that of simulated data. This procedure involves the numerical
solution of the dynamic programming problem for every parameter value that
the estimation procedure considers. The procedure is extremely slow. An
obvious problem regarding this approach is the fact that one needs to spec-
ify the underlying stochastic process (income process in their case since they
use a fixed interest rate) which is not necessary for Euler equation estimation
(whether exact or approximate). It is not clear whether a slight misspeci-
fication of the income process will not completely change the results. To
examine this would require that the estimation procedure be analyzed under
misspecification, which would be extremely time consuming. Although full
structural modelling is potentially promising, an alternative is needed that
reduces substantially the computational burden without sacrificing the close
link to the theory. We present here an alternative that relies on simulating
the distribution of expectations errors directly.

3 The distribution of expectation errors.

Below we shall present an alternative approach to GMM which is based on
sampling from the conditional distribution of the expectations error. In this
section we present an extended discussion of the distributions associated with
various models in the literature. In order to illustrate our point, we present
a wide range of models with different sets of parameters and different income
processes within the time separable iso-elastic utility framework. We consider
both fixed and stochastic interest rate models. We assume a finite lifetime

11



of 70 periods with no bequest motive and we start all agents off with zero
wealth. After generating a 70-period consumption path for an individual, we
remove the first and the last 20 periods. Further details of the simulation
methods are given in the Appendix. Table 1 presents the features of the 14
models we consider. The main differences across models are in the income
processes; the degree of impatience; the presence of liquidity constraints and
the presence of heterogeneity. We assume that agents face two types of
income shocks, permanent and transitory. The assumed income process is as
follows

Yh,t+1 = Ph,tuh,t+1 (11)
where u;1 is an iid lognormal transitory shock with mean 1 and a constant
variance ((303 - 1) and P, is permanent income which follows the following

random walk process
Phiv1 = Phiznii (12)

where 2,441 is an iid lognormal permanent shock with mean one and a con-

o2

stant variance (e z — 1). We assume that the innovations to income are

independent over time and across individuals so that we assume away aggre-

gate shocks to income’.

Model 1 is our benchmark model with a standard CRRA (of 4), the
discount rate equal to the constant real rate of interest and no liquidity con-
straints. Most of our models are simple variants of this benchmark model.
Model 2 allows for less aversion to fluctuations (risk), specifically a CRRA
of 2. Model 3 allows for impatience. Model 4 is the same as the benchmark
model except that we have a higher permanent income variance. In Models
5 agents face iid Normally distributed income shocks with a unit mean and a
constant variance (Deaton 1981). Model 6 assumes the same income process
as the benchmark model, but in this case the process is given a small prob-
ability of zero income in any period (a ‘Carroll’ process). This assumption
imposes an implicit liquidity constraint so that agents optimally choose not
to borrow in any period over the life cycle. Note that this case differs from
a Deaton type buffer stock model where the liquidity constraint is explicit.
Since agents optimally choose not to borrow the Euler equation always holds
in model 6. Model 7 imposes an explicit liquidity constraint and model 8
imposes the liquidity constraint on impatient agents (a Deaton buffer stock
environment). Model 9 is the same as the baseline model with a stochastic

"We allow for macro shocks in our empirical work below.
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CRRA Real Income Liquidity
Model 0 rate, r process constraint
1 1 0.05 (0) | 0, =0.02, 0. = 0.1 No
2 ) 0.05 (0) | 0, =0.02, 0. = 0.1 No
3 1 0.03 (0) | 0, =002 0. =01 No
1 1 0.05 (0) | 0, =005, 0. = 0.1 No
5 4 0.05 (0) IID normal oy = 0.1 No
6 4 0.05 (0) Carroll Process* Implicit
7 1 0.05 (0) | 0, =002, 0. =01 Yes
8 1 0.03 (0) | 0, =002, 0. =01 Yes
9 1 [0.05(0.025) | 0, =002, 0. =01 No
10(1&2) | 2 or4 0.05 (0) o, =002, 0. =0.1 No
11(1&3) | 4 0.05/0.03 | 0, =0.02, 0. = 0.1 No
12 (1&4) 4 0.05 (0) mixed No
13 Model 1 with low measurement error (40% noise)
14 Model 1 with high measurement error (60% noise)

Note: variance of r in parentheses. Discount rate = 0.05 for all models.
0,: std of permanent income shocks, o.: std of transitory income shocks

* Model 1 with 1% probability of zero income.

Table 1: Models
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real interest rate. Models 10, 11 and 12 allow for some heterogeneity. Model
10 allows that there may be heterogeneity in the CRRA; specifically we as-
sume a mixing model in which agents have v = 4 or v = 2 with probability
one half. Model 11 mixes impatient and patient agents (heterogeneity in dis-
count rates). Model 12 allows that agents have different income processes;
specifically they have a low or high permanent income variance with proba-
bility half. Finally, the last two models experiment with lognormally distrib-
uted measurement error. In these cases we allow for measurement error in
the benchmark model. In model 13, 40% of consumption growth variation is
noise whereas the noise is increased to 60% in model 14.

For models 1 to 9, consumption paths were generated for 500 ex-ante
identical individuals. Given time paths C};, we generate errors for agent h
in period t + 1 by:

Chit1\ | (1 +7e41)
— 7 1
Eh,t+1 < Chqt ) (1 +6) ( 3)

Note that the interest rate varies over time only in model 9. In each case
we use only the observations from periods 20 to 50 (to give expectations er-
rors for periods 21 to 50) to minimize the impact of starting and end effects.
Consumption paths for models 10 to 14 are generated from the consumption
paths of models 1 to 9. For the mixing models 10 to 12 we randomly se-
lect 250 paths from each of the component models and use these. For the
measurement, error models 13 and 14, we take the consumption paths from
model 1 and generate observed paths by multiplying them with indepen-
dently distributed lognormal, multiplicative, and unit mean measurement
errors. Distributional features of the expectations errors for these 14 models
are presented in Table 2.

The first four columns of Table 2 give the first four moments for the
distribution. The next column gives the probability for a test that the mean
is unity. The final two columns give tests that the distribution is lognormal
and a mixture of two lognormals respectively.

The main features of the expectational error distribution for the bench-
mark model (model 1) are that it has unit mean (as we would expect) and
some skewness. The right (positive) skewness is observed for most of our
models; it reflects the concavity of consumption function in cash-on-hand
(current earnings plus non-labour wealth) and the asymmetry of the income
processes we use in all models except for model 5. Although the skewness is

14



| Mod | mean | std | skw | krt | U-test | L-test | M-test |

1 1.000 | 0.081 | 0.26 | 3.19 68 99 94
2 1.000 | 0.040 | 0.14 | 3.07 75 54 30
3 1.000 | 0.090 | 0.31 | 3.27 62 84 90
4 1.000 | 0.173 | 0.50 | 3.50 90 89 70
5 1.000 | 0.024 | —0.15 | 3.08 62 2.3 94
6 1.000 | 0.189 | 14.2 | 439 78 0 0
7 1.000 | 0.086 | 0.55 | 7.16 65 8.4 23
8 0.993 | 0.161 | 3.36 | 50.4 0 0 0
9 1.002 | 0.131 | 0.02 | 3.16 13 0 51
10 1.000 | 0.064 | 0.30 | 4.21 71 0 92
11 1.000 | 0.086 | 0.30 | 3.19 65 92 50
12 1.000 | 0.135 | 0.51 | 4.69 99 0 94
13 1.006 | 0.136 | 0.43 | 3.38 0 98 73
14 1.017 | 0.206 | 0.60 | 3.67 0 63 30

U-test is p-value (in %) for a unit mean; L-test is p-value

for lognormality; M-test is p-value for mixture of lognormals.

Number of observations = 15, 000

Table 2: Distributions of Expectational Errors for Different Models
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small, a formal test of normality rejects decisively. Instead, we find that the
expectations errors for this simple model appear to be lognormally distrib-
uted (see the column headed L-test). Model 2 differs from the benchmark
in having a lower risk aversion. As can be seen, a lower CRRA is associated
with a lower standard deviation for the unconditional expectations errors.®
The mapping from the CRRA to the expectations error variance seen in this
simple comparison forms a partial basis for identification in the estimation
scheme we present below. Of course, the variance of the distribution will
also depend on environmental factors such as the amount of interest rate
variation and the underlying earnings process, so that more is required for
identification. Note as well that a lower aversion to fluctuations leads to
lower skewness; this reflects the fact that a lower CRRA is closer to linear
(risk neutrality which in turn implies no prudence) so that the consumption
function is less concave. A comparison of models 1 and 3 reveals that higher
impatience is associated with a higher variance and slightly more skewness.
Once again we do not reject lognormality. Model 4 indicates that a higher
income variance leads to a higher error variance distribution with larger skew-
ness and kurtosis. All of models 1 to 4 are very standard and, as we have
seen, generate lognormal expectations error distributions.

In model 5 we vary the income process to being simply an iid normal
process with a unit mean.” As can be seen, the expectations error distribution
for this process is not right skewed and we reject lognormality but not the
mixture model. In model 6 we assume the baseline environment except that
agents are sometimes (but rarely) hit by a zero income draw. In this case,
current consumption relative to the previous and following period is small
(except in the very rare case in which the agent receives two consecutive
zero income draws). Since we then take (the inverse of) fourth powers, the
associated expectations errors are very large, hence the very pronounced
skewness and kurtosis. Although such a process is not very realistic, it serves
to illustrate that expectations errors can be very far from lognormal or a
mixture of lognormals, as can be seen from the reported probabilities.

Models 7 and 8 introduce a no-borrowing constraint. Even though model
7 agents are not impatient, the constraint sometimes binds and the conse-

8The variances of consumption growth for the two models (not shown) are very similar
so that the lower value in model 2 is because we are taking the inverse of a square rather
than the inverse of the fourth power (see equation (13)).

9In practice, we take a discrete approximation to the Normal with many points of
support. The support of the discrete approximation is bounded away from zero.
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quent error distribution is more skewed and heavier tailed than the bench-
mark distribution. We do not, however, reject the mixture model. The same
is not true for the model 8 in which the agents are impatient. They never
accumulate much in the way of assets and often bump up against the bor-
rowing limit which gives them a lower current consumption than they would
wish, relative to the future. The effect on the expectations error distribu-
tion for the model 8 is interesting. First we see that the mean is less than
unity.!'” Second, the other moments are quite different from those of the
benchmark model. Finally, we see that a mixture of lognormals does not fit
the distribution.

In model 9 we extend the benchmark model by allowing for a stochastic
real rate. This is also the model we use to investigate the small sample
properties of our competing estimators in Section 5. It is important to note
that although we allow for time series variation in interest rates we assume
away cross section variation. The distributional properties of model 9 are
somewhat different form the benchmark case. In particular, the variance is
higher and the skewness is close to zero. We reject lognormality for model 9
but we can fit the distribution well with a mixture model.

Turning to the effect of heterogeneity, we see from the results for model
10 that introducing heterogeneity in the CRRA leads to moments that are
similar to those of the models for which it is a mixture (models 1 and 2) but a
decisive rejection of lognormality. The mixture of lognormals is not rejected.
For discount rate heterogeneity (with no liquidity constraints), model 11, we
find very similar results to the component models (1 and 3) with no rejection
of lognormality. For income process heterogeneity (model 12) we find fatter
tails and a consequent rejection of lognormality but not of the mixture model.

Finally we turn to the effects of measurement error. As can be seen,
adding measurement error increases the mean of the expectations errors (see
equation (9)) and the error variance. However, the distribution changes in
such a way that lognormality is preserved.

In this section we have presented the expectations error distributions
associated with a wide range of models. A number of points emerge. First,
different underlying environments may give rise to similar distributions. As
we shall discuss below, this will impact on the data needs for identification.
Second, we do not reject lognormality for many of our models and we do not

10This is for the error distribution. The ratio of current to lagged consumption also
should be below unity since the agent is impatient.
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reject a mixture of lognormals with a unit mean for most models. This will be
used extensively in our estimation procedure. The two major deviations from
the mixture of lognormals occur when we use a Carroll income processes or
there are explicit liquidity constraints and agents are impatient (the Deaton
buffer stock model). In our empirical work below we select households who
are less likely to be in this class of agents.

One important feature to emerge from our analysis is that although we
have a non-stationary environment (because of the finite horizon) the uncon-
ditional distribution of the expectation errors is very stable.!! Thus for all
models the distribution in period 10 is very similar to that in period 60 (10
years from the end of life). In our estimation procedure we shall assume that
the expectations errors are stationary.

In addition to examining basic distributional features of the expectational
error distributions generated by different models, we checked and confirmed
standard orthogonality assumption (no correlation of errors with their lags).!2
Simple regressions of errors on their lags squared, squared errors on lags
squared and similar third and fourth moment regressions led us to the con-
clusion that the assumption of independently distributed expectational errors
(allowing correlation across individuals via interest rate shocks) is plausible.
This is not to say that we cannot define a model that violates the inde-
pendence assumption. For this reason we experimented with a model with
heteroscedastic income shocks and found that even with considerable het-
eroscedasticity in income shocks we still do not see serious dependence in the
expectational errors.

4 Estimation methods.

4.1 Simulated Minimum Distance.

Our estimation procedure is simulation based. Following Hall and Rust
(2002) we refer to the general technique as Simulated Minimum Distance
(SMD) since it is based on matching (minimizing the distance between) sta-
tistics from the data and from a simulated model. The class of SMD es-
timators includes the EMM procedure of Gallant and Tauchen (1996) and
the Indirect Inference methods of Gouriéroux, Monfort and Renault (1993).

U These results are not shown in the paper but are available upon request.
12 Again, the results are available upon request.
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Here we present a short account of the method as applied generally to panel
data; see Hall and Rust (1999) and Alvarez, Browning and Ejrnaes (2001) for
details.

Suppose that we observe h = 1, 2..H units over t = 1, 2...T" periods record-
ing the values on a set of Y variables that we wish to model and a set of
X variables that are to be taken as conditioning variables. Thus we record
{(Y1,X1),...(Yy, X))} where Y}, is a T' x [ matrix and X}, is a 7' x k ma-
trix. For modelling we assume that Y given X is identically and indepen-
dently distributed over units with the parametric conditional distribution
F (Y3 Xn;0), where 6 is an m-vector of parameters.'® If this distribution is
tractable enough we could derive a likelihood function and use either max-
imum likelihood estimation or simulated maximum likelihood estimation.
Alternatively, we might derive some moment implications of this distribu-
tion for observables and use GMM to recover estimates of a subset of the
parameter vector. Sometimes, however, deriving the likelihood function is
extremely onerous; in that case, we can use SMD if we can simulate Y} given
the observed X, and parameters for the model. Thus we choose an integer S
for the number of replications and then generate S« H simulated outcomes
{(Y}, X0),...(Y), Xu), (Y2, X1),...(Y], Xu) }; these outcomes, of course, de-
pend on the model chosen (F'(.)) and the value of 6 taken in the model.

Thus we have some data on H units and some simulated data on S *
H units that have the same form. The obvious procedure is to choose a
value for the parameters which minimizes the distance between some features
of the real data and the same features of the simulated data. To do this,
define a set of auxiliary parameters that are used for matching. Gallant
and Tauchen (1996) suggest first finding a ‘score generator’ (flexible quasi-
likelihood function) which nests the true model, and then using the score
vector from this as auxiliary parameters. In the Gouriéroux et al. (1993)
Indirect Inference procedure, the auxiliary parameters are maximizers of a
given data dependent criterion which constitutes an approximation to the
true DGP. Both of these approaches are motivated by attempts to derive
estimators that have efficiency properties that are close to MLE. In Hall
and Rust (1999), the auxiliary parameters are simply statistics that describe
important aspects of the data; this is very close to calibration. We follow

13This could be generalised to allow for correlated heterogeneity by allowing for de-
pendence on the initial values, as in Chamberlain (1980), Blundell and Smith (1991) and
Wooldridge (2000).
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this approach. Thus we first define a set of J auxiliary parameters (below
we shall discuss in detail how to do this for the intertemporal problem):

H
1 &L |
=m0 Y Xa), j=1,2.7 (14)
h=1

where J > m so that we have at least as many auxiliary parameters as
model parameters. Denote the J-vector of auxiliary parameters derived from
the data by y”. Using the same functions ¢’ (.) we can also calculate the
corresponding values for the simulated data:

S H
1 ; .

s=1 h=1

and denote the corresponding vector by 7 () where the notation explicitly
shows the dependence on the model parameter values (but not the depen-
dence on the X variables observed). Identification follows if the Jacobian of
the mapping from model parameters to auxiliary parameters has full rank:

rank (Voy® (0)) = m with probability 1 (16)

This effectively requires that the model parameters be ‘relevant’ for the aux-
iliary parameters.

Given sample and simulated auxiliary parameters we take a J x .J positive
definite matrix W and define the SMD estimator:

Osap = arg min (% () — VYW (7% (8) - +P) (17)

Alvarez et al. (2001) perform a small Monte Carlo study and argue that it is
best to work with just identified models (J = m). This is largely because the
objective function may have many local minima and we can only be sure we
have converged to a global minimum (not necessarily unique) if the model is
just identified. In the just identified case the choice of W is irrelevant (except
for computational reasons) and the minimized criterion should be zero. For
just identified models, we would conclude that the model is ‘well-specified’
(relative to a particular choice of m auxiliary parameters) if and only if there

is some value of the model parameters such that v° (és M D) = ~P. Typically

we have J > m; in this case we use m of the auxiliary parameters to fit the

model and the remaining J —m auxiliary parameters to test for the goodness
of fit.
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4.2 Simulated Residual Estimation.

We turn now to applying SMD techniques in our specific context. Suppose
we have observations on H households followed for T" years. We begin by
assuming that we only observe household consumption in each period and
real rates between periods (which we assume to be time varying but common
across agents); thus we observe {r,Cy},_, 5. Below we shall consider the
case where we also observe earnings and asset levels. For the moment we
assume that we observe consumption with no measurement error; we shall
deal with this in the next sub-section. Since we introduce two innovations in
modelling (SMD and the use of simulated residuals) we begin by considering
how we would use SMD to estimate preference parameters if we used full
structural modelling with each agent having the same finite horizon T (with
T chosen to be somewhat larger than T" to be able to remove the beginning
and end effects). We proceed in a number of steps.

1. First we define (perhaps joint) processes for income, the real rate and
anything else that affects intertemporal allocation. Usually these would
be estimated using data taken from the population from which we draw
our sample.

2. Next we take parameter values for preferences (typically, the EIS and
the discount rate).

3. Then we derive T period specific consumption (policy) functions con-
ditional on current state variables (typically, the current realization of
income and the real rate for dependent processes and current cash on
hand). It is rarely possible to do this analytically, so that we need to
use numerical policy (or value) iteration methods. The last period con-
sumption function is trivial (consume everything) and the consumption
functions for the earlier periods are obtained by backward induction.

4. At this point we are ready to start simulation. To simplify the exposi-
tion we assume that we set S (the number of replications of the panel in
the SMD estimation procedure) equal to unity and draw H first period
income and real rate values (conditional on ‘period 0’ values for income
and the real rate) and give each of the synthetic H agents a starting
value for assets. From the consumption function for period 1 we calcu-
late first period consumption for each agent. We then draw new values
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of income and the real rate and calculate period 2 consumption and so
on. The end result of this is a set of T real rate, consumption, income
and asset realizations for each synthetic unit. We then trim these to
remove starting and end effects and to give a time series of length T'
for each household {r*,C};}, |, ,, (where now the s subscript reminds
us that this is simulated data).

5. We now need to choose auxiliary parameters. Since we have two pa-
rameters (the EIS and the discount rate) we need two auxiliary para-
meters. Our choice are the OLS coefficients in the simple regression of
consumption growth on the real rate:

Alog Chip1 = o+ Prp i1 + €pia (18)

These are not unbiased estimates of the parameters of interest, but
(under weak assumptions) they are unbiased estimates of something
and that something is the same for the true data and the simulated
data if we have the ‘true’ model. It is this property that makes SMD
so useful. Note that we could equally well take the GMM estimates
of the two parameters (with the constant and lagged interest rates
as instruments) as auxiliary parameters; we prefer the OLS since it
is simpler and quicker. We present results below that indicate that
the choice of auxiliary parameters is not too important, provided the
identification condition is satisfied.

~D
6. The last step gives two sets of estimates: (&3LS, ¢0Ls> for the data

~5
and (@2 .9 PorL S) from the simulated data. We now compare the two

sets of estimates. If they are the same, we stop. If they differ, we
go back to step 2 and choose new parameter values. In practice, of
course, we would embed this in an optimization routine or perform a
grid search over the EIS and discount factor parameters.

It will be seen that steps 3 and 4 are very time consuming and estimation
will be infeasible. We now present a technique which cuts out these steps.
After step 4 we could define simulated expectation errors:

-
65 _ Cfit+1 (1 + rt+1) (19)
ht+1 cy, (1+6)
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Conversely, if we knew the distribution of the expectations errors we could
simulate expectations errors, sit 41 and then we could construct paths of
consumption ratios using:

Chra [ (46 ¢ 17
= 20
C}it { 1 Tt+1)€h,t+1} (20)

This is, of course, very fast (as compared to steps 3 and 4 above). We then
use the simulated paths in steps 5 and 6. The error simulation step requires
a specification of the distribution of the expectations errors. One part of this
easy: it should be serially uncorrelated with an unconditional mean of unity.
If we now choose a simple two parameter form such as the lognormal then
we have one extra model parameter to estimate. This in turn requires an
extra auxiliary parameter; the obvious choice in step 5 above is to use the
variance of OLS errors. Using a more flexible distribution such as a mixture
of lognormals requires more auxiliary parameters for identification; we return
to this below. We refer to our estimation procedure as Simulated Residual
Estimation (SRE).
The algorithm for this simple case is:

1. Run OLS on the pooled sample of consumption growth on the real
rate and record the estimates of the constant, the slope parameter, the
variance of the error term and the correlation coefficient between the
error term and interest rate shocks'?.

2. From the standard Normal, draw standardized simulated residuals Vit
for t = 2,.. T and h = 1,...H . These standardized errors are kept
constant from iteration to iteration.

3. Choose a standard deviation for the expectations error distribution o,
and construct simulated expectations errors:

In (1 + o2
6€,t = exp (—% +/In(1+ U?)vat> (21)

14We construct the interest rate shocks as Ary 1 = ryp1 — ¢ assuming everybody faces
the same shocks (this is to generate a high degree of aggregate shocks). We also tried an
AR(1) process instead of a random walk. Our Monte Carlo results indicate that SRE is
robust to slight of the interest rate process.
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where 7, is standard normal variable; see Appendix B for details.

Choose values for the intertemporal allocation parameters (v,6) and
correlation coefficient between the expectations error and interest rate
shocks (p.,). Construct consumption ratios using equation (20).

4. Repeat step 1 for the simulated data.

5. If the values from steps 1 and 4 are the same, stop. Otherwise, go to
step 3 (so that we keep the same expectations error from iteration to
iteration) and revise the choice of (v, 6, 0., p.,.).

In practice we would once again use either an optimization algorithm to
revise parameter values or perform a grid search. In either case the compu-
tational time is much lower than for full structural estimation.

4.3 Accounting for measurement error.

In the account of SRE given in the last sub-section we ignored the possibility
that consumption is measured with error. The log-linearized equation was
introduced largely to take account of measurement error since any multi-
plicative measurement error is incorporated into the error term and as long
as it is uncorrelated with the instruments used in the estimation it does not
distort the parameter estimates. The only complication arising for GMM
estimation of the approximate Euler equation is that the error terms in the
consumption growth equation will have an MA(1) structure since we are first
differencing the noise. This suggests an auxiliary parameter that will allow
us to take account of measurement error in SRE.

If we assume that the measurement error is multiplicative lognormal with
unit mean then we need to estimate one extra parameter, the standard de-
viation of the measurement error, o,. If we assume that the only source of
auto-correlation in the error term is the measurement error, we can simply
use the extent of the first order auto-correlation as an auxiliary parameter.
In general, first order auto-correlation in such the Euler equation may also
indicate other features such as iid preference shocks. As far as our estimation
method is concerned, this can lead to a biased estimate of the magnitude of
noise in the data but the structural estimates will not be affected. The steps
of the estimation with measurement error are as follows:

1. Run an OLS of consumption growth on the real rate and record the
estimates of the constant, the slope parameter, the variance of the error
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term, the correlation coefficient between the error term and interest rate
shocks and the auto-correlation parameter of the regression errors.

2. From the standard Normal, draw standardized simulated residuals Vit
and measurement errors ﬁit fort=2..Tandh=1,..H.

3. Choose standard deviations for the expectations error distribution, o,
and the measurement error, o,, correlation coefficient between the er-
ror term and interest rate shocks (p,,) and construct simulated expec-
tations errors, 557“ and measurement errors, nit, as above. Choose
values for the intertemporal allocation parameters (v,6). Construct
consumption ratios using equation (20). Introduce measurement error
by multiplying the consumption ratio by measurement error ratios to

define ‘observed’ simulated consumption ratios:

CfitJrl ng,tJrl (22)
Cl?,t Tlf,t

4. Repeat step 1 for the simulated data with the ‘observed’ simulated
consumption ratios.

5. If the values from steps 1 and 4 are the same, stop. Otherwise, go to
step 3 and revise the choice of (v, 6,0,,0., p,,)-

Thus a simple model with two preference parameters can be estimated
using data on (noisy) consumption levels and interest rates. What if we now
observe more?

4.4 Using income and asset information.

SRE relies on specifying the conditional distribution of the expectations er-
rors. All of the above only uses consumption and interest rate information.
The strength that our method shares with the Euler equation approach is that
we do not have to specify the income or interest rate processes. Generally,
however, one would expect to achieve better results (in terms of identifica-
tion of heterogeneity and in terms of precision) by using the observed income
series for each household. As we saw in section 2, the lognormality assump-
tion is a poor one if there are sometimes very low income realizations. Our
own feeling is that identification in non-standard situations requires more
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Parameter Value

Coeflicient of Relative Risk Aversion, ~y 4
Discount rate, 6 0.05
mean r, [ 0.05
AR(1) coefficient of r 0.6
Standard deviation of interest rate shocks, o, 0.025
mean income innovation, z 1
Standard deviation of permanent income innovation, o, 0.02
Standard deviation of transitory income innovation, o, 0.1
Permanent income growth G 1
Standard deviation of measurement error, o, 0.03 (50% noise)

Table 3: Parameter Values

information. If we observe income realizations and sometimes there is very
low income then we might condition the variance (or higher moments) of the
expectations error distribution on that. In particular, if income has a unit
root then the current shock has a permanent component and should have a
powerful effect on consumption. Similarly, if we think that agents are some-
times liquidity constrained so that the Euler equation does not hold, then we
need to observe asset information. In general, the Euler equation will only
hold if positive assets (or assets above some debt limit) are carried forward.
We can model this in an SRE framework but we leave this for future work.

5 Small sample properties.

In this section we present small sample results on GMM estimation of ex-
act and approximate Euler equations and our Simulated Residual Estimation
(SRE) method. We remind the reader that one of the most important conclu-
sions that we take from the recent literature is that the estimation problem
here is inherently a small sample one (see the discussion at the end of section
2); hence we do not present any asymptotic results and rely on Monte Carlo
simulations alone. We use the same simulation environment as described
in section 3. We generate data using a standard life cycle model in which
a consumer maximizes expected utility subject to the intertemporal budget
constraint. Details are given in the Appendix. Table 3 gives the parameters
(the same as for model 9 in table 1) that we use.
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For GMM we use continuously updated GMM (see Hansen, Heaton and
Yaron (1996)) to remove any dependence on the normalization. For the exact
form, we estimate the preference parameters § and  using the following
orthogonality condition on the error term:

C -
(ﬂ) (I +rhe1)B =1

En,
’ Cht

= Englene1 — 1] =0 (23)

The instruments taken are the constant and lagged real rate'®, Our second
empirical model is the approximate Euler equation:

C 1
In (M> =a+ —Tt+1 + eh,t+1
Ch,t Y

where we use the same instruments used for the exact GMM estimation.
Since this is a panel data model with potential correlation across individuals,
the weighting matrix should be constructed accordingly. In practice, we
found that a flexible weighting matrix that allows for all possible correlations
do not work well in terms of convergence.

The final estimator we use is SRE. The errors used to generate simulated
consumption paths are assumed to be distributed with a unit mean lognormal
distribution and the auxiliary parameters are obtained by estimating the
approximate Euler equation.

In our Monte Carlo experiments, we investigate the small sample proper-
ties of GMM on the exact Euler Equation, GMM on the first order approx-
imation and SRE, both with and without measurement error. We perform
four sets of experiments. We assume that the econometrician has panel
data on consumption and estimates the preference parameters by pooling
all individuals together. The baseline experiment is for 10 ex-ante identical
households followed for 40 periods and no measurement error. The number of
replications for all experiments is 10, 000. The second set of results increases
the number of households to 20, holding the number of time periods constant.
The third set of results take the baseline case and reduce the number of time
periods to 15. The basic motivation behind this experiment is to establish
how well the estimators perform in a situation (fairly realistic) in which we

15We also experimented with different instruments such as lagged consumption growth
and lagged income growth. Results with these instruments (in addition to lagged interest
rate) are worse than the results we present here.
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Environment Exact GMM | AGMM SRE
| T NJoo| 8 | 5 | & | 8 [ 5 | 6
1140 10| O | .950 | 3.65 4.72 954 | 3.71 .004
[.950] | [3.55] | [4.29] | [.955] | [3.45] | [.004]
(.004) | (.637) | (3.19) | (.006) | (1.58) | (.003)
214020 0 | .951 | 3.59 4.70 953 | 3.70 | .004
[.950] | [3.54] | [4.37] | [.953] | [3.64] | [.002]
(.003) | (.427) | (1.33) | (.004) | (.517) | (.001)
3115|110 0 | .948 | 1.06 1.66 959 | 3.36 | .007
[.948] | [.768] | [1.40] | [.957] | [2.65] | [.004]
(.004) | (1.20) | (13.02) | (.020) | (2.26) | (.004)
4140|110 (.03 .942 | 2.79 3.41 950 | 3.80 | .026
[.946] | [2.55] | [2.84] | [.953] | [2.73] | [.027]
(.012) | (1.01) | (44.5) | (.039) | (3.04) | (.007)
Notes. True values are v =4 and # = 0.952
Values are means, in square brackets we present medians and in
brackets the standard deviations.

Table 4: Small Sample Results: Means, Medians and Standard Deviations
of Sampling Distributions

have a short panel. Finally, in the fourth experiment we add moderate mea-
surement error to the consumption paths in the baseline model; specifically
with our parameter values, half of the observed standard deviation of first
differenced log consumption is noise.

Table 4 presents the sampling distributions of the three estimators for
our five experiments. In the absence of measurement error and with a long
panel (environment 1), GMM using the exact Euler Equation and SRE per-
form very similarly with both giving estimates of the CRRA that are biased
slightly downward. Exact GMM yields a lower standard deviation and a more
symmetric sampling distribution. Both perform somewhat better than the
approximate GMM estimator. GMM on the approximate equation (AGMM)
results in an upward bias in the estimate of the CRRA, with the diver-
gence between the mean and median indicating some very large values. As a
by-product of the SMD estimation we obtain the estimates of the standard
deviation of the measurement error. Of course, since there is no measurement
error, our estimates are necessarily biased but usually close to zero.
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Increasing the number of cross-section units resulted in an even lower
mean estimate of CRRA for the exact GMM whereas the approximate GMM
and the SRE do not show any changes in means. On the other hand the stan-
dard deviations of the distributions for all three estimators are substantially
lowered. For the third experiment, we see that decreasing the number of time
periods from 40 to 15 leads to some substantial changes. First, as expected,
the dispersion of all of the estimators rises considerably. The standard devi-
ations obtained from of all estimators have gone up with the most dramatic
increase for the approximate GMM estimator (from 3.2 to 13). Second, both
of the GMM estimators exhibit serious downward bias in the estimates of
the CRRA, whereas the SRE seems to be relatively stable (with again a
downward bias). This suggests that SRE has small-T" properties even in the
absence of measurement error.

In the last experiment, we allow for moderate measurement error in the
consumption measurement. The first feature of the estimates given in the
Table is that measurement error of this order leads to a downward bias in the
exact GMM estimator. While the approximate GMM is expected to yield
a result similar to the first experiment it is rather surprising that it yields
much lower mean and median for the CRRA estimates. Also note that the
dispersion of the sampling distribution increases dramatically. This result
is particularly disappointing for the approximate model since the approxi-
mation is chosen to deal with multiplicative measurement error. The SRE
estimator is relatively unaffected by the presence of measurement error, ex-
cept that the variance of the estimators is somewhat higher. Additionally
SRE appears to recover the measurement error variance very precisely.

The conclusion we draw for these Monte Carlo results are that in a very
specific context and using the same model for the SRE as in actually gen-
erating the data, SRE does at least as well as exact GMM when there is
no measurement error and long panels and considerably better if we have
a short panel or measurement error. Additionally, SRE always dominates
approximate GMM for the estimation of the CRRA.
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6 Estimates from the PSID.

6.1 Sample selection.

In this section we present an application of SRE using the Panel Study of In-
come Dynamics (PSID) from the United States. The survey contains annual
information on food at home and food at restaurants. Our sample covers the
periods between 1974 and 1987. We exclude households from the poverty
sample and households that do not report in all 14 years. We also exclude
any households that may be liquidity constrained in any period; we do this
using the conventional indicator of having liquid assets equal to at least two
months of income. This results in the exclusion of very many households.
Then we exclude households with a head aged 65 or over in 1987. Finally,
we excluded households with extreme consumption changes from one year to
another. Specifically, households whose consumption more than doubled or
halved between any years were excluded from the sample. The final sample
has a total of 102 households.

Although this is a very small sample, it is ideally suited to our purposes
since it is very ’clean’ in terms of the model. In future work we shall explore
how to incorporate liquidity constrained households, large changes in house-
hold structure and large changes in circumstances that lead to significant
changes in consumption.

We divide the sample into two education groups since we expect that the
level of impatience and aversion to consumption fluctuations may vary across
different education groups. Households whose head has less than 12 years of
education are labeled as ”less educated” (30 households) and those with more
than 12 years are labeled as "more educated” (72 households). We allow for
variation over time in household size, marital status and number of children.
We also allow for variation in the years of education of the head as long as
such variation remains within the broad education category we define.

Table 5 presents basic statistics and demographic changes in our sample.
Most of our household heads are white and married. Not surprisingly, we see
clear demographic changes over the sample period: Number of people living
in the same family unit and number of children increased considerably from
1974 to 1987 for the more educated (and relatively younger) group. We
observe slightly opposite trend for the less educated group; a slight decrease
in number of children living in the household from 1974 to 1987. Finally,
majority of our households are male headed. Although we present uncondi-
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More Educated (70.6%) | Less Educated (29.4%)
real food exp. 8974 8944
consumption growth .018 —.004
head age 1974 30.1 34.6
# of children 1974 .68 1.53
# of children 1987 1.38 1.13
# in family unit 1974 2.58 3.60
# in family unit 1987 3.38 3.43
pct. married 1974 82% 90%
pct. married 1987 86% 93%
pct. black 13% 30%
pct. male head 93% 97%

Numbers (non-percentage ones) are mean values over all households

and all years in the sample. 1984 prices.

Table 5: Summary Statistics of PSID sample

tional means of consumption growth for both education group here, in our
estimations of Euler equations we will control for these demographic changes.

6.2 Estimation of the homogeneous model.

We begin by estimating a model in which the discount factor and the CRRA
are assumed to be homogeneous within each education group. In order to
obtain the auxiliary parameters we estimate the usual first order approxima-
tion to the consumption Euler equation by OLS. Since the related empirical
literature has mostly relied on instrumental variable estimation of the log-
linearized Euler equation we also present the IV estimates for comparison
purposes. In both cases we have included the first difference of number of
children, family size and marital status to control for the change in demo-
graphics.

In order to be consistent with our Monte Carlo experiments we also es-
timate the nonlinear Euler equation in which the demographics enter expo-
nentially. We use twice lagged interest rates and twice lagged consumption
growth as instruments for the IV and nonlinear GMM estimations. Table 6
presents the IV estimates and the OLS auxiliary parameter estimates used
for the SRE. The estimates are the constant, the coefficient on the real rate,
the second to fourth moments of the residuals, the AR parameter in a re-
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| Less educated | More educated
Estimated parameter OLS | IVE OLS | IVE
Constant —.006 | —.025 .009 .016
(016) | (.027) | (011) | (.014)
Coefficient on real rate .14 0.55 .262 .135
(.470) | (.887) | (.326) (.461)
std of residuals .248 .252 .266 .261
skewness of residuals —-.570 | —.608 | —.412 —.275
kurtosis of residuals 4.94 5.05 4.34 3.83
AR(1) coefficient of residuals —.003 | —.008 | —.01 —.01
(.044) | (.039) | (.029) (.031)
Correlation btw residuals and Argq .055 .027 —.006 .001
Nonlinear GMM Results
CRRA 1.31 .820
(2.84) (2.93)
EIS 763 1.22
(.982) (2.55)
Discount Factor .908 .924
(.322) (.189)

Table 6: Auxiliary Parameter Estimates

gression of the residuals on their lagged values and the correlation between
the regression residuals and interest rate shocks. We also present results for
the exact nonlinear Euler equation. The results for the approximate IVE
are typical for this literature. In particular, the coefficient on the real rate
is very imprecisely determined with confidence intervals of [—1.19,2.29] and
[—0.77,1.04] for the less educated and more educated respectively. There ap-
pears to be no significant negative auto-correlation in the residuals. Finally
the OLS and IV estimates are (statistically) similar, reflecting the weakness
of our instruments. The exact GMM results presented at the bottom of Table
6 look plausible although they all suffer from extremely low precision.

For SRE we assume that the expectational errors distribution can be pa-
rameterized using a mixture of two lognormal distributions, both with a mean
of unity. In order to identify the three parameters of the mixture distribution
(the two variances and the mixing probability) we use the standard devia-
tion, skewness and kurtosis of the OLS regression residuals obtained from
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the PSID sample. For the measurement error we take a unit mean lognormal
distribution and estimate its standard deviation within the SRE procedure.
The autoregressive coefficient of regression residuals is used to identify the
percentage of noise in the sample. Since we do not observe any significant
correlation between the interest rate shocks and regression residuals we dis-
regard it in the estimations. We also confirmed the absence of aggregate
shocks by checking the correlation between regression residuals and the time
dummies'®. It is important to note that SRE can be modified to incorporate
such shocks through, for example, common shocks to permanent income. We
leave this for our future work.

Our mixture model has six model parameters (the two preference parame-
ters, the measurement error variance, and the parameters of the mixed expec-
tational error distribution) and six auxiliary parameters. Table 7 presents
SRE estimates of the discount factor, the coefficient of risk aversion and
the percentage of noise in the consumption growth data for each education
group.'” We present results for both the lognormal and the mixture of log-
normal assumptions'®. For each set of estimates we performed a Kolmogorov-
Simirnov test to see how well we match the regression error distribution and
consumption growth distribution for each education group. As can be seen,
the simple log-normal specification for the expectational errors leads to very
different estimates of all the parameters. The difference is substantial for the
less educated group; estimated discount factor for the single lognormal is a
great deal lower than that of the mixture of lognormals. The estimate of the
CRRA with the single lognormal is much higher than that of the mixture for
the less educated group whereas the result is reversed for the more educated
group.

The assumption of the expectational error distribution seems to matter
a lot for the measurement error variance estimation. The single lognormal
assumption yields much higher noise estimates for both education groups.
For the (preferred) mixture model, the discount rate estimates are 5.6% and
4.7% for the less educated and the more educated groups respectively (we
present confidence bands below). Given that the average real rate from the
sample period is approximately 2.1%, the discount factor estimates suggest

1The presence of aggregate shocks invalidates the use of time dummies as instruments
since they will be correlated with the expectational errors (see Runkle 1991).

1"We do not present standard errors since the model is nonlinear; tests of hypotheses of
interest will be given below.

18For the log-normal model we drop the skewness and kurtosis as auxiliary parameters.
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Less educated | More educated

Parameters LN | Mixed LN | Mixed
Discount factor, (3 .694 947 998 .955
CRRA, ~ 3.67 1.20 1.29 1.95
EIS, (1/7) 272 .833 775 513
ME std o, .07 .01 .05 .02
(noise) (28%) | (4%) | (19%) (8%)
K-S Test: residuals 13 .81 .25 .88

| K-S Test: C. growth | .03 | 78 | .10 | .83 |

Notes: K-S test are the p-values for Kolmogorov -Smirnov

tests for the equality of the auxiliary model’s residual and

consumption growth distribution (obtained from PSID and
that from simulated data.

Table 7: SRE Parameter Estimates

a fairly high degree of impatience for both education groups. Turning to the
results for EIS, we note that there is a substantial difference between the IV
and the SRE estimates. Also note that the difference is not as big between
SRE and nonlinear GMM estimates for the less educated group. The most
important substantive finding is that the less educated have a lower CRRA.
We turn now to the precision of the estimates of the preference parameters.

To conduct inference on the parameter estimates of interest we note that
the standard asymptotic Wald tests are inappropriate for nonlinear models.
Therefore we adopt a quasi-likelihood ratio test procedure and perform tests
of ‘significance’ for the discount factor and CRRA parameters separately. To
do this, we define a grid for the parameter in hand and perform SRE for each
point on the grid. For example, we fix the discount factor at different values
from 0.1 to 1.1 and then estimate the CRRA (and the other parameters) by
SRE at each of these points. Since this gives an equation with one degree of
over-identification, the appropriate weighting matrix for the criterion should
be used. This matrix is the inverse of the covariance matrix of the auxiliary
parameters. We obtain this using a nonparametric bootstrap on the original
PSID data, in which we re-sample households (that is, we re-sample con-
sumption paths of length 14). Using the inverse of this covariance matrix as
the weighting matrix, the minimized function value has a x? (1) distribution,
under the null that the parameter is equal to that value.
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The results for these tests for the two preference parameters are pre-
sented in the top panel of Figure 1. Note that the x* (1) statistics are zero
at the point estimates; the horizontal line gives the 5% cut-off. Both figures
clearly suggest that the distribution of the estimates are decidedly asymmet-
ric for both education groups (confirming the invalidity of using conventional
standard errors). The discount factor estimate is more precise for the less
educated group relative to the more educated. The lower confidence band for
the more educated is very wide whereas upper band is fairly tight. For both
education groups, a point estimate of unity for the discount factor is rejected.
The 95% confidence interval for the discount factors are are [0.75,0.97] and
[0.19,0.99] for the less and more educated respectively.

For the CRRA estimates the most important finding is that we decisively
reject values below unity or very high values for the more educated. The
confidence intervals for the CRRA are [0.87,2.95] and [1.42, 3.70] for the less
and more educated respectively. This translates into intervals of [0.34,1.15]
and [0.27,0.70] for the EIS which are much tighter than for the GMM esti-
mators. This reinforces our earlier analysis that SRE delivers more precise
estimates than the linearized and the nonlinear model on the same (noisy)
data.

The results presented here are encouraging. We find that the discount
factor can be estimated with some precision, even though we have very small
sample sizes. The point estimate for the more educated is higher than that
for the less educated, which accords with widespread priors. We find that
both groups have a higher discount rate than the mean real rate in our data
so that both groups display impatience. We also find reasonable estimates for
the CRRA with the more educated displaying more aversion to fluctuations
(more risk aversion). This could be taken as evidence against the hypothesis
that the EIS is independent of the level of consumption (the iso-elastic form).
All of this is for the model with the same parameters for everyone within an
education group. We now go on to consider whether the discount rate is the
same for everyone with the same education.

6.3 Heterogeneity in the discount factor.

Of all the features that empirical analysis using micro data has to address,
heterogeneity is the most important. In this section we present a method to
identify the heterogeneity in the discount factor within each education group.
We choose to concentrate on heterogeneity in the discount rate rather than
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the CRRA since that has been the principal focus in the previous literature;
see, for example, Carroll and Samwick (1997). Our approach to identifying
the distribution of discount factors begins with the observation that there are
persistent differences between households in their consumption growth. To
show this we take means over time of consumption growth for each household.

In Figure 3 we present the distributions of mean consumption growth
for our two education groups. Two features of these distributions merit
attention. First, the distribution for the more educated is to the right of that
for the less educated. This is reflected in the higher discount factor found for
the former in the homogeneous case. Second, within each education group
there is significant heterogeneity. For example, for the more educated the
mean consumption growth is about 0.01 (—0.004 for the less educated group)
but some households have an average consumption growth of more than 0.1
per year (so that consumption in the final year is four times that of the initial
year) and others have almost —0.1 (consumption in the final year is one fifth
that of the initial year). One reason for these differences is that different
households have different realizations of the expectations errors and some
have persistently pleasant shocks. In the SRE modelling this is captured
by our use of simulated residuals, with some simulated households having
long runs of good or bad draws. The other possible source of variation, if
we assume that everyone has the same CRRA and the same measurement
error structure, is differences in the discount factor. That is, more patient
households have higher expected consumption growth.

To implement an estimator allowing for heterogeneity we first assume that
the discount factor is normally distributed across the population with mean
pg and standard deviation o5."? In the simulation model we draw values of
this, g,,, for each h and then construct household specific paths using the
analogue of equation (20) and simulated residuals €}, ;:

Cii { 1 }
: = € 24
C}it ﬁh(l + Tt—i—l) h,t+1 ( )

To estimate the additional parameter o3 , we require one more auxiliary
parameter. The obvious candidate is some measure of the dispersion of the

19 An alternative would be to impose that the discount factor is below unity by taking
a distribution with support [0, 1] (the Beta is an obvious candidate). We choose not to do
this since previous investigators have found evidence that some households have discount
factors above unity.
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time averages of consumption growth discussed in the previous paragraph.
Specifically, we include a household specific fixed effect in the OLS regression
of consumption growth on the real rate and take the standard deviation of
these fixed effects as our new auxiliary parameter.

We begin by testing whether the homogenous model is rejected by the
data. To do this we take the just identified seven parameter heterogeneity
model and set o5 = 0. The x? (1) statistics for homogeneity are 32 and 47
for the less educated and more educated respectively. Thus we decisively
reject the homogeneity assumption. Given this rejection we go on to esti-
mate the extent of the heterogeneity. In Figure 3 we present the results for a
grid search over the standard deviation of the discount factor for each of the
education groups. The horizontal line gives the 5% cut-off for the standard
deviation. The estimation results are presented in Table 8. The principal

| Parameters || Less educated | More education |
Mean discount factor, p4 .87 .95
Std of discount factor, og 101 .086
CRRA, ~ 1.68 2.03
EIS, (1/7) .595 493
ME std, o, (noise) .03(11%) .04(16%)

Table 8: Heterogeneity SRE estimates

features of these results are: the mean discount rate is very similar to the
homogenous model for the more educated group; there is a significant dis-
persion of the discount rate with 95% of less educated households between
0.05and 1. 15 and 95% of more educated households between 0.79 and 1. 12;
there is no significant impact of allowing for heterogeneity on the estimates
of the CRRA and the measurement error variance. The results indicate a
fairly wide distribution for discount factors, even allowing for education. In
future work we shall explore how this distribution correlates with observable
fixed factors.

7 Conclusions.

There is widespread agreement that, given currently available data, we can-
not accurately estimate the parameters of intertemporal allocation using
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GMM on exact or approximate Euler equations. Our reading of this lit-
erature and our own results is that this is a small sample (strictly, short
panel) problem. The alternative seems to be to move to full structural mod-
elling. In the current state of the art this is cumbersome, fragile and unable
to deal with significant heterogeneity. To circumvent these problems, we
present a novel estimation procedure that combines some of the advantages
of the Euler equation and structural modelling approaches. This procedure
is based on simulating expectation errors; we refer to it as Simulated Resid-
ual Estimation (SRE). The principal advantage of SRE is that it allows us
to estimate preference parameters without having to specify the underlying
economic environment explicitly. We develop variants of the basic proce-
dure that allow us to take account of measurement error in consumption, the
‘news’ in interest rate realizations and heterogeneity in discount factors.

A Monte Carlo investigation of the small sample properties of the SRE
estimator indicates that it dominates GMM estimation of both exact and
approximate Euler equations in the case when we have short panels and noisy
consumption data. To complement the Monte Carlo results, we present an
illustrative empirical application to two samples drawn from the PSID. The
results are very encouraging even though we have small sample sizes. We
find that we can estimate the parameters of intertemporal allocation much
more precisely than with a conventional GMM on a log-linearized model. For
example,we find that the 95% confidence interval for the EIS is [0.27,0.70]
for the more educated whereas the linearized GMM confidence interval is
[—0.38,0.90]. Moreover, the parameter estimates seem quite reasonable. For
example, we find discount factors that are less then, but close to unity, with
a higher discount factor for the more educated group. We also find that the
more educated have a higher CRRA. Finally, we present evidence that there
is a significant heterogeneity in the discount factor, in both the statistical
and substantive sense.

SRE relies on specifying the conditional distribution of the expectations
errors. All of the above only uses consumption and interest rate information.
The strength that our method shares with the Euler equation approach is
that we do not have to specify the income process nor the processes for other
relevant variables. Generally, however, one would expect to achieve more
identification and better precision by using the observed income series for
each household. Similarly, if we think that agents are sometimes liquidity
constrained so that the Euler equation does not hold, then we need to observe
asset information. In general, the Euler equation will only hold if positive
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assets (or assets above some debt limit) are carried forward. We can model
this in an SRE framework but we leave this for future work.

There are a number of further avenues to explore. One of these is to allow
for conditionally heteroscedastic expectations errors in the estimation step;
that is, allowing that the marginal utility of expenditure is a martingale and
not a random walk. One particularly important facet of this is to allow for
persistent heterogeneity in expectations error variances across agents. This
will require the use of income and asset information. For example, low levels
of beginning of period assets will be associated with high expectations error
variances. As another example, we showed in section 2 that the distributional
assumption we make (a mixture of two log normals) is a poor one if there are
sometimes very low income realizations. If we observe income realizations
then we can condition the variance (or higher moments) of the expectations
error distribution on that. We also plan to use cross-section differences in
interest rates due to differences in marginal tax rates and the wedge between
borrowing and lending rates. The ultimate goal of this analysis will be the
development of credible estimates of the variation in preference parameters
across agents. Based on this we can then address whether cross-section vari-
ations in the EIS are due to (persistent) heterogeneity or to differences in
wealth levels. This will lead on to a systematic exploration of alternative
forms for the utility function (including the vexed question of whether the
iso-elastic assumption is tenable). In the empirical illustration presented in
this paper we have largely followed the literature in our modelling assump-
tions so as to highlight the SRE procedure. In future work on the PSID
we shall present analyses based on larger samples with unbalanced panels
and some agents only being in the sample for a short period. It will also be
important to take coherent account of the fact that food is a sub-component
of total expenditure and also to take more careful account of changes in the
demographic composition of the household.

To conclude: Simulated Residual Estimation provides a procedure for es-
timating the parameters of intertemporal allocation without the need for full
structural modelling. In estimation we can allow for ’classical’ measurement
error in consumption which leads to a good deal of bias in exact Euler equa-
tion GMM estimation. Furthermore the SRE procedure is flexible enough
to allow us to consider a number of extensions to the conventional model.
In this paper we have only considered allowing for heterogeneity in discount
factors; in future work we plan to develop some of the other issues discussed
above.
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A The consumption function

We assume the utility function is intertemporally additive and the sub-
utilities are iso-elastic (with no durables and no demographics). The problem
of the generic consumer h at time t is:

It V=g
max Et Z (Ch7t+]> -
— 1-7 (1+9)

st. Anprjrr = (14 Thirs) Aners + Yarrs — Chiry

where C'is non-durable consumption, A is assets, Y is stochastic labor income
and r is the stochastic real interest rate. We assume finite life and end of
life T' is certain. The discount rate 6 and the coefficient of risk aversion -
are positive. Our generic consumer has no bequest motive so that Ay, = 0.
The stochastic process driving labor income is taken to be that described in
equation (11). We assume that the innovations to income are independent
over time and across individuals i.e. we assume away aggregate shocks to
income. Individuals can use only one asset to smooth their consumption
against these idiosyncratic income shocks. The return on this asset (interest
rate) is generated by a stationary AR(1) process:

Thit1 = (L= p)p+ pras + €nis (25)

where p is the unconditional mean, p is AR(1) coefficient with 0 < p < 1,
and ¢, is assumed to be itd Normal with mean zero and standard deviation
Oc.

Following Deaton(1991), the budget constraint is re-defined as

Xngrjrr = (1 + 7)) (Xniss — Chprg) + Yarrin (26)

where X, 11; = Ap 14+ Yaiy; (cash on hand). The income process is nonsta-
tionary which makes the problem harder to solve since the range of possible
income values is large. Instead, we redefine all the relevant variables in terms
of their ratios to current income and solve for the consumption to income
ratio. By doing this we reduced the number of state variables to two, namely
the cash on hand to income ratio and the interest rate. Moreover, we obtain
an iid income process which can be approximated by standard Quadrature
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methods. Given this redefinition of the relevant variables, the Euler equation
can be written as

1 _
Oi(wy,r) " — ——=F; [(1 + 7re1)0p1 (Wi, 7“t+1)772t+71} =0 (27)
(1+96)
where 6, = %, wy = %ﬁ

The problem is solved via policy function iteration using the terminal
value condition. At the terminal date T, consumption is function of only
cash on hand and since the bequest motive is assumed away 0, = wy.

For the income process, we use a 10 point Gaussian Quadrature and
following Tauchen (1986) we approximate the interest rate process by forming
a 10 point first order discrete Markov process. We use a cubic spline to
approximate the consumption function at each iteration. Since we solve
a finite life problem, we obtain T consumption-to-income ratio functions
{(91(11}1, 7“1), ceey QT(U}T)}

Table 3 reports the parameter values used in the solution and the sim-
ulation of the model described above. The agent is allowed to borrow the
amount he can pay back with certainty. In the infinite life case this would
correspond to the borrowing limit of %‘;}; The discount rate and the mean
interest rate are chosen to be equal in order to prevent consumers to quickly
go towards the borrowing constraint. When the discount rate is large rela-
tive to the interest rate, consumers borrow close to the maximum possible
amount. Then the movement of consumption is largely driven by income and
the identification of interest rate impact on consumption growth becomes
very difficult.

We initialize the algorithm with the consumption rule at the end of life
cr(xr) = xp. The constraint on borrowing is that at the end of the life per-
son should pay back all his outstanding debt. In practice this constraint
will never bind since the utility function satisfies the Inada conditions which
implies that zero consumption is never chosen. Instead we will observe very
impatient individuals getting very close to the borrowing limit, whereas it
will be irrelevant for the patient ones. Since we do not assume an explicit
borrowing limit as in Deaton (1991), the consumption functions are con-
tinuously differentiable. In fact, in our case where agents have iso-elastic
preferences and income uncertainty, consumption functions are strictly con-
cave. In order to solve the problem, we define an exogenous grid for the cash
on hand to income ratio: {:Uj}jzl . It is important to adjust the grid as the
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solution goes back in time. The algorithm finds the consumption that makes
the standard Euler equation hold for each value of x and r. In practice, we
took 500 points for z and 10 points for r. After obtaining c;_;, we use a
cubic spline to approximate c;_q(zp_1) for each r. After obtaining the con-
sumption functions for each age, we simulate life time consumption paths
using the intertemporal budget constraint and generating random draws for
income and interest rate. Generated paths differ due to different realizations
of income and interest rates for each individual.

For our Monte Carlo experiments we generate 80 period consumption
paths for ex ante identical consumers. Individuals are assumed to face the
same interest rate series. Therefore individuals’ consumption paths differ
due only to different income realizations. Although it is possible to allow
for cross section variation in the interest rate we believe it is more plausible
to assume only time series variation (to take proper account for correlation
across individuals’ expectational errors). We perform several experiments
by using different time period (7") and number of individuals (N) in the
estimations.

B Simulating the lognormal distribution.

Before presenting the full optimization algorithm, we have to digress a little
and discuss how to simulate draws from a lognormal distribution with a
mean of unity. In the optimization routine for any simulation estimator it is
important to keep the draws constant from iteration to iteration, otherwise
the optimization routine becomes unstable. We can simulate a lognormal by
taking:
X wexp(a+bN(0,1))

where N (0,1) denotes the standard Normal. The mean and variance of X

are given by:

px = exp(a)/exp(b?)
0% = exp(2a)exp (b°) (exp (b°) — 1)

To ensure that the mean is unity we need to impose:

b2

a = 5
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Thus if we simulate draws from a lognormal with mean 1 and a standard
deviation of ox we use:

In(1+0%)

5 + ln(l—l—a?X)N(O,l))

X «~exp (—

In the algorithm below, the procedure is to draw a matrix vector of stan-
dardized Normal variables and then to use this formula to give a lognormal
with unit mean and varying standard deviation.
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Figure 1: Inference on Discount Factor and CRRA (PSID)

— more educated
— less educated
L — 3.84

1.0 2.0 30 4.0 5.0 6.0

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05
Discount Factor

— more educated
— less educated
— 3.84

N

Q.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 34 3.6 3.8 4.0 4.2
CRRA

46



Figure 2: Distribution of Mean Consumption Growth (PSID)
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Figure 3: Test of Heterogeneity in Discount Factor (PSID)
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