Differential activity of nucleotide analogs against tick-borne encephalitis and yellow fever viruses in human cell lines

Binderup, Alexkander; Galli, Andrea; Fossat, Nicolas; Fernandez-Antunez, Carlota; Mikkelsen, Lotte S; Rivera-Rangel, Lizandro René; Scheel, Troels K H; Fahnøe, Ulrik; Bukh, Jens; Ramirez, Santseharay

Published in:
Virology

DOI:
10.1016/j.virol.2023.06.002

Publication date:
2023

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Brief Communication

Differential activity of nucleotide analogs against tick-borne encephalitis and yellow fever viruses in human cell lines

Aleksander Binderup, Andrea Galli, Nicolas Fossat, Carlota Fernandez-Antunez, Lotte S. Mikkelsen, Lizandro René Rivera-Rangel, Troels K.H. Scheel, Ulrik Fahnøe, Jens Bukh, Santseharay Ramirez

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

ARTICLE INFO

Handling Editor: J Jasmine Tomar

Keywords:
Antivirals
Flavivirus
Repurposed drugs
Remdesivir
Sofosbuvir
Uprifosbuvir
Nucs

ABSTRACT

With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses. Remdesivir, uprifosbuvir and sofosbuvir were the most potent drugs against TBEV and YFV in liver cells, but they had reduced activity in neural cells, whereas galidesivir retained uniform activity across cell lines and viruses. Ribavirin, valopicitabine, molnupiravir and GS-6620 exhibited only moderate antiviral activity. We found antiviral activity for drugs previously reported as inactive, demonstrating the importance of using human cell lines and comparative experimental assays when screening the activity of nucs. The relatively high antiviral activity of remdesivir, sofosbuvir and uprifosbuvir against TBEV and YFV merits further investigation in clinical studies.

1. Introduction

Orthoflaviviruses are wide-spread vector-borne RNA viruses collectively infecting more than a hundred million people every year (Pierson and Diamond, 2020). Tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) are orthoflaviviruses that can cause diseases with significant mortality and morbidity. TBEV and YFV infect at least 12,000 and 200,000 people every year, respectively (Gardner and Ryman, 2010; “WHO,” 2023). Despite the existence of effective vaccines, the incidence of TBEV and YFV infections has risen during the last decades, and the viruses have spread to new previously non-endemic areas (“ECDC,” 2015; Gardner and Ryman, 2010; Lindquist and Vapalahti, 2008). There are currently no approved antiviral drugs for the treatment of orthoflaviviruses (Boldescu et al., 2017), thus identifying safe and effective drugs, ideally broad-spectrum anti-flavivirus compounds, is crucial. Drugs against the related hepatitis C virus (HCV), which lead to high cure rates for all HCV genotypes (Bukh, 2016), have been successfully developed.

Although numerous studies have found compounds that can inhibit orthoflaviviruses, including TBEV and YFV (Brzuksa et al., 2020; Eyer et al., 2016; Guo et al., 2016; Zandi et al., 2019), only a few drugs have reached clinical trials (Komarasamy et al., 2022). Nucleos(t)ide analogs (nucs), such as remdesivir and 2'-C-methyladenosine, exhibit antiviral activity against several members of the Flaviviridae family (Carroll et al., 2003; Eyer et al., 2018; Ramirez et al., 2021). NuCs inhibit viral replication by targeting the viral RNA dependent RNA polymerase (RdRp), and can cause chain-termination of an elongating RNA strand or increase mutagenesis, which can lead to error catastrophe (De Clercq and Neyts, 2009; Graci and Cameron, 2008). The viral RdRp is located at the C-terminal of the non-structural protein 5 (NS5) of orthoflaviviruses and shares conserved domains with RdRps across RNA viruses (Choi and Rossmann, 2009), representing a good target for broad-spectrum antivirals. Numerous in vitro studies have investigated the anti-TBEV and anti-YFV activity of existing or novel nucs (Eyer et al., 2015, 2017a, 2017b, 2018; Gejji et al., 2020; Good et al., 2021; Mendes et al., 2019; Warren et al., 2014; Zandi et al., 2019), however, head-to-head determinations using comparable experimental conditions are lacking, making comparisons of antiviral activity between viruses and across studies difficult. Most nucs are developed as prodrugs and must first be converted intracellularly to an active 5'-triphosphate metabolite to enable their antiviral properties (Peterson and McKenna, 2009).

* Corresponding author.
E-mail address: santseharayra@sund.ku.dk (S. Ramirez).

https://doi.org/10.1016/j.virol.2023.06.002
Received 4 March 2023; Received in revised form 25 May 2023; Accepted 5 June 2023
Available online 13 June 2023
0042-6822/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2.1. Virus cell culture

Accordingly, their in vitro activity is cell-dependent (Bayer et al., 2016).

The aim of this study was to screen the antiviral activity of a panel of existing nucs in cell culture, which could be repurposed for the treatment of TBEV and YFV, using high-throughput virus propagation assays and relevant human cell lines.

2. Materials and methods

2.1. Virus cell culture

All cell lines were kept at 37 °C in a humidified incubator with 5% CO2 and grown with specific media, as described in detail in Supplementary Material. The TBEV stock (strain Neudoerfl) was generated from the pACNR-FLYF-17D plasmid (Mandl et al., 1997). Briefly, in vitro transcribed (IVT) RNA was produced with the T7 mMESSAGE mCHINE Kit (Invitrogen) and purified RNA was electroporated in BHK-21 cells using a BioRad GenePulser Xcell (BioRad). Supernatant from the transfected cell culture was harvested after 6 days and used for two consecutive passages in Huh7.5 cells to generate a TBEV viral stock, which was used for all experiments described here. Similarly the YFV stock (strain 17D) was generated from the pACNR-FLYF-17D plasmid (Sanchez-Velazquez et al., 2020). IVT RNA was produced with the mMESSAGE mMACHINE SP6 Transcription kit (Promega, M6101), which was then electroporated in Huh7.5 cells. Supernatant from the transfected culture was harvested after 48 h and used in two consecutive passages in Huh7 cells to generate a YFV viral stock.

2.2. Determination of viral stock titers

Infectivity titers were determined using tissue culture infectious dose 50% (TCID50) assays, as described in detail in Supplementary Material. In brief, virus stocks were 10-fold serially diluted in appropriate cell culture medium and was added in quadruplicates to monolayers of cells and incubated 48 h. Cells were then fixed and stained with anti-Flavivirus group antigen antibody (R&D Systems), HRP-linked antibody NA931V (Cytiva), and visualized with the Bright-DAB substrate kit (ImmunoLogic). An automated ImmunoSpot series 5 UV analyzer and a peptide immunostaining performed as described above, images of each well were obtained with the ImmunoSpot series 5 UV analyzer and a customized ImageJ (version 1.52p) macro script was used to determine the relative number of infected cells in each well. EC50 and CC50 values were obtained with non-linear regression analysis using GraphPad Prism (version 9.3.1).

2.4. Sequencing of virus stocks

The sequence of viral stocks was confirmed with next generation sequencing (NGS) of the complete virus open reading frame (ORF). Methodologies for sample preparation and NGS analysis were adapted from protocols previously described for HCV (Fah nose and Bukh, 2019; Jensen et al., 2019), as detailed in Supplementary Material. In short, viral RNA was extracted from cell culture supernatants and used as template for reverse transcription (RT) followed by a polymerase chain reaction (PCR)-amplification spanning the complete viral ORF with virus specific primers (Supplementary Material). PCR products were purified and prepared for NGS using the NebNext Ultra II FS DNA Library Prep Kit (NEB). NGS was performed with MiSeq (Illumina) using the v2 kit (500-cycles).

3. Results

3.1. Initial screening

An initial screening of the antiviral activity of fourteen nucs, remdesivir, GS-6620, sofosbuvir, uprifosbuvir, ribavirin, galidesivir, mericitabine, valopicitabine, molnupiravir, favipiravir, tenofovir alafenamide, tenofovir disoproxil, entecavir and lamivudine (Supplementary Table 1), was conducted in the human hepatoma derived Huh7.5 cells. Drugs were found active if they led to at least 50% inhibition of viral propagation at concentrations equal to or below 100 μM. Eight drugs were found active against TBEV and/or YFV: remdesivir, GS-6620, sofosbuvir, uprifosbuvir, valopicitabine, galidesivir, ribavirin and molnupiravir (Fig. 1, Table 1, and Supplementary Fig. 1). Huh7.5 cells were chosen since most nucs, including prodrugs, are well metabolized by the liver (Hecker and Erion, 2008), and these cells support TBEV and YFV replication and propagation. Moreover, the liver is relevant for the pathogenesis of YFV (Gardner and Ryman, 2010) but also of TBEV by supporting high level of virus replication early after infection (Rüzek et al., 2010).

3.2. Confirmation of activity in different human cell lines

During the initial viremic phase, TBEV may breach the blood-brain barrier and enter the central nervous system to infect neuronal cells (Rüzek et al., 2010). Cases of neurologic disease have also been reported for yellow fever, particularly after vaccination with some live attenuated virus strains (Colen et al., 2022; Ribeiro et al., 2021). Thus, to further investigate, quantify and compare the antiviral activity of the eight drugs in liver and also in neural cells, detailed analyses of cytotoxicity and potency (determinations of cytotoxic concentration 50% [CC50] and of effective concentration 50% [EC50], respectively) were performed in Huh7.5, SH-SY5Y, and in Daoy cells (Table 1, Fig. 1 and Supplementary Fig. 1). SH-SY5Y cells originated from a patient with neuroblastoma (Biedler et al., 1978) and have been used to study orthoflaviviruses (Breitkopf et al., 2021; Kalia et al., 2013). Daoy cells originated from a medulloblastoma patient (Jacobsen et al., 1985) and have been used in TBEV studies (Rüzek et al., 2009). In addition, for YFV we also were performed with a high-throughput assay used previously for HCV (Jensen et al., 2019) with modifications (Supplementary Material).

In brief, cells were seeded in 96-well plates one day prior to being infected at a multiplicity of infection (MOI) resulting in fully infected monolayers for each cell line. Drug dilutions were immediately added afterwards in triplicate wells and cells were incubated for 72 h. After viral specific immunostaining performed as described above, images of each well were obtained with the ImmunoSpot series 5 UV analyzer and a customized ImageJ (version 1.52p) macro script was used to determine the relative number of infected cells in each well. EC50 and CC50 values were obtained with non-linear regression analysis using GraphPad Prism (version 9.3.1).
performed the experiments in African green monkey kidney cells (Vero E6) to directly compare the results with previously published work (Supplementary Table 2 and Supplementary Fig. 2). In concentration-response assays (Fig. 1 and Supplementary Fig. 1), we observed that the activity of most drugs varied between human cell lines and viruses, but all eight drugs inhibited both viruses in at least one human cell line. Most drugs were more potent against TBEV than YFV in the human cell lines tested. For YFV, overall drug activity was significantly reduced in Vero E6 cells, with only two drugs significantly inhibiting the virus. Remdesivir, a broad-spectrum C-adenine analog, was the most potent drug in all human cell lines, similarly inhibiting TBEV and YFV, with sub-micromolar EC50 values of 0.2 and 0.3 μM in Huh7.5 cells and 0.5 and 0.7 μM in Daoy cells, respectively, but was more than 15-fold less potent in Vero E6 cells.

![Graph showing concentration-response curves for TBEV and YFV](image_url)

Fig. 1. Comparative antiviral activity of nucleos(t)ide analogs against TBEV and YFV in Huh7.5 cells.

Figure legend. Graphs show a representative example of concentration-response curves used to determine the EC50 value for the different compounds for TBEV and YFV in Huh7.5 cells. The y-axis shows the amount of intracellular virus antigen in treated wells normalized to non-treated controls (%) at each drug concentration (μM). Log10 indicated in the x-axis. Compounds are depicted in different colors. Dots represent the mean of triplclicate infections and error bars represent the standard error of the mean (SEM). Curves were constrained to the y-axis with a top of 100% and bottom of 0%.

Table 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>CC50 (μM) Huh7.5</th>
<th>EC50 (μM)</th>
<th>SI (CC50/EC50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remdesivir</td>
<td>12.6</td>
<td>0.2 ± 0.03</td>
<td>63.2</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>0.5 ± 0.02</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>36.9</td>
<td>9.0 ± 0.31</td>
<td>4.1</td>
</tr>
<tr>
<td>GS-6620</td>
<td>148.5</td>
<td>26.1 ± 1.7</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>27.4 ± 0.75</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>97.0</td>
<td>69.8 ± 1.83</td>
<td>1.4</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>>250.0</td>
<td>>4.2 ± 0.18</td>
<td>>59.5</td>
</tr>
<tr>
<td></td>
<td>>250.0</td>
<td>>27.9 ± 2.18</td>
<td>>9.0</td>
</tr>
<tr>
<td></td>
<td>>125.0</td>
<td>>100.0</td>
<td>–</td>
</tr>
<tr>
<td>Uprifosbuvir</td>
<td>>500.0</td>
<td>2.1 ± 0.21</td>
<td>>238.1</td>
</tr>
<tr>
<td></td>
<td>>500.0</td>
<td>11.0 ± 0.41</td>
<td>>45.5</td>
</tr>
<tr>
<td></td>
<td>>250.0</td>
<td>46.0 ± 2.67</td>
<td>>5.4</td>
</tr>
<tr>
<td>Valopicitabine</td>
<td>>500.0</td>
<td>50.3 ± 2.03</td>
<td>>9.9</td>
</tr>
<tr>
<td></td>
<td>>500.0</td>
<td>19.9 ± 1.26</td>
<td>>25.1</td>
</tr>
<tr>
<td></td>
<td>>250.0</td>
<td>14.4 ± 0.71</td>
<td>>17.4</td>
</tr>
<tr>
<td>Galidesivir</td>
<td>>500.0</td>
<td>21.0 ± 0.85</td>
<td>>10.0</td>
</tr>
<tr>
<td></td>
<td>>500.0</td>
<td>19.9 ± 1.26</td>
<td>>25.1</td>
</tr>
<tr>
<td></td>
<td>>250.0</td>
<td>14.4 ± 0.71</td>
<td>>17.4</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>>500.0</td>
<td>23.8 ± 2.36</td>
<td>>21.0</td>
</tr>
<tr>
<td></td>
<td>>500.0</td>
<td>53.9 ± 13.13</td>
<td>>9.3</td>
</tr>
<tr>
<td></td>
<td>>250.0</td>
<td>89.2 ± 3.76</td>
<td>>2.8</td>
</tr>
<tr>
<td>Molnupiravir</td>
<td>>500.0</td>
<td>26.2 ± 2.46</td>
<td>>19.1</td>
</tr>
<tr>
<td></td>
<td>>500.0</td>
<td>19.9 ± 2.46</td>
<td>>25.1</td>
</tr>
</tbody>
</table>

Table note. Summary of drug 50% cytotoxic concentration (CC50) and of 50% (antiviral) effective (EC50) concentration values obtained in all cell lines for both viruses. Selectivity indexes (SI) were calculated as indicated (CC50/EC50). CC50 is the mean of quadruplicate treatments in a single assay. For EC50, the mean with 95% confidence interval of triplicate infections in a single assay are shown. In cytotoxicity assays, all drugs were tested at concentrations ranging from 1 to 500 μM, except for remdesivir for which concentrations ranged from 0.08 to 40 μM. Drug concentrations associated with cytotoxicity from DMSO alone (drug solvent) were excluded. For SI a greater-than symbol ‘>’ indicates that the CC50 was not reached and the IC50 is the mean of quadruplicate treatments in a single assay. For EC50, the mean with 95% confidence interval of triplicate infections in a single assay are shown. In cytotoxicity assays, all drugs were tested at concentrations ranging from 1 to 500 μM, except for remdesivir, for which maximum concentrations were 2 μM in Huh7.5 and Daoy cells and 40 μM in SH-SY5Y cells, and uprifosbuvir with a maximum concentration of 10 μM in Huh7.5 cells. For drugs where the CC50 or EC50 value could not be reached, the highest drug concentration tested is instead shown (e.g., >500.0 μM). For SI a greater-than symbol ‘>’ indicates that the CC50 was not reached and the highest tested drug concentration was used for the calculation. A dash ‘-’ indicates not determined as the compound did not achieve the 50% viral inhibition threshold at 100 μM.
less active in SH-SY5Y cells. Remdesivir was also the most cytotoxic drug in all three human cell types (lowest EC50 values), however, selectivity indexes (SI) remained relatively high (SI > 40) in Huh7.5 cells, with higher EC50 values than previously described in Huh7 cells (Tao et al., 2021). As a phosphorimidate prodrug, remdesivir is efficiently converted into nucleoside monophosphate and subsequently active triphosphate in liver cells (Tao et al., 2021), thus yielding low EC50 values in Huh7.5 cells, as previously described for HCV and SARS-CoV-2 (Ramirez et al., 2021). Compared to our data, a 10-fold higher remdesivir EC50 value against TBEV was reported using lung carcinoma A549 cells (Lo et al., 2017), whereas similar EC50 values for YFV but a 5-fold higher EC50 for TBEV were reported using enzymatic assays (Konkola et al., 2020). Anti-YFV activity of remdesivir has also been reported with EC50 values of 0.88 and 0.18 μM in Huh7 cells (Lo et al., 2021; Radoshitsky et al., 2023) and EC50 values of 19.86 μM in Vero E6 cells (Lo et al., 2021), emphasizing the reduced activity of this drug in Vero cells. In the present study, 50 μM of remdesivir resulted only in a slight decrease in the number of infected cells not reaching the 50% inhibitory effect in Vero E6 cells. Compared to remdesivir, GS-6620, another C-adénine phosphorimidate prodrug, exhibited decreased antiviral activity against YFV and TBEV in all cells with EC50 values spanning from 26.1 to 71.9 μM. The drug was less active against YFV than TBEV. In a previous study, a concentration of 30 μM of GS-6620 could not inhibit YFV (Feng et al., 2014). For GS-6620, CC50 values were higher than those for remdesivir, however, the SI were lower, especially in Huh7.5 cells. In addition to the 1'-cyano group common to remdesivir, which has been associated to its breadth of antiviral activity across viruses (Gordon et al., 2022), GS-6620 also harbors a 2'-methyl substitution on the ribose ring, which might decrease its anti-TBEV and anti-YFV activity.

The structurally similar (Supplementary Table 1) 2'-modified uridine nucleotides sofosbuvir (Sofia et al., 2010) and uprifosbuvir (Alexandre et al., 2017) exhibited micromolar activity (EC50 values from 1.2 to 27.9 μM) against both viruses in Huh7.5 and Daoy cells and consistently higher potency against YFV when compared to TBEV in all cells. Uprifosbuvir exhibited higher SI than sofosbuvir, with SI values above 40 in both Huh7.5 and Daoy cells. Sofosbuvir was not active in SH-SY5Y cells, whereas uprifosbuvir retained moderate activity with EC50 values of 22.5 and 46.0 μM for YFV and TBEV, respectively. As shown for HCV in Huh7.5 cells (Ramirez et al., 2016), uprifosbuvir was more active than sofosbuvir in all cell lines. Previous studies using porcine stable kidney (PS) cells and human nephroblastoma UKF-NB4 cells reported no anti-TBEV effect (EC50 > 50 μM) of sofosbuvir, which might be attributed to poor prodrug activation in such cells (Eyer et al., 2016). For YFV, sofosbuvir activity has been previously shown in Huh7 cells with EC50 values of 1.2 and 4.8 μM (de Freitas et al., 2019; Zandi et al., 2019). We found no anti-YFV activity of sofosbuvir at concentrations of 100 μM in Vero E6 cells, which is in agreement with a previous study in which antiviral effect in this cell line was only observed at high drug concentrations of 200 μM (Mendes et al., 2019).

Valopicitabine, a prodrug of the 2'-C-methylcytidine (2'-C-MeC) analog, was more potent against TBEV than YFV in all cell lines, with EC50 values from 14.4 to 50.3 μM. In fact, it was the only drug that was consistently more active in neural than in liver cells, with no activity against YFV in Huh7.5 cells, but detectable activity in Vero E6 cells (74 μM). Previous studies reported inhibition of YFV in Vero cells (Julander et al., 2010) and of TBEV in PS cells (Eyer et al., 2017a) by 2'-C-MeC albeit with lower EC50 values compared to this study. In addition, 2'-C-MeC significantly increased the survival rate of YFV-infected hamsters in a dose-dependent manner (Julander et al., 2010).

The adenosine analog galidesivir is a broad-spectrum antiviral found to inhibit viruses from different families (Julander et al., 2021). We found that galidesivir uniformly inhibited the viruses in all human cell lines with maximum differences in EC50 of only 1.5-fold. Galidesivir also inhibited YFV in Vero E6 with similar EC50. Interestingly, EC50 values were consistently lower for TBEV compared to YFV (21.0–29.7 μM versus 35.2–51.8 μM). Compared to our findings, galidesivir was 14-fold more potent against TBEV in PS cells (Eyer et al., 2017b), which could suggest enhanced drug metabolism in this animal cell line. For YFV, we found galidesivir EC50 values in Vero E6 cells to be within 2–3.5-fold of those reported previously (Julander et al., 2014; Warren et al., 2014). Of note, it has been suggested that the antiviral effect of galidesivir is generally underrepresented in studies using immortalized cell lines (Warren et al., 2014). Moreover, galidesivir has been shown to provide high protection in YFV-infected hamsters (Julander et al., 2014).

Viruses were differently inhibited by the mutagen nucleotide analogs ribavirin and molnupiravir depending on the cell line. Ribavirin was more active against TBEV than YFV in all cell lines (TBEV EC50 values from 23.8 to 89.2 μM). Molnupiravir was only active against TBEV in Huh7.5 and Daoy cells, with EC50 values of 26.2 and 19.9 μM, respectively, and was only active against YFV in Daoy cells with an EC50 value of 13.5 μM. Ribavirin was previously found ineffective against TBEV in PS and UKF-NB-4 cell lines (Eyer et al., 2015), as well as in rat cerebellum cultures (Lenz et al., 2018). We found no anti-YFV activity of ribavirin in Vero E6 cells at 100 μM, as previously reported with concentrations of 250 μM (Pileggi et al., 2018). However two studies reported anti-YFV activity of ribavirin in Vero cells with EC50 values of 28 and 42.4 μM (Crance et al., 2003; Julander et al., 2009), moreover, ribavirin protected from death in the hamster model (Julander et al., 2007, 2009).

4. Discussion

In this study we found antiviral activity against TBEV and YFV of several existing nucs. Importantly, the antiviral activity was cell-type dependent, most likely due to differences in metabolic activation between cell lines as suggested previously (de Freitas et al., 2019; Eyer et al., 2016). We found some discrepancies between EC50 values obtained here and those previously reported, which emphasizes the difficulties of comparing drug activity, due to differences in experimental systems and methodologies.

Compared to previous studies, our work benefits from using human and pathogenesis relevant cell lines and of utilizing equivalent assay conditions permitting a direct head-to-head comparison between TBEV and YFV viruses. Thus, our results highlight the importance of carefully choosing appropriate cell lines, with sufficient metabolic capabilities, when screening nucs for antiviral activity in vitro.

Remdesivir, sofosbuvir and uprifosbuvir were highly active against both viruses in Huh7.5 cells. Uprifosbuvir exhibited the highest SI in both Huh7.5 and Daoy cells. Anti-YFV activity of sofosbuvir has been shown in Huh7 cells with comparable EC50 values (de Freitas et al., 2019), and sofosbuvir has shown anti-Zika virus activity in vitro in neuronal stem cells (Bullard-Feibelman et al., 2017) and in Huh7 cells (Bullard-Feibelman et al., 2017; Mumtaz et al., 2017). More importantly, sofosbuvir protected against vertical transmission and neural disease from Zika virus in different animal models suggesting that it can reach the brain at therapeutic concentrations (Bullard-Feibelman et al., 2017; Ferreira et al., 2017; Gardinali et al., 2020). Thus, it would be interesting to evaluate the efficacy of sofosbuvir and uprifosbuvir using animal models of TBEV neuropathogenesis. Proof-of-concept of the clinical value of sofosbuvir was reported for two YFV infected patients with acute liver disease (Mendes et al., 2019) and a randomized clinical trial has been initiated in Brazil (Figueiredo-Mello et al., 2019). In light of the better in vitro activity of uprifosbuvir, and since this drug already underwent clinical phase III studies for the treatment of HCV (Gane et al., 2017), it would be relevant to investigate its therapeutic value for YFV in clinical trials. Based on reported maximum plasma concentrations (Cmax) in humans of 7.3 μM for remdesivir (Humenik et al., 2020), 4.3 μM for uprifosbuvir (Merck Sharp & Dohme LLC, 2018), and 1.2 μM for sofosbuvir (Babusis et al., 2018), therapeutic concentrations of all three drugs could likely be achieved. Moreover, due to accumulation in the liver, the effective intracellular nuc concentrations are higher (Babusis et al., 2018). Using a comparable assay,
sofosbuvir EC₅₀ values of up to 0.9 μM can be routinely obtained for HCV in HuH7.5 cells (Ramirez et al., 2016), thus, within 5-fold of the highest EC₅₀ value obtained here. However, to better evaluate the clinical relevance of sofosbuvir, uprifosbuvir and remdesivir, a comparative analysis of their triphosphate levels in primary liver and primary neural cells versus the transformed cells used in this study would be worthwhile. Likewise, in vivo studies could be conducted to establish the efficacy of the different compounds in preventing disease. Lack of potent antiviral activity in vitro does not preclude antiviral activity in vivo as exemplified with favipiravir, which was found to significantly improve disease parameters in YFV-infected hamsters, despite showing very modest antiviral activity in cell culture (Julander et al., 2009).

Since the structurally closely related sofosbuvir has shown therapeutic value in animal models of Zika disease (Bullard-Feibelman et al., 2017), uprifosbuvir might also be able to cross the blood-brain barrier and therefore be relevant for the treatment of TBEV. The high potency remdesivir might also be relevant for treatment of TBEV, as it can accumulate in the brain of rhesus monkeys (Warren et al., 2016). However, remdesivir has been associated to liver injury in a few COVID-19 patients (Zhai et al., 2021), which could be a hindrance for YFV treatment.

The diagnosis of orthoflaviviruses infections can be challenging as disease symptoms from different viruses overlap in endemic areas, thus in the clinic, having compounds that could be used as broad-spectrum panorthoflavivirus inhibitors would represent a great advance in the field of antiviral therapy. Previous studies have found that sofosbuvir can also inhibit dengue (Gan et al., 2018), West Nile (Dragoni et al., 2020) and Zika viruses in various cell lines or animal models (Bullard-Feibelman et al., 2017; Ferreira et al., 2017; Gardinali et al., 2020; Mumtaz et al., 2017). Thus, with the exceptional anti-TBEV and anti-YFV activity of sofosbuvir and of its closely related compound uprifosbuvir reported here, sofosbuvir-like compounds represent relevant panorthoflavivirus antivirals with potential for clinical use.

5. Conclusions

Among all nucs tested we found the best drug candidates against TBEV and YFV to be remdesivir, sofosbuvir and uprifosbuvir. These compounds, originally found to inhibit HCV, and sofosbuvir and remdesivir currently used to treat chronic hepatitis C and COVID-19, respectively, could easily be repurposed for their use against TBEV or YFV infection. Their translational relevance should therefore be investigated further in clinical trials.

Author contributions

Aleksander Binderup: Conceptualization, Investigation, Methodology, Validation, Formal analysis, Writing – original draft, Writing – review & editing, Andrea Galli: Methodology, Software, Writing – review & editing, Nicholas Fossat: Methodology, Writing – review & editing, Carlota Fernandez-Antunez: Methodology, Writing – review & editing, Lotte S. Mikkelsen: Investigation, Writing – review & editing, Lizandro René Rivera-Rangel: Methodology, Writing – review & editing, Troels K. H. Schiel: Methodology, Writing – review & editing, Ulrik Fahn: Methodology, Writing – review & editing, Jens Bukh: Writing – review & editing, Supervision, Project administration, Funding acquisition, Santseharay Ramirez: Conceptualization, Investigation, Methodology, Validation, Formal analysis, Writing – original draft, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Funding

This work was supported by the Novo Nordisk Foundation, the Capital Region of Denmark (Region H) Foundation, the Independent Research Fund Denmark, the Mauritsen La Fontaine Familiefond and the Candys Foundation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Bjarne Ørskov Lindhardt (Hvidovre Hospital) and Charlotte Menne Bonefeld (University of Copenhagen) for departmental support of these studies and Anna-Louise Sorensen (CO-HEP, Hvidovre Hospital) and Louise Nielsen (CO-HEP, University of Copenhagen) for technical support. We thank Charles Rice (Rockefeller University) for providing HuH7.5 and BHK-21 cells, Xavier Forns and Sofia Perez-del-Pulgar (Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERehd) for providing HuH7 cells and Romane Auvergne (University of Copenhagen) for providing SH-SY5Y cells. We thank Franz X. Heinz (University of Vienna) for providing the TBEV pTNd/c-pBR322 plasmid and Margaret R. MacDonald (Rockefeller University) for providing the YFV pACNR-FLYF-17D plasmid.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.virol.2023.06.002.

References

