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Abstract

We consider the problem of computing the Wiener index of a graph,
defined as the sum of distances between all pairs of its vertices. It is
an open problem whether the Wiener index of a planar graph can
be found in subquadratic time. We solve this problem by presenting
an algorithm with O(n2 log log n/ log n) running time and O(n) space
requirement where n is the number of vertices of the graph.

1 Introduction

A molecular topological index is a value obtained from the graph structure of
a molecule such that this value (hopefully) correlates with physical and/or
chemical properties of the molecule. Perhaps the most studied molecular
topological index is the so called Wiener index, a generalization of a definition
given by Wiener in 1947 [7]. The Wiener index of an unweighted graph is
defined as the sum of distances between all pairs of vertices of the graph.

Computing the Wiener index of a graph can clearly be done in the amount
of time it takes to compute APSP distances for the graph. For special types
of graphs, faster algorithms are known. Linear time algorithms are known for
cactii [8] and benzenoid systems [2] and recently Cabello and Knauer [1] gave
near-linear time algorithms for graphs of bounded treewidth. More specifi-
cally, they showed that the Wiener index of an n-vertex graph of treewidth
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k ≥ 3 can be found in O(n logk−1 n) time. All these bounds also hold for
weighted graphs.

For planar graphs, the Wiener index can be found in quadratic time using
the algorithm of Frederickson [3]. One of the main open problems in this
context is the existence of a subquadratic time algorithm for such graphs.

In this paper, we solve this open problem by giving an O(n2 log log n/ log n)
time and O(n) space algorithm where n is the number of vertices.

The organization of the paper is as follows. In Section 2, we give various
definitions and introduce some notation. We mention a result by Frederick-
son [3] in Section 3, a result that allows us to divide a planar graph into
regions with some nice properties. In Section 4, we rely on this result to
obtain our subquadratic time algorithm for computing the Wiener index of a
planar graph. We show how to obtain linear space requirement in Section 5
and finally, we make some concluding remarks in Section 6.

2 Definitions and Notation

Let G = (V, E) be an unweighted graph. For u, v ∈ V , we let dG(u, v) denote
the length of a shortest path in G between u and v.

Given a subgraph H of G, we let VH denote its vertex set.
Given subsets U1, U2 ⊆ V , we define

∑
(U1, U2) =

∑

u∈U1

∑

v∈U2

dG(u, v).

We omit G in the notation but this should not cause any confusion. For a
vertex u and a subset U of V , we write

∑
(U, u) as a shorthand for

∑
(U, {u}).

We let
∑

G denote the sum of all shortest path distances in G, i.e.,∑
G = 1

2

∑
(V, V ) and we refer to it as the Wiener index of G.

A region of G is a subset R of vertices of G. A boundary vertex of R is a
vertex in R which an edge of E connects to a vertex in V \R. Vertices of R
that are not boundary vertices are called interior vertices (of R).

3 r-division of a Planar Graph

Divide-and-conquer is an important paradigm which is the basis of efficient
algorithms for all kinds of algorithmic problems. The celebrated separator
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theorem of Lipton and Tarjan [5] makes the use of divide-and-conquer on
planar graphs possible and has consequently lead to faster algorithms for
problems related to such graphs.

The separator theorem states that, given an n-vertex planar graph G =
(V, E) with nonnegative vertex costs summing to no more than one, V can
be partitioned into three subsets A, B, and C such that

1. no edge of E joins a vertex in A with a vertex in B,

2. neither A nor B has total cost exceeding 2/3, and

3. C contains no more than 2
√

2
√

n vertices.

By applying the separator theorem recursively to a given planar graph,
Frederickson [3] obtained the following result which we state as a lemma.

Lemma 1. Given a parameter r (which may depend on n), an n-vertex
planar graph can be divided into Θ(n/r) regions each of which contains at
most r vertices and O(

√
r) boundary vertices. Furthermore, each interior

vertex is contained in exactly one region. Finding such a division can be
done in O(n log n) time.

For parameter r, we refer to the division in Lemma 1 as an r-division
(of the graph). If R1, . . . , Rk ⊆ V are the regions obtained, we denote the
r-division by the tuple (R1, . . . , Rk).

Finding an r-division for a suitable value of r is an important part of our
algorithm to compute the Wiener index of a planar graph.

4 Wiener Index of a Planar Graph

In the following, let G = (V, E) be an unweighted planar graph with n
vertices. In this section, we show how to compute the Wiener index

∑
G of

G in O(n2 log log n/ log n) time. We will assume that G is connected since
otherwise the problem is trivial.

The first step of our algorithm is to compute an r-division (R1, . . . , Rk)
of G for some parameter r which we specify later. For now, just regard r as
some function of n. We will show how to compute

∑
G in O(n2/

√
r+nrO(

√
r))

time. From this and from a suitable choice of r, the main result of the paper
will follow.
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In the following, let B be the set of boundary vertices over all regions
R1, . . . , Rk. We precompute shortest path distances from each vertex in B
to all vertices in V . Since |B| = O(n/

√
r), this can be done in O(n2/

√
r)

time using the linear time SSSP algorithm in [4] for each vertex in B. From
these distances, we obtain values

∑
(B, V ) and

∑
(B, B) in O(n2/

√
r) time.

Observe that
∑

(B, V ) − 1
2

∑
(B, B) is the sum of all shortest path dis-

tances in G between vertex pairs (u, v) for which either u or v (or both) is a
boundary vertex. Since, by Lemma 1, each interior vertex belongs to exactly
one region, we can thus obtain

∑
G as the sum

∑
(B, V )− 1

2

∑
(B, B)+

1

2

k∑

i=1

∑
(Ri\B, V \(Ri∪B))+

∑
(Ri\B, Ri\B).

Let R be one of the regions R1, . . . , Rk. In the following, we focus on the
problem of computing

∑
(R\B, V \ (R∪B)) and

∑
(R\B, R\B). If we can

show that these two quantities can be computed in O(n
√

r + rO(
√

r)) time,
it will follow that

∑
G can be computed in O(n2/

√
r + nrO(

√
r)) time since

k = Θ(n/r).
Let us start with the easy part, that of computing

∑
(R\B, R\B). We do

this by computing shortest path distances in G between each pair of vertices
in R. To do this efficiently, we take the subgraph of G induced by R and add
to it an edge between each pair of boundary vertices of R; the length of this
edge is equal to the distance in G between those two vertices (we do not add
an edge between a pair of boundary vertices already connected by an edge).
We then run an APSP algorithm like Floyd-Warshall on the resulting graph.

Since shortest path distances from boundary vertices of R to all vertices
in G (and in particular to all boundary vertices in R) have been precomputed,
it follows that we can compute shortest path distances in G between each
pair of vertices in R in O(r3) time. Hence, we can compute

∑
(R \B, R \B)

in O(r3) time.
Now, to compute

∑
(R \B, V \ (R∪B)), let C1, . . . , Cs be the connected

components of the subgraph of G induced by R. Then

∑
(R \ B, V \ (R ∪ B)) =

s∑

i=1

∑
(VCi

\ B, V \ (R ∪ B)). (1)

Let C be one of these connected components, let nC = |VC |, and let
p1, . . . , pt be the boundary vertices of R belonging to C. In the following, we
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Figure 1: Graph instance for which component C has t = 3 boundary vertices
p1, p2, and p3 of R and where (n1,u, D1,u) = (4, 7), (n2,u, D2,u) = (2, 3), and
(n3,u, D3,u) = (1, 1). Also

∑
(VC \ B, u) =

∑t
i=1 ni,udG(u, pi) + Di,u = 34.

show how to compute
∑

(VC \ B, V \ (R ∪ B)) in O(nt + n
O(t)
C ) time. It will

then follow that the left-hand side of (1) can be computed in O(n
√

r+rO(
√

r))
time since each of the O(

√
r) boundary vertices of R belongs to exactly one

connected component.
To compute

∑
(VC \ B, V \ (R ∪ B)), the basic idea is the following.

Given some vertex u ∈ V \ (R ∪B), suppose we have precomputed, for each
boundary vertex pi, i = 1, . . . , t,

1. the number ni,u of vertices v in VC \B for which i is the smallest j such
that dG(u, v) = dG(u, pj) + dC(pj , v),

2. the sum Di,u of distances in C from pi to each of these vertices in VC\B.

Then
∑

(VC \ B, u) =

t∑

i=1

ni,udG(u, pi) + Di,u,

see Figure 1.
Given these precomputations, we can thus obtain

∑
(VC \ B, u) in O(t)

time and from this it follows that
∑

(VC \B, V \ (R ∪ B)) can be computed
in O(nt) time.
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In order to perform the above precomputations efficiently we need the
following key observation.

Lemma 2. Let u ∈ V \ (R ∪ B) and let i ∈ {1, . . . , t} be given. Then ni,u

and Di,u are completely determined by shortest path distances in C and values
dG(u, pj) − dG(u, p1) for j = 1, . . . , t.

Proof. Let v ∈ VC \B. Any path from u to v in G must contain at least one
of the boundary vertices p1, . . . , pt. Hence, the following two conditions are
equivalent:

1. i is the smallest j such that dG(u, v) = dG(u, pj) + dC(pj, v),

2. dG(u, pi) − dG(u, pj) ≤ dC(v, pj) − dC(v, pi) holds for 1 ≤ j ≤ t with
strict inequality for 1 ≤ j < i.

Since dG(u, pi)− dG(u, pj) = (dG(u, pi)− dG(u, p1))− (dG(u, pj)− dG(u, p1)),
the above shows that ni,u depends only on shortest path distances in C and
values dG(u, pj)−dG(u, p1), j = 1, . . . , t. Clearly, this also holds for Di,u.

Before proceeding, let us define a map φ : V \ (R ∪ B) → Z
t by

φ(u)[j] = dG(u, pj) − dG(u, p1),

for j = 1, . . . , t. Let p be a point in φ(V \ (R ∪ B)) and let u be a vertex in
V \ (R ∪B) such that φ(u) = p. Associate with p values np(i) and Dp(i) for
i = 1, . . . , t, defined by

np(i) = ni,u,

Dp(i) = Di,u.

By Lemma 2, this is well-defined since np(i) and Dp(i) do not depend on the
choice of u ∈ φ−1({p}).

The strategy now is to precompute np- and Dp-values for each p ∈ φ(V \
(R ∪B)) and then, for each u ∈ V \ (R ∪B), compute p = φ(u) and obtain,
for i = 1, . . . , t, nu,i and Du,i as the precomputed values np(i) and Dp(i),
respectively. Function φ will act in a way similar to a hash function in that
it maps a key (a vertex u) into a hash (the point p = φ(u)) to obtain a value
(np(i) and Dp(i) for i = 1, . . . , t).

For this strategy to work well, we need the following lemma which shows
that the number of points in φ(V \ (R∪B)) is small compared to V \ (R∪B)
and hence that we only need to compute a small number of np- and Dp-values.
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Lemma 3. φ(V \ (R ∪ B)) ⊆ {−(nC − 1), . . . , nC − 1}t.

Proof. Let u ∈ V \ (R ∪ B) and let j ∈ {1, . . . , t} be given. Since C is
connected there is a simple path in C from p1 to pj and this path consists
of at most nC − 1 edges. Thus, dG(p1, pj) ≤ dC(p1, pj) ≤ nC − 1 and the
triangle inequality implies

−(nC − 1) ≤ dG(u, pj) − dG(u, p1) ≤ nC − 1.

This shows the lemma since φ(u)[j] = dG(u, pj) − dG(u, p1).

We are now ready to describe how to compute
∑

(VC \ B, V \ (R ∪ B)).
We first initialize a t-dimensional table T with an entry T [p] for each point
p ∈ {−(nC − 1), . . . , nC − 1}t. Associated with T [p] are two t-dimensional
vectors to hold values (np(1), . . . , np(t)) and (Dp(1), . . . , Dp(t)). Initially, all
entries of T are unmarked. The initialization step takes a total of O(t(2nC −
1)t) = O(n

O(t)
C ) time.

For each u ∈ V \ (R ∪ B), we compute point p = φ(u) in O(t) time
(this is possible since SSSP distances in G have been precomputed for each
boundary vertex). Assume first that entry T [p] is unmarked. Then we mark
it and compute the np- and Dp-values and store them in the vectors associated
with T [p]. By Lemma 2, computing and storing these values can clearly be
done in time polynomial in nC (a weak analysis but it suffices). From these
values we compute

∑
(VC \ B, u) in O(t) time.

If T [p] is already marked then we do not compute np- and Dp-values.
Instead we perform a lookup in T at entry T [p] to obtain

∑
(VC \ B, u) in

O(t) time.
Clearly, we compute np- and Dp-values at most once for each p ∈ {−(nC−

1), . . . , nC −1}t. It follows that the above algorithm computes
∑

(VC \B, V \
(R ∪ B)) in O(nt + n

O(t)
C ) time.

From the above and from (1), we get the following result.

Lemma 4. For each region R, values
∑

(R\B, V \(R∪B)) and
∑

(R\B, R\
B) can be computed in O(n

√
r+rO(

√
r)) time assuming shortest path distances

from each boundary vertex of R to each vertex in G have been precomputed.

We are now ready for the main result of this paper.

Theorem 1. The Wiener index
∑

G of a planar n-vertex graph G can be
computed in O(n2 log log n/ log n) time.
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Proof. Computing shortest path distances from each boundary vertex to each
vertex in G can be done in O(n2/

√
r) time.

Applying Lemma 4 to each of the Θ(n/r) regions in the r-division of G
gives us

∑
G in O(n2/

√
r + nrc′

√
r) time for some constant c′.

We pick r = c(log n/ log log n)2 where c > 0 is some constant (to be
specified). For n > 2c we have log n > c, and for n > 4 we have log log n > 1
(assuming base 2 logarithms). Thus, for n > max{2c, 4},

rc′
√

r < (c log n)2c′
√

c log n/ log log n < (log n)4c′
√

c log n/ log log n = n4c′
√

c,

since (log n)log n/ log log n = n. It follows that if we choose c < (1/(4c′))2, we
have rc′

√
r = O(nǫ), where ǫ < 1. With this choice of r, the total running

time of the algorithm is

O(n2/
√

r + nrc′
√

r) = O(n2 log log n/ log n + n1+ǫ) = O(n2 log log n/ log n),

as requested.

5 Obtaining Linear Space Requirement

In this section, we show how space requirement of the above algorithm can
be improved to linear without affecting running time.

By using the algorithm of [3], we can obtain an r-division of G using
O(n) space. Storing the table and the associated vectors for a φ-function
requires O(

√
rrO(

√
r)) = O(rO(

√
r)) space. This is o(n) with the choice of

r in Theorem 1. However, our algorithm keeps shortest path distances in
memory requiring more than linear space. So in order to obtain linear space
requirement, we need to modify the algorithm in such a way that SSSP
distances in G for only a constant number of sources need to be stored in
memory at any time.

To do this, consider connected component C with boundary vertices
p1, . . . , pt and belonging to a region R and let B be the set of boundary ver-
tices as in Section 4. We modify the algorithm such that it computes value∑

(VC \B, V \ (R∪B)) in t iterations. With each vertex u of V \ (R∪B), an
offset iu in table T is kept and in each iteration, this offset is updated such
that when the algorithm terminates, iu will specify the entry in T correspond-
ing to φ(u). The algorithm then proceeds to compute

∑
(VC \B, V \(R∪B))

as described in Section 4 before Lemma 4.
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We now describe how the algorithm iteratively computes offsets in T for
vertices in V \ (R ∪ B). It will prove useful to represent table T in memory
in such a way that entry (a1, . . . , at) ∈ {−(nC − 1), . . . , nC − 1}t has offset

t∑

j=1

(2nC − 1)j−1(aj + nC − 1)

in T (this is similar to how higher-dimensional tables are stored in the C
programming language).

Initially, offset iu is zero for each u. Also, SSSP distances with source p1

are precomputed and stored in O(n) time and space. In the jth iteration,
j = 1, . . . , t, SSSP distances in G with source pj are computed and stored.
The jth component of φ(u)[j] is then computed for each u and offset iu is
increased by (2nC + 1)j−1(φ(u)[j] + nC − 1).

It follows from the way T is stored in memory that this algorithm com-
putes offsets for the correct entries for each vertex in V \ (R ∪ B).

As for running time, observe that for any u ∈ V \(R∪B), value φ(u)[j] =
dG(u, pj) − dG(u, p1) can be computed in constant time in iteration j since
SSSP distances with source p1 and source pj have been precomputed. Hence,
we use O(n) time in each iteration and so it takes a total of O(nt) time to
find all offsets.

Space requirement is clearly linear since we only store SSSP distances for
two sources at any time and since T requires sublinear space with the choice
of r in Theorem 1.

Applying the above algorithm to each connected component of R, it fol-
lows from the results of Section 4 that

∑
(R\B, V \(R∪B)) can be computed

in O(n
√

r + rO(
√

r)) time and O(n) space.
We can also find

∑
(R\B, R\B) within this time and space bound. This

follows easily from the observation that only shortest path distances in G
between vertices of R are needed (see Section 4).

Setting r as in Theorem 1, the above modifications to the algorithm of
Section 4 gives us the following result.

Theorem 2. The Wiener index
∑

G of a planar n-vertex graph G can be
computed in O(n2 log log n/ log n) time and O(n) space.
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6 Concluding Remarks

We solved the open problem of whether an o(n2) time algorithm exists for
computing the Wiener index of an n-vertex planar graph. We did this by
exhibiting an algorithm with O(n2 log log n/ log n) running time and O(n)
space requirement.

We pose the following problems: is there an o(n2) time algorithm for
computing the sum of distances between all pairs of vertices in a weighted
n-vertex planar graph? Is there a constant c < 2 such that the Wiener index
of an n-vertex planar graph can be computed in O(nc) time?
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