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Effects of Spatial and Selective Attention on Basic
Multisensory Integration

Matthias Gondan
University of Regensburg and University of Heidelberg

Steven P. Blurton, Flavia Hughes, and
Mark W. Greenlee

University of Regensburg

When participants respond to auditory and visual stimuli, responses to audiovisual stimuli are substan-
tially faster than to unimodal stimuli (redundant signals effect, RSE). In such tasks, the RSE is usually
higher than probability summation predicts, suggestive of specific integration mechanisms underlying the
RSE. We investigated the role of spatial and selective attention on the RSE in audiovisual redundant
signals tasks. In Experiment 1, stimuli were presented either centrally (narrow attentional focus) or at 1
of 3 unpredictable locations (wide focus). The RSE was accurately described by a coactivation model
assuming linear superposition of modality-specific activation. Effects of spatial attention were explained
by a shift of the evidence criterion. In Experiment 2, stimuli were presented at 3 locations; participants
had to respond either to all signals regardless of location (simple response task) or to central stimuli only
(selective attention task). The RSE was consistent with task-specific coactivation models; accumulation
of evidence, however, differed between the 2 tasks.

Keywords: multisensory processes, spatial attention, selective attention

Visuospatial attention is often seen in an analogy to a spotlight
which means that stimuli falling into this spotlight are processed
more efficiently at the cost of those that do not (Posner, Snyder &
Davidson, 1980; Cave & Bichot, 1999). When attention is zoomed
in, perception of stimuli at the center of focus becomes more
efficient; the greater the distance to this focus, the less efficient
perception becomes (Castiello & Umiltà, 1990). Traditionally,
selective spatial attention has been studied with auditory stimuli
(e.g., Broadbent, 1952) or with visual stimuli (Posner, 1980).
However, everyday perception is mostly multisensory in nature.
As different sensory systems provide complementary, redundant,
or conflicting information (Welch & Warren, 1986), effective
behavior requires integration of the sensory signals provided by
the different senses. Thus, research effort has been directed to
investigate the role of attention in multisensory, especially audio-
visual (Driver, 1996; Spence & Driver, 1997) and visuotactile
perception (Macaluso, Frith & Driver, 2000). One of the most
fundamental questions that arise with spatial attention is whether
there exists a common, supramodal attentional system or several,

independent subsystems. With cueing paradigms, Spence and
Driver (1997) demonstrated that visuospatial attention can be
directed by auditory cues. On the other hand, some degree of
independence has also been found between attentional resources of
different sensory systems (Alais, Morrone & Burr, 2006). While it
is widely accepted that spatial attention is a multisensory phenom-
enon, the exact role of attention in multisensory perception still
remains unclear.

In research on multisensory processes, the most basic experi-
mental setup is the bimodal redundant signals paradigm: Partici-
pants are asked to respond in the same way to stimuli of two
different modalities (e.g., auditory and visual, A, V). In some
trials, both stimuli are presented (AV), and this stimulus combi-
nation is referred to as the redundant signals condition. In the
redundant signals condition, responses are usually substantially
faster than in the single target conditions (e.g., Raab, 1962).

At first glance, this so-called redundant signals effect (RSE, e.g.,
Kinchla, 1974) might be taken as sufficient evidence for the
existence of genuine multisensory integration mechanisms. How-
ever, different processing architectures can account for redundancy
gains in such tasks; the most important model classes are race
models (or, more generally, separate activation models, e.g., Raab,
1962) and coactivation models (Miller, 1982). In the race model,
both components of a bimodal stimulus are processed in parallel
channels; the overall processing time is determined by the channel
which has first finished processing (e.g., having reached a thresh-
old first). This mechanism eliminates slow processing times from
the modality-specific distributions, which, on average, results in
faster responses to bimodal events. The redundancy gain of the
race model has an upper limit, though; this upper limit is known as
the race model inequality (Miller, 1982):

FAV(t) � FA�t� � FV�t�, for all t, (1)
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with F(t) � P(T � t) denoting the probability for a response
latency T within t ms. In bimodal divided attention, response times
for AV have often been observed to violate Inequality 1.

Instead, coactivation models have been proposed which specify
a more or less explicit integration mechanism (Miller, 1982, App.
A; Miller, 1986, Eq. 3; Schwarz, 1989, 1994; Diederich, 1995;
Miller & Ulrich, 2003). Several coactivation models assume linear
superposition of modality-specific information (Schwarz, 1989,
1994; Diederich, 1995; Miller & Ulrich, 2003). Let XA(t), XV(t)
denote the stochastic processes describing the buildup of evidence
in the auditory and visual channel, respectively. Superposition
models assume that the activation of the combined channels cor-
responds to the sum of the two sensory-specific channels,
XAV(t) � XA(t) � XV(t). Detection occurs whenever an evidence
criterion c is surpassed for the first time. For time-homogenous
diffusion processes underlying the channel-specific buildup of
evidence XA(t), XV(t), Schwarz (1994) derived predictions for the
mean and the variance of the detection time D for unimodal and
bimodal stimuli presented simultaneously, or with onset asyn-
chrony �:

E�DA� � c/�A,

E�DV� � c/�V,

E�DAV� � c/��A � �V),

E�DA���V�, E�DV��� A�: see Schwarz �1994, Eq. 10�, (2)

with �A, �V denoting the drift rates of the modality-specific
diffusion processes, and c 	 0 denoting an absorbing barrier (i.e.,
the evidence criterion). Assuming a SOA invariant �M summariz-
ing the mean duration of processes not described by the model,
Schwarz (1994, Figure 1) demonstrated that the diffusion super-
position model well described the mean response Times E(T) �
E(D) � �M observed by Miller (1986) in a simple speeded
response task with audiovisual stimuli presented at different onset
asynchronies (for the standard deviations, see Schwarz, 1994,
Figure 2).

The present study investigates the integration of redundant
signals under different attentional conditions on the basis of the
diffusion superposition model. It is usually assumed that “integra-
tion” requires spatial attention; for example, to solve the binding
problem in visual object perception as posited by the feature
integration theory (Treisman & Gelade, 1980; Treisman, 1986). In
the dimensional action model, which incorporates many ideas of
the feature integration theory, attention plays a central role (Cohen
& Shoup, 1997). The model assumes that properties of a visual
stimulus are decomposed into a number of dimensional modules
(e.g., for form, color, orientation, etc.). Each dimensional module
detects the presence or absence of features in its respective dimen-
sion. The activation elicited by these features is then transmitted to
dimension-specific response selection processors (Cohen & Fein-
tuch, 2002). For redundant signals of the same dimension, the
model predicts only limited redundancy gains, because both stim-
uli activate only a single response selector (e.g., Miller, Beutinger,
& Ulrich, 2009). In redundant signals of different dimensions,
however, two response selectors are simultaneously active, yield-
ing especially fast responses. Indeed, Feintuch and Cohen (2002)
observed that response time distributions for redundant color-

orientation targets violate the race model inequality (1), however,
only if the stimulus components were presented in close spatial
proximity such that participants could direct spatial attention to the
location of the target.

By analogy, one would expect that spatial attention is necessary
for multisensory coactivation, as well. However, the role of atten-
tion in multisensory integration remains controversial (e.g., Na-
varra, Alsius, Soto-Faraco, & Spence, 2010). It has been argued
that connections between auditory and visual cortices are so abun-
dant that multisensory integration processes do not require spatial
attention (Bertelson, Vroomen, de Gelder, & Driver, 2000). More-
over, multisensory processing can precede attentional allocation
(Driver, 1996). On the other hand, spatial attention has been shown
to affect the earliest multisensory components of the event-related
potential (Talsma, Doty, & Woldorff, 2007), which at least sug-
gests that attention is involved in multisensory integration pro-
cesses.

Concerning the redundant signals effect, the exact role of atten-
tion in effective integration is not yet fully understood (Miller et
al., 2009). It is known that under some circumstances, attention
can be assigned to more than one location at a time (Castiello &
Umiltà, 1992; McCormick, Klein, & Johnston, 1998; Dubois,
Hamker, & VanRullen, 2009). This split of spatial attention is
advantageous in the sense that a series of locations do not have to
be attended to in a serial manner. The advantage comes at a cost;
however, splitting spatial attention means dividing resources, leav-
ing less beneficial effects of attention the more locations one is
assigning attention to (Castiello & Umiltà, 1992). It remains un-
clear whether the attentional spot is enlarged or simply fewer
focused to encompass all target locations (e.g., those indicated by
cues), or if the attentional system is capable of dividing the
attentional focus to several locations simultaneously (Bichot,
Cave, & Pashler, 1999).

In the present study, we directly compared two conditions of
spatial attention (narrow focus, wide focus) in a redundant signals
experiment using audiovisual stimuli with varying onset asynchro-
nies between the auditory and visual stimulus components (Exper-
iment 1). The obtained mean response times were then modeled
with a diffusion model of the redundant signals effect (Schwarz,
1994), separately for both attentional conditions. In line with
earlier results, we expected that the diffusion superposition model
can describe the redundancy gains in the narrow focus condition.
We additionally applied a common model to identify similarities
and differences in audiovisual perception for the different levels of
spatial attention. Whereas elementary modality-specific perception
to the same stimuli can be expected to be similar, it is unclear
whether the same superposition mechanism holds for the two
attentional conditions.

In a second experiment, we used the same diffusion model
approach to compare mean reaction times of simple responses with
those of selective attention. In this experiment, stimulation was
exactly the same under both conditions, but for the selective
attention condition, observers were instructed to attend to only one
location and to disregard stimuli at the other locations. Earlier
results (Gondan, Götze, & Greenlee, 2010) obtained from a Go/
Nogo task indicate that coactivation cannot be taken for granted in
tasks more complex than speeded responses. The main question
addressed by Experiment 2 was, therefore, whether the superpo-
sition model can explain redundancy gains in a selective attention
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task, and if so, whether modality-specific processing is qualita-
tively the same for the different tasks.

Experiment 1

In Experiment 1, participants made speeded responses to audi-
tory, visual, and audiovisual signals presented with onset asyn-
chrony. In the narrow focus condition, stimuli were presented at a
single central position only; here participants could concentrate on
the source of stimulation. In the wide focus condition, stimuli were
presented randomly at one of three possible locations (left, right,
center), such that participants had to enlarge their attentional
spotlight in order to attend to all three locations.

Methods

Participants. Four right-handed volunteers (3 students from
the University of Regensburg, one male, two female, mean age 22
years, and one author) participated in the experiment. All reported
normal hearing and normal or corrected-to-normal visual acuity
with an intact field of view. Except for the coauthor, the partici-
pants were naive regarding the purpose of the experiment and the
stimulus conditions employed. Informed consent was obtained
from all participants prior to participation. Results were stored in
anonymous form. Participants received course credit or payment
(7€ per hour) for their participation. The experiment was con-
ducted in accordance to the standards laid down in the Declaration
of Helsinki.

Apparatus. The experiment was conducted in a light- and
sound-proof room (Industrial Acoustics Company GmbH, Nieder-
krüchten, Germany), which was dimly illuminated from behind
and above. The participants were directly facing the stimulation
device, which was placed on a desk at a distance of 60 cm. The
device consisted of a projection screen for the visual stimuli and
three mobile loudspeakers for the auditory stimuli, which had been
placed on elevated platforms in the central position and the outer
left and outer right side of the desk. Stimulus presentation and
response time recording was controlled by a standard personal
computer running “Presentation” (Neurobehavioral Systems, Al-
bany, California).

Stimuli. A Gabor-patch was projected at three different po-
sitions on a uniform gray background using a luminance-calibrated
liquid crystal display projector: the center, the outer left, and the
outer right (angle 30° each) side of the screen. White noise (50 dB)
served as the auditory stimulus and was emitted via three loud-
speakers in the same central, left, and right positions (not visible to
the participant). Audiovisual signals were presented in spatial
correspondence, at 13 stimulus onset asynchronies (SOAs, cf.
Miller, 1986): A, A167V, A133V, A100V, A67V, A33V, AV,
V33A, V67A, V100A, V133A, V167A, and V (SOA in ms). Catch
trials (C, i.e., trials in which no stimulus appeared at the usual
stimulus onset) were embedded in the experimental procedure to
discourage anticipatory guesses. The interstimulus interval varied
uniformly between 2100 ms and 3000 ms. Participants had to
respond to the stimuli by pressing a response button with their
dominant hand.

Experimental tasks. In the wide focus condition (WID), the
participants were told to respond as quickly as possible to any
detected signal at any possible position (left, center, right). Be-

cause the participants did not know the position at which the
stimulus would appear, they had to spread their attention over all
three locations. In the narrow focus condition (NAR), stimuli
appeared only in the center of the screen or from the central
loudspeaker. Here, participants knew the position at which the
stimuli would appear, so they could concentrate on this position.

Procedure. Each participant was tested in three sessions of
about 3 hours each. At the start of the experiment, the participants
were instructed and a training block was run with the same
stimulus protocol as used in the main session. The main session
was divided into 13 blocks of 10 min each. Breaks were made on
request of the participants; usually participants requested a break
of 20 to 30 min at the middle of the session. Each block comprised
both experimental tasks, so each block started with a screen
indicating the current experimental condition, the WID or NAR.
The participants had to fixate a plus (�) sign which appeared at the
center of the screen during the interstimulus intervals. In both
tasks, the stimuli were presented in a randomized sequence. Each
of the 3 (WID)/1 (NAR) locations 
 SOA stimulus conditions
appeared three times within each block, yielding a maximum of
110 replications per experimental condition.

Test of the race model. The race model inequality was tested
after cleaning the response time distributions of the different
conditions using the “kill-the-twin” procedure (Eriksen, 1988). In
the kill-the-twin procedure, the response time distribution for catch
trials FC(t) � P(TC � t) is subtracted from the response time
distributions of all SOA-specific conditions (Gondan & Heckel,
2008). For Condition V(�)A, the modified inequality, thus, reads
as

�FV��� A�t� – FC�t�� � �FV�t� – FC�t��

� �FA�t – �� – FC�t – ���, for all t. (3)

Miller (1986) suggested to measure the amount of violation of
Inequality 3 by the positive area enclosed by the AV curve and the
summed A and V curves. We used a nonparametric variant of this
area based on the rank-transformed data,

�� � �N
i�1 max
0, �FV��� A�ti� – FC�ti�� – �FV�ti� – FC�ti��

– �F��� A�ti� – F���C�ti���,

with F(�)A denoting the shifted response time distribution for
auditory stimuli. This measure is scale-invariant and robust with
regard to outliers. The violation area was measured in all SOA
conditions and collapsed into an aggregate violation area by a
weighted sum � � �� �(�) 
 ��, with �(�) 	 0 denoting a
triangular weighting function assigning weights 1, 2, 3, 4, 5, 6, 5,
4, 3, 2, 1 to Conditions A167V, A133V, A100V, A67V, A33V,
AV, V33A, V67A, V100A, V133A, V167A, respectively (“sym-
metric umbrella,” Gondan, 2009). To test whether � 	 0 observed
in a given participant reflects true coactivation or is due to sam-
pling error, 10,000 computer simulations were performed (Miller,
1986). In each simulation, bootstrap samples of the unimodal
response times were drawn from the observed response time
distributions, bimodal response times were bootstrapped from the
distribution of minima of the unimodal response times, adjusted
for SOA and assuming a maximally negative channel correlation
between A and V (Ulrich & Giray, 1986). In each simulation, the
aggregate violation area �� was determined, resulting in 10,000
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simulated ��. The race model is rejected at p � .05, if the observed
� is greater than 95% of the �� values under the race model
assumption.

Diffusion superposition model. The diffusion superposition
model predicts the mean response times for audiovisual stimuli
with given SOA � using five free parameters: drift and variance of
the auditory (�A, �A

2 ) and the visual process (�V, �V
2 ), and a mean

residual �M summarizing everything not described by the model.
In the task-specific models, the barrier c was fixed at 100, since it
only scales the other parameters.

For the model fit, trimmed mean response times were used,
excluding the upper and the lower 2% of the response times,
separately for each condition. Goodness-of-fit �2 was calculated
by adding up the squared standardized differences X�

2 between
model prediction E[TV(�)A] and observed mean response time
mV(�)A for each SOA:

�2 � �� X�
2 � ��
mV��� A–E�TV��� A��2/
ŝV��� A

2 /nV��� A�, (4)

with ŝV(�)A
2 /nV(�)A denoting the square of the observed standard

error. If the model holds, the means mV(�)A are approximately
normally distributed around E[TV(�)A], and, thus, for large nV(�)A,
the squared standardized means converge to an approximate �1

2

distribution. As the five model parameters are adjusted to the
means observed in 13 SOAs, the sum of the SOA-specific X�

2

values approximately follows a �2 distribution with 13 � 5 � 8
degrees of freedom. The model was adjusted to the observed mean
response times by minimizing (4) using the constrOptim command
of the R statistical language (R Development Core Team, 2010)
with restrictions 0.1 � �A, �V � 4, 10 � �A

2 , �V
2 � 10,000, 100 �

�M � 1000.
In a first step, separate models were adjusted to the mean

response times observed in the two tasks. As stated above, for the
WID, only the responses to central stimuli were analyzed. In a
second step, an aggregate model was adjusted to mean response
times of both the NAR and the WID (central stimuli only). In this
aggregate model, diffusion parameters were assumed to be equal
for both tasks; task-specific processing and attentional demands
were taken into account by allowing different evidence criteria
cWID and cNAR for the two tasks (cWID � 100, cNAR: variable).

Results

In the NAR, participants knew that stimuli were presented at the
central location only; whereas in the WID, stimulus presentation
was randomized, with one third of the stimuli presented left or
right or at the central position. Direct comparison of the response
times in the two tasks is, thus, most informative for centrally
presented stimuli. For these stimuli, mean response times for
Participants 1, 2, 3, and 4 were lower in the NAR than in the WID
(averaged over SOA, 17, 31, 14, 13 ms for Participant 1, 2, 3, and
4, respectively). Within both tasks, mean response times showed a
wing-shaped pattern (see Figure 1), replicating the usual relation-
ship between SOA and mean response time observed in redundant
signals tasks with asynchronous targets (Ulrich & Miller, 1997;
Schwarz, 1994). Omissions and responses to catch trials were
extremely rare (false alarm rate 0%, omission rate around 1%) and
were, thus, not further analyzed.

Race model. After correction for fast guesses using the
kill-the-twin procedure (Eriksen, 1988), violation areas of the race

model inequality were obtained for each SOA and added up using
a symmetric umbrella weighting function (Gondan, 2009). These
observed summed violation areas were compared with their boot-
strap distribution under the race model assumption (Miller, 1986).
Consistent violations of the race model inequality were observed
for the WID (p values of bootstrap test .026, .040, .014, � .001 for
Participants 1, 2, 3, and 4, respectively). In the NAR, violations of
the race model inequality reached statistical significance for three
participants (p � .003, .180, � .001, � .001 for Participants 1, 2,
3, and 4, respectively).

Diffusion superposition model. In a first step, task-specific
diffusion superposition models were adjusted to the mean response
times observed in the WID and NAR. Fitted parameters for these
models are shown in Table 1. In line with the substantially lower
mean reaction times for auditory stimuli, the drift rates for the
auditory process are higher than for the visual process. The task-
specific models show acceptable goodness-of-fit in all participants
(summarized goodness-of-fit statistic for the WID: �2 � 44.92,
df � 32, p � .064; for NAR: �2 � 20.98, df � 32, p � .932).

In a second step, an aggregate model was adjusted to the mean
response times for both tasks, with common parameters describing
the diffusion processes and the residual, but different evidence
barriers (cWID � 100 fixed, cNAR � 100) for the two tasks.
Figure 1 illustrates the good agreement between predicted and
observed mean response times in the two tasks. The aggregate
model adequately describes the observed mean response times
(�2 � 106.55, df � 80, p � .025); however, model fit is poor in
one participant (right panel of Figure 1).

Discussion

Our goal of the first experiment was to investigate whether and
how redundancy gains are affected by spatial attention. Abstract
artificial stimuli were used which are known to be very effective in
their respective modalities. Participants had to perform a simple
response task to audiovisual target stimuli under two attentional
conditions. In the NAR (narrow focus), stimuli were presented at
a constant predictable location in the center of fixation. In the WID
(wide focus), stimuli were presented randomly at one of three
different locations. The central stimuli used in the two attentional
conditions had the same physical properties. In the NAR, partici-
pants could concentrate on the central location, whereas in the
WID, participants had to attend to all three locations simultane-
ously.

Indeed, mean response times were lower in the NAR as com-
pared with the same stimuli in WID. The magnitude of the atten-
tion effect was, however, small in terms of absolute reaction times
(see Figure 1). Although the attentional requirements differed for
the NAR and the WID, the participants were asked to fixate the
central location in both conditions. Therefore, it cannot be ruled
out that participants actually concentrated more on the central
position in the WID than on the two peripheral positions. This
would explain the rather small attention effect in Experiment 1.
Except for one participant, the test of the race model inequality
revealed significant violations of the race model inequality in both
the NAR and the WID, indicative of coactive processing of the
redundant information.

In the first step of the main analysis, task-specific diffusion
superposition models (Schwarz, 1994) were adjusted to the mean
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Figure 1. Experiment 1—SOA specific mean response times observed (dots) in the NAR and the WID (central
stimuli only). Lines: Model prediction including 95% confidence intervals based on the observed standard
deviation. Left: Task-specific models. Right: Common aggregate model with task-specific evidence barrier.
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Figure 2. Experiment 2—Separate superposition models for the WID and SEL. A common model cannot be
adjusted to the response times observed in the two tasks (lower right).
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response times observed in the two tasks. Good agreement be-
tween model and data is evident in Figure 1 and Table 1. Repli-
cating earlier results by Schwarz (1994), Diederich (1995), and
Gondan et al. (2010), mean response times for asynchronous
audiovisual stimuli can be well described by a model assuming
linear superposition of channel-specific activity. In simple tasks,
multisensory “integration” can thus be reduced to a simplistic
additive channel summation mechanism, without necessity of su-
peradditive neural circuitry (e.g., Stanford, Quessy, & Stein,
2005).

In summary, Experiment 1 supports the superposition model for
simple responses to audiovisual stimuli for different levels of
spatial attention. What then is the role of attention in multisensory
integration? Does integration occur in a basic bottom-up manner,
or is it necessary to direct spatial attention to the location of the
stimuli in order to effectively integrate them (e.g., Feintuch &
Cohen, 2002)? We addressed this question by fitting an aggregate
superposition model to the response times observed for the central
stimuli common to both tasks. Assuming that the stimulus-specific
diffusion processes describe elementary perceptual processes com-
mon to the two conditions, the diffusion parameters �A, �A

2 , �V,
�V

2 , were constrained to be equal in the two tasks. Moreover, as
both tasks were simple response tasks (Type A, Donders, 1868/
1969), residual processes described by �M were assumed to be
equal in the two tasks as well. Goodness-of-fit of this aggregate
model was acceptable in three participants. Different evidence
barriers were allowed in the two tasks: An increased absorbing
barrier in the WID, or, equivalently, a reduced criterion in the
NAR, reflecting the improvement in stimulus detection when
spatial attention is directed to the source of stimulation (e.g., Eimer
& Driver, 2000, Figure 1; Hillyard, Hink, Schwent, & Picton,
1973).

In Participant 3, fit of the common model was poor, although the
results were qualitatively similar to the other participants. Closer
inspection of Figure 1 suggests that in Participant 3, the attentional
effect is limited to the visual modality—in the left (auditory) wing
of the SOA-mean curve, an attentional effect is virtually absent. In
the aggregate model, the barrier c corresponds to the evidence
criterion common to both modalities. An increased barrier, thus,

affects both modalities simultaneously (recall that the mean detec-
tion time for auditory and visual stimuli corresponds to c/�A and
c/�V, respectively). This model prediction is in line with the
supramodal nature of attentional effects observed in crossmodal
attention tasks (e.g., Eimer & Driver, 2000). Participant 3’s results
are incompatible with this supramodal notion of spatial attention:
In this participant, effects of spatial attention were limited to the
visual modality only (cf. Driver & Spence, 1998, Box 1).

Experiment 2

In Experiment 2, we introduced a Go/Nogo feature in order to
investigate if the superposition model can describe the redundancy
gains in selective attention tasks.

Methods

Participants. Seven new students from the University of
Regensburg (one male, six female, mean age 24.2 years, one
left-handed) participated in Experiment 2. All reported normal
hearing and normal or corrected-to-normal visual acuity with an
intact field of view. The participants were naive regarding the
purpose of the experiment and the stimulus conditions employed.
Informed consent was obtained from all participants prior to par-
ticipation. They received course credit or payment for participa-
tion.

Experimental tasks. The apparatus and the stimulus condi-
tions employed were identical to Experiment 1. The simple re-
sponse task was the same as in the WID of Experiment 1: The
participants were told to respond as quickly as possible with their
dominant hand to any detected signal at any possible location (left,
center, right).

The second task was a selective attention task (SEL): Stimuli
were presented, in randomized order, at three locations, but par-
ticipants were instructed to respond to the central stimuli only (Go
trials), and refrain from responding to peripheral stimuli (Nogo).

Procedure. Due to the additional peripheral stimuli in the
SEL, the entire experiment prolonged to about 12 hours per par-
ticipant. Data acquisition was split again into three sessions. In

Table 1
Diffusion Superposition Model for the WID and the NAR, and the Common Model for Both Tasks of Experiment 1

Participant

WID NAR Common model

1 2 3 4 1 2 3 4 1 2 3 4

�V 0.86 0.72 1.14 1.13 0.79 0.57 0.79 1.13 0.83 0.63 0.94 1.13
�V

2 71.1 26.9 10.0 10.0 47.5 24.4 25.4 25.3 60.3 23.3 31.9 16.1
�A 2.52 1.25 2.16 2.03 1.89 1.19 1.39 1.90 2.22 1.14 1.79 1.98
�A

2 10.0 256.4 3157 10.0 10.0 530.3 10.0 37.8 10.0 345.0 209.2 18.5
cWID (100) (100) (100) (100) — — — — (100) (100) (100) (100)
cNAR — — — — (73.1) (73.8) (81.0) (77.6) 73.1 73.8 81.0 77.6
�M 200.2 268.9 197.2 130.8 190.7 260.3 173.4 130.4 195.6 261.6 185.5 130.7
GOF �2 9.00 9.12 11.07 15.73 4.73 0.94 9.52 5.79 15.49 19.91 45.27 25.88
df 8 8 8 8 8 8 8 8 20 20 20 20
p .343 .333 .197 .046 .785 .999 .301 .670 .748 .463 .001 .170
Summary �(32)

2 � 44.92, p � .064 �(32)
2 � 20.98, p � .932 �(80)

2 � 106.55, p � .025

Note. �V, �V
2 (�A, �A

2 ): drift and variance for visual (auditory) diffusion process, c: evidence barrier for the WID and the NAR (fixed values in
parentheses), �M: mean duration of residual component. GOF �2, df, p: goodness-of-fit statistic (significant results indicate bad fit). Summary is based on
the sum of the participant-specific GOF statistics.

1893REDUNDANT SIGNALS EFFECT



each session, 10 blocks of about 15 min duration were conducted;
each block comprised both attentional conditions. Again, the first
block served as a training block and the data were not analyzed.
Breaks were made on request of the participant. Each of the three
locations 
 SOA stimulus conditions appeared three times within
each block, yielding a maximum of 87 replications per experimen-
tal condition.

Race model test. For the WID, the race model inequality was
tested in the same way as described for Experiment 1. For the SEL,
a kill-the-twin correction was applied using the erroneous re-
sponses to peripheral stimuli:

�FV��� A�t� – Fv���a�t�� � �FV�t� – Fv�t��

� �FA�t – �� – Fa�t – ���, for all t, (5)

with Fv(�)a(t) � max[Fv(�)a(t|left), Fv(�)a(t|right)], Fv(t) �
min[Fv(t|left), Fv(t|right)], Fa(t) � min[Fa(t|left), Fa(t|right)]
denoting the false alarm distribution recorded for peripheral stim-
uli presented to the left and to the right location (see Gondan et al.,
2010, for a similar procedure).

Superposition model. Again, separate diffusion superposi-
tion models were fitted to the mean response times observed in the
WID and the SEL. In a second step, we tried to adjust a common
model to the two tasks, with identical diffusion parameters de-
scribing perception of the same stimuli used in the two tasks, but
different evidence barriers cWID and cSEL accounting for different
attentional demands in the WID and the SEL. Whereas in Exper-
iment 1, both tasks required simple responses, the SEL task of
Experiment 2 requires Go/Nogo discrimination (Type C response,
Donders, 1868/1969). This additional requirement was accounted
for by allowing different residuals �M,WID and �M,SEL in the two
tasks.

Results

As for Experiment 1, direct comparison of the response times
observed in the WID and the SEL is most informative for centrally
presented stimuli. Reflecting the increased control demands of the
Go/Nogo responses, mean response times for Participants 1, 2, 3,
4, 5, 6, and 7 were substantially higher in the SEL than in the WID
(130, 168, 157, 125, 507, 304, and 140 ms, respectively, see Figure
2). The relationship between SOA and mean response time fol-
lowed the usual wing shape. Omission rate was below 1% in the
WID and below 2% in the SEL (Participant 5: 5%). In the SEL,
responses to peripheral stimuli occurred in maximally 2% of the
stimuli. Misses and false alarms were, thus, not further analyzed
(except for the kill-the-twin-correction).

Race model inequality. In the WID, violations of the race
model inequality were observed for Participants 2, 3, 4, 6, and 7
(Part. 7: p � .001, others p � .001), whereas redundancy gains
observed for Participants 1 and 5 were consistent with parallel
processing (p � .365, .111, respectively). In SEL, coactivation
effects were observed in all participants (all p � .01).

Diffusion superposition model. We first tried to adjust an
aggregate model with identical diffusion parameters to the two
tasks (Table 2, “Common Model”). The fit of this aggregate model
was poor in all participants, and the model systematically under-
estimated the mean response times for auditory stimuli in the SEL,
while auditory response times in the WID were systematically T
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overestimated (summarized goodness-of-fit statistic: �2 � 1192,
df � 133, p � .001).

Task-specific diffusion superposition models, however, can de-
scribe the mean response times recorded for the two tasks (see
Figure 2). Parameters and goodness-of-fit statistics are summa-
rized in Table 2 (columns WID and SEL). The model fit is
acceptable for the WID (�2 � 70.62, df � 56, p � .090) and for
the SEL (�2 � 74.08, df � 56, p � .053).

Discussion

In Experiment 2, we investigated the role of selective atten-
tion in a speeded response task with audiovisual stimuli pre-
sented at three different locations. In the first condition (WID),
participants had to respond to stimuli presented at any of three
locations, whereas in the second condition (SEL) they were
asked to respond selectively to stimuli presented at the central
location. Thus, the two conditions comprised the same stimu-
lation but required different response types (simple vs. Go/
Nogo). As for Experiment 1, response times in the two condi-
tions were compared only for centrally presented stimuli. In line
with the increased requirements of the Go/Nogo task, mean
reaction times for the SEL were higher compared with the WID.
Redundancy gains in the WID significantly violated the race
model inequality in only one participant, whereas clear evi-
dence for coactivation was obtained in the SEL.

Task-specific superposition models for the mean reaction
times showed an excellent fit for all participants, suggesting
that linear superposition of channel specific diffusion processes
(Schwarz, 1994) may well explain behavior in simple and more
complex response paradigms (Figure 2, left column). Parameter
estimates (see Table 2) for task-specific models indicate that
selective attention affects both the diffusion and residual pro-
cesses: (A) In the WID, drift rates turned out to be higher than
in the SEL, whereas the mean residual turned out to be lower for
the WID than for the SEL. Assuming that the overall response
time T � D � M (Luce, 1986, ch. 3) decomposes into
perception-related processes D being described by the diffusion
model, whereas M summarizes everything else (e.g., motor
preparation and execution), the manipulation of selective atten-
tion affects processing stages related to both D and M: In-
creased drift rates estimated for the WID might reflect an
increased buildup of evidence in this condition, but can, at the
same time, indicate a lower amount of evidence necessary for
stimulus detection. The higher �M observed in the SEL for
Participants 1–5 and 7 is, presumably, due to the increased
control demands of the Go/Nogo response selection processes.

The aggregate model incorporates responses of centrally pre-
sented stimuli in both tasks; it clearly fails to give a valid descrip-
tion of the mean reaction times in the two tasks. Model fit was poor
in all participants (p � .001). A single scaling factor c is, thus,
insufficient to describe the buildup of evidence under the two
attentional conditions. Visual and auditory processing seems to be
differentially affected when spatial attention is selectively assigned
to one location as compared with the control condition with simple
responses. Whereas auditory drift rates are about 2 or even 3 times
greater than visual drift rates in the WID task, both drift rates are
quite similar in the SEL task. Compared with the simple detection
task, location discrimination might be substantially more difficult

for auditory compared with visual stimuli. This is reflected by the
asymmetric effects of the attentional manipulation on the mean
response times (see Figure 2). This differential effect cannot be
accounted for by the aggregate model, which assumes that the
auditory and the visual channels are both equally affected by the
attentional manipulation. Interestingly, the task-specific models
show good fit.

General Discussion

The goal of the present study was to investigate effects of
different attentional conditions on mean response times in two
redundant signals experiments. In Experiment 1 we compared two
conditions of narrow and wide spatial attention; in Experiment 2
participants had to attend either selectively to a single spatial
location or to three locations simultaneously. Crossmodal attention
studies have provided abundant evidence for attentional mecha-
nisms common to vision and audition (e.g., Spence & Driver,
1997) and vision and touch (e.g., Eimer & Driver, 2000), though
there seems to exist some degree of independence between the
different modalities (Alais et al., 2006).

What effect does attention have on audiovisual integration?
While attention seems to be critical for early multisensory event-
related potential interactions (Talsma et al., 2007), little is known
about the effects of spatial attention on behavior, for example,
audiovisual redundancy gains. In all conditions of the present
experiments, mean response times were well described by a dif-
fusion model based on linear superposition of modality-specific
activation in the two channels (Schwarz, 1994). In Experiment 1,
attentional modulation involved a change of the size of the atten-
tional focus and the expected results were obtained. Attention-
specific benefits of focused spatial attention were observed (as
compared with a control condition with a wide attentional focus);
these benefits were well described by a model that asserts different
evidence criteria for the two attentional conditions. The lower
evidence criterion in the focused attention condition can be inter-
preted in two ways: On one hand, it might reflect a lower amount
of evidence necessary for stimulus detection; on the other hand it
might reflect more effective accumulation of evidence in the
focused attention condition. The diffusion superposition model is
mute in this respect; neurophysiological evidence, however, sug-
gests the latter interpretation (Hillyard et al., 1973; Talsma et al.,
2007).

In contrast, in Experiment 2, it was not possible to describe the
mean response times in the two attentional conditions by a com-
mon aggregate model. The selective attention task of Experiment
2 was, of course, much more complex than the simple response
task, involving, for example, suppression of responses to Nogo
stimuli. These different response modes (simple response, Go/
Nogo response) might be responsible for the failure to predict the
mean response times of both tasks in a single, aggregate model
(see also Gondan et al., 2010, Exp. 2). Rather, it seems that
selective attention differentially affects processing in the two
modality-specific channels. It was, however, possible to describe
the redundancy gains using task-specific superposition models.
This conclusion is supported by the data of all three participants in
which modality specific attention effects were observed. To con-
clude, the same integration mechanism (namely, linear superposi-
tion) is involved at different stages of perception.
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The spatial Go/Nogo task used in Experiment 2 of the present
study differs from the discrimination task used in Gondan et al.
(2010, Experiment 2). In Gondan et al. (2010), participants re-
ceived combinations of audiovisual stimuli (both either targets or
distractors). A response was required when either of the stimulus
components was a target. For some participants, model fit returned
seemingly implausible estimates for some parameters (namely, �A

2

and �V
2 were close to zero, suggestive of a deterministic buildup of

evidence). It turned out that such a special case of the diffusion
superposition model mimics the predictions of a serial self-
terminating model of information processing. We argued that these
participants might have processed the redundant information seri-
ally, as a consequence of response competition induced by com-
binations of targets in one modality and nontargets in the other
modality. In the selective attention task used in the present study,
only conflict-free stimulus combinations were used, thereby avoid-
ing response competition effects. The good agreement between
model and data (Figure 2, Table 2) demonstrates that the super-
position model can actually describe behavior in conflict-free
audiovisual redundant signals experiments, even for the more
demanding Go/Nogo task.

The two experiments, thus, show that the superposition
model (Schwarz, 1989, 1994) can explain redundancy gains
under different attentional conditions. Spatial attention, in our
experimental setup, could be fully described by a shift of the
evidence barrier (which we think is related to more efficient
processing in the two sensory channels; Hillyard et al., 1973).
Manipulations of selective attention affect the two modalities
differentially, but audiovisual integration still follows the prin-
ciple of linear, additive superposition of modality-specific ac-
tivation (Stanford et al., 2005; Ma, Beck, Latham, & Pouget,
2006). The present study focuses on basic mechanisms of
multisensory integration observable in rather simple experimen-
tal tasks. The stimuli used in the present study are, thus, rather
abstract and somehow artificial, and we have chosen white
noise and Gabor patches mainly because these stimuli are
known to be effective in their respective modality (e.g., Wat-
son, Barlow, & Robson, 1983). There is a growing number of
studies using the redundant signals paradigm (e.g., about 400
citations of Miller, 1982 in Google Scholar in February, 2011),
most of these studies limit their analysis to the test of the race
model inequality. If the race model fails, separate activation is
ruled out (Miller, 1982). However, without testing a specific
coactivation model, little is known about the specific mecha-
nisms underlying the integration of the redundant information.
The limited number of studies of formal coactivation models
(e.g., Diederich, 1995; Miller & Ulrich, 2003; Schwarz, 1989,
1994) mainly describe redundancy gains observed in simple
response tasks with beeps and flashes presented from a single
source of stimulation (e.g., the setup used by Miller, 1986). We
have shown that for the Go/Nogo task (i.e., a slightly more complex
task than just simple responses) coactivation effects cannot be taken
for granted and linear superposition does not always describe the
observed redundancy gains (Gondan et al., 2010). Although the
experimental setup is still far from being ecologically valid, the
present study sheds light on the basic principles of multisensory
processing and the role of attention therein.
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