One-dimensional coordination polymers of [Co3(dpa)4]2+ and [MF6]2- (M = ReIV, ZrIV and SnIV)

Bulicanu, Vladimir; Pedersen, Kasper Steen; Rouzières, Mathieu; Bendix, Jesper; Dechambenoit, Pierre; Clérac, Rodolphe; Hillard, Elizabeth A.

Published in:
Chemical Communications

DOI:
10.1039/c5cc06704a

Publication date:
2015

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NG

Citation for published version (APA):
One-dimensional coordination polymers of alternating metal–metal bonded trinuclear \([\text{Co}_3(\text{dpa})_4]^{2+}\) and \([\text{MF}_6]^{2-}\) (M = Re\(^{IV}\), Zr\(^{IV}\) and Sn\(^{IV}\))

Vladimir Bulicanu,\(^ab\) Kasper S. Pedersen,\(^abc\) Mathieu Rouzières,\(^ab\) Jesper Bendix,\(^d\) Pierre Dechambenoit,\(^ab\) Rodolphe Clérac\(^ab\) and Elizabeth A. Hillard*\(^ab\)

One-dimensional metal–ligand coordination polymers are of particular interest in the molecular magnetism community for their potential as single-chain magnets (SCMs).\(^1\) Because the stereochemistry around the metal ion determines the topology of coordination-driven self-assembled systems, a simple approach to magnetic linear polymers entails the use of paramagnetic metal complexes possessing two empty, or at least kinetically labile, coordination sites. These acceptors can then be associated into chains using paramagnetic linkers with two donor sites, the most common of which have been \(\text{trans}-\text{cyanidometallates}.\(^2\) While dinuclear divalent paddlewheel complexes are often diamagnetic, EMACs tend to have an odd number of metal centers and to be paramagnetic. This is due to a variety of factors, including an odd number of electrons, accidental degeneracy of frontier orbitals, or dissymmetry in the linear complex giving rise to an isolated high-spin metal ion. However, with the exception of a few coordination polymers based on \([\text{Ni}_3(\text{dpa})_4]^{3+}\),\(^11\) EMACs have rarely been used to build extended systems.

The \([\text{Co}_3(\text{dpa})_4]^{2+}\) unit (Chart 1) is expected to be a useful building block, based on the interesting physical properties of the \([\text{Co}_3(\text{dpa})_4\text{Cl}_2]\) analogue. Its core consists of three aligned cobalt metal ions possessing a delocalized 3-electron 3-center bond, and depending on crystal packing effects, the spacing of the Co ions can be equal (as in the orthorhombic \([\text{Co}_3(\text{dpa})_4\text{Cl}_2]\) \(\text{CH}_2\text{Cl}_2\) phase), or unequal, (as in the tetragonal \([\text{Co}_3(\text{dpa})_4\text{Cl}_2]\) \(2\text{CH}_2\text{Cl}_2\) phase).\(^11\) Both forms show a spin-crossover (SCO) process from \(S = 1/2\) to \(S = 3/2\) or 5/2. Remarkably, the one electron oxidized EMAC \([\text{Co}_3(\text{dpa})_4\text{Cl}_2]\)(BF\(_4\)) undergoes a two-step SCO, from \(S = 0\) to \(S = 1\) to \(S = 2.\(^14\) Finally, the axial chloride ligands can be
cleanly removed from [Co₃(dpa)₄Cl₂] using silver salts, generating MeCN, BF₄⁻, CN⁻, N(CN)₂⁻ or NCS⁻ adducts. Nonetheless, [Co₃(dpa)₄]²⁺ has not been widely used in extended structures, even if organization into rigid multi-dimensional systems is an appealing strategy to introduce cooperativity in the SCO process and thus to generate possible spin transition phenomena. Recent work by Shatruk and coworkers on putative 2D grids formed by four ditopic [Co₃(dpa)₄]²⁺ units coordinated to [Co(CN)₆]³⁺ or [Fe(CN)₆]³⁻ is the only example of the assembly of [Co₃(dpa)₄]²⁺ units into extended networks. Unfortunately, these materials could not be crystallographically characterized.

In order to obtain 1:1 neutral chains, we have selected the dianionic metalloligands [ReF₆]²⁻, [ZrF₆]²⁻ and [SnF₆]²⁻ to link the [Co₃(dpa)₄]²⁺ building block. (PPh₄)₂[ReF₆]·2H₂O was recently reported to exhibit a pronounced magnetic anisotropy, a property that was retained in 1D coordination polymers featuring [M₁–F–ReIV] linkages. Furthermore, the [Ni(viz)₄(ReF₆)] (viz = 1-vinylimidazole) chain additionally exhibits relatively strong fluoride-mediated ferromagnetic coupling between the ReIV and Ni⁵⁺ magnetic sites (1/kᵣ = +17 K; H = −2JS₁S₂ Hamiltonian definition).

Notably, (PPh₄)₂[ReF₆]·2H₂O can be dehydrated without decomposition and subsequently recrystallized to afford (PPh₄)₂[ReF₆]·MeCN, (ESI†) which is a convenient starting material for assembly reactions with moisture sensitive building blocks. The combination of equimolar solutions of in situ formed [Co₃(dpa)₄(BF₄)₂] and (PPh₄)₂[ReF₆] (M = ReIV, ZrIV and SnIV) immediately gave a dark precipitate, insoluble in all common solvents. In order to obtain crystals, a dilute solution of (PPh₄)₂[ReF₆] in MeCN was layered on a DMF solution of [Co₃(dpa)₄(BF₄)₂] in a thin tube and left to slowly diffuse over several weeks.‡ Green blocks of [Co₃(dpa)₄][ReF₆]·2DMF (1), [Co₃(dpa)₄][ZrF₆]·2DMF (2) and [Co₃(dpa)₄][SnF₆]·2DMF (3) were obtained in moderate yield. Powder X-ray diffraction revealed the presence of only one phase and thermal gravimetric analysis was consistent with the presence of two DMF molecules (ESI†).

Compounds 1–3 are isostructural. They crystallize in the space group P4/ncc (Table S1, ESI†) with the four-fold axis coincident with the rigidly linear Co−F−M axis. The chains are racemic, being made up of alternating A and A [Co₃(dpa)₄]²⁺ helicoidal moieties (Fig. 1). A small disorder is found with respect to the wrapping of the dpa− ligands, and each position is occupied by ca. 80% of one enantiomer and 20% of the other. The Co⁶⁺ core is slightly asymmetrical with differences in Co−Co distances of 0.008(1), 0.013(1) and 0.013(1) Å in 1, 2 and 3, respectively (at 200 K; Table 1). Surprisingly, the Co−F distances are quite unequal, with differences of 0.066(4) Å (1), 0.059(4) Å (2) and 0.069(4) Å (3), with the longer distance associated with the terminal cobalt engaged in the longer Co-Co bonding interaction. This asymmetry is however not reflected in the two individual M-Favg distances, which are distinctly and equally elongated due to their coordination to the Co centers (Table 1).

Magnetic susceptibility measurements were performed on polycrystalline samples of 1–3 between 1.85 and 300 K. At room temperature, the χT product of 1 amounts to 2.4 cm³ K mol⁻¹, slightly higher than the theoretical value of 1.97 cm³ K mol⁻¹ for isolated S = 1/2 ([Co₃(dpa)₄]²⁺, g = 2.35, C = 0.52 cm³ K mol⁻¹) and

\[
S = 3/2 \text{([ReF₆]²⁻, } g = 1.76) \text{, } C = 1.45 \text{ cm}^3 \text{ K mol}^{-1} \text{ spins (Fig. 2). On lowering the temperature, the } \chi T \text{ product increases steadily, with a more abrupt increase below ca. 30 K eventually reaching 9.6 cm}^3 \text{ K mol}^{-1} \text{ at 1.85 K, suggestive of a significant ferromagnetic coupling between the [Co⁶⁺] and ReIV magnetic sites. The data were fit to a Seiden model derived from the exchange-coupling Hamiltonian } H = -2J \sum_{i=1}^{N} (\hat{S}_i \cdot \hat{S}_{i+1}), \text{ where } \hat{S}_i \text{ and } \hat{S}_{i+1} \text{ represent spin-operators of } \text{[Co}^{6+}] \text{ and ReIV, yielding } g = 2.05(3) \text{ and } 1/kᵣ = +9.9(1) \text{ K. As expected, this average } g \text{ value falls in between the previously reported values for } \text{[Co₃(dpa)₄Cl₂]·CH₂Cl₂ (g = 2.35)} \text{ and } \text{[PPh₄]²}[ReF₆]·2H₂O (g = 1.76). Compounds 2 and 3, possessing dianionic [ZrF₆]²⁻ and [SnF₆]²⁻ linkers, show an almost temperature independent } \chi T \text{ product between about 50 and 300 K. The low temperature decrease of the } \chi T \text{ product is likely due to weak antiferromagnetic coupling between the }\]
\{\text{Co}^{6+}\} centers through the diamagnetic linkers, and fitting the data to a regular quantum $s = 1/2$ spin chain model derived from the Hamiltonian $H = -2J \sum_i \sigma_i \cdot \sigma_{i+1}$ yields $J/k_B = -1.0 \text{ K}$ for 2 while magnetic interactions are virtually undetectable above 1.85 K for 3 (with $g = 2.36$ for both). The difference in the magnetic coupling between 2 and 3 may be attributed to the lack of empty d orbitals in Sn6+ to mediate a superexchange interaction, in contrast with ZrIV in [Co\textsubscript{3}(dpa)\textsubscript{4}Cl\textsubscript{2}]2+ units. For example, the parent compound [Co\textsubscript{3}(dpa)\textsubscript{4}Cl\textsubscript{2}]2+ displays single-molecule magnet (SMM) properties, a behavior which is retained upon assembly of [ReF\textsubscript{6}]2- units by diamagnetic linkers.\cite{19, 22} The magnetic behavior of these coordination polymers is significantly different to that of their building units. For example, the assembly of ostensibly SCO [Co\textsubscript{3}(dpa)\textsubscript{4}]2+ units with [ReF\textsubscript{6}]2- linkers into chains increased the SCO temperature to inaccessible temperatures without evidence of cooperativity increase. As previously reported, the [ReF\textsubscript{6}]2- anion in [PPh\textsubscript{4}]\textsubscript{4}[ReF\textsubscript{6}]\textsubscript{2}EtOH displays single-molecule magnet (SMM) properties, a behavior which is retained upon assembly of [ReF\textsubscript{6}]2- units by diamagnetic linkers.\cite{19} In 1, slow dynamics of the magnetization were not detected by ac susceptibility (in zero-dc or applied dc field, up 10 kHz and down to 1.8 K). As we previously discussed,\cite{19, 22} an electronic elongation of the [ReF\textsubscript{6}]2- octahedron, while keeping the tetragonal symmetry implies the axial zero-field splitting parameter, D, to be positive. Therefore, despite relatively strong intra-chain ferromagnetic interactions, magnetic bistability, e.g. single-chain magnet behavior,\cite{1} is not expected nor experimentally observed in the present system.

In summary, the metal–metal bonded [Co\textsubscript{3}(dpa)\textsubscript{4}]2+ moiety has been used for the first time as a building block in a structurally characterized coordination network leading to one-dimensional extended architectures. These unique systems pave the way toward the synthesis of new bistable coordination networks incorporating metal–metal bonding clusters with spin-crossover or spin-transition properties.

This work was supported by the CNRS, the University of Bordeaux, the Conseil Régional d’Aquitaine, the ANR and the Erasmus Mundus European program for a PhD fellowship of VB. JB acknowledges support from The Danish Research Council under grant 12-125226. KSP thanks The Danish Research Council for a DFF | Sapere Aude: Research Talent award (grant 4909-00201). The authors thank L. Favello for crystallographic assistance, P. Dagaut for TGA analysis, E. Lebraud for PXRD and C. Mathioniere and D. Samolvalov for technical assistance.

Notes and references

\dagger General synthesis of [Co\textsubscript{3}(dpa)\textsubscript{4}[MF\textsubscript{6}]]2+DMF, 1–3: [Co\textsubscript{3}(dpa)\textsubscript{4}Cl\textsubscript{2}] (50 mg, 0.05 mmol) and AgBF\textsubscript{4} (20 mg, 0.10 mmol) were combined in 10 mL of DMF in a glovebox. The mixture was stirred overnight and filtered. Anhydrous [PPh\textsubscript{4}]\textsubscript{4}[MF\textsubscript{6}] (1 eq.) was dissolved in 10 mL of MeCN. The MeCN solution was layered upon the DMF solution, separated by a 1:1 mixture of DMF:MeCN in glass tubes (200 mm, \(\Theta \) 10 mm). Dark green blocks were collected from the walls of the tubes after 4 weeks.

