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The past decade has witnessed a revolution in ancient DNA (aDNA) research.

Although the field’s focus was previously limited to mitochondrial DNA and a

few nuclear markers, whole genome sequences from the deep past can now be

retrieved. This breakthrough is tightly connected to the massive sequence

throughput of next generation sequencing platforms and the ability to target

short and degraded DNA molecules. Many ancient specimens previously

unsuitable for DNA analyses because of extensive degradation can now

successfully be used as source materials. Additionally, the analytical power

obtained by increasing the number of sequence reads to billions effectively

means that contamination issues that have haunted aDNA research for

decades, particularly in human studies, can now be efficiently and confidently

quantified. At present, whole genomes have been sequenced from ancient

anatomically modern humans, archaic hominins, ancient pathogens and

megafaunal species. Those have revealed important functional and pheno-

typic information, as well as unexpected adaptation, migration and

admixture patterns. As such, the field of aDNA has entered the new era of

genomics and has provided valuable information when testing specific

hypotheses related to the past.
1. The impossible genome
Ancient DNA (aDNA) research is full of surprises. Less than a decade ago, most

experienced aDNA researchers believed that full genome sequencing of extinct

species such as the woolly mammoth and Neandertals was impossible. The

best available technology at the time was incredibly demanding in terms of

fossil material, experimental work load and cost. First, each piece of target geno-

mic DNA had to be amplified several times by PCR, then ideally PCR amplicons

had to be propagated using bacterial vectors, and a number of clones had to be

sequenced before a consensus sequence devoid of sequencing errors could be gen-

erated [1]. Furthermore, this whole procedure often needed to be replicated in

another laboratory, before DNA sequences could be considered authentic [2].

The size of PCR amplifiable fragments was most often limited to approxi-

mately 100–150 base pairs (bp) at best, which represented little sequence

information. With exceptionally well-preserved samples, the characterization of

the whole approximately 16.5 kilobases (kb) of mitochondrial genomes [3–5]

could be achieved using overlapping amplicons [6], but nuclear markers [7,8]

were more difficult to amplify owing to their lower copy number per cell. Consid-

ering usual aDNA concentrations, each microlitre of DNA extract yielded one PCR

amplicon at best. Therefore, it was generally necessary to destructively sample

large amounts of fossil material to sequence complete mitochondrial genomes.

The sequencing of the cave bear mitochondrial genome required for instance
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1 g of bone material and not less than 570 PCR amplicons [5].

Assuming approximately 3 gigabases as the size of the nuclear

genome and similar PCR success rates for mitochondrial and

nuclear templates, this technology would have required

approximately 180 kg of material and more than 103 million

amplicons to generate a first draft of the cave bear genome.

Given standard PCR and sequencing times, even on platforms

with the highest throughput at the time (384 reactions per run),

this would have required approximately 48 000 years of experi-

mental work, excluding the time required for cloning! The

characterization of even the best-preserved woolly mammoth

specimens would have required similar efforts [4]. Two-

round multiplex reactions [9], whereby a set of PCR targets

are co-amplified from the same microlitre of DNA extract,

could help reduce material and time requirements by one or

two orders of magnitude [10,11], but operational costs would

still amount to billions of US dollars. In summary, this technol-

ogy limited palaeogenomics to the shorter ancient microbial

genomes [12].
0130387
2. Shotgun sequencing of the first ancient
mammalian genome

An alternative approach consisted of shotgun sequencing fol-

lowing aDNA ligation into bacterial plasmids [13,14]. This

could be done at large sequencing centres, though with two

major limitations. First, most of the sequences generated in

fact do not originate from the organism of interest, but

from environmental microbes that colonize the tissue after

deposition. Therefore, no more than 26.9 kb of the cave

bear genome could be reconstructed with this approach

from a total of 14 027 sequences [13]. The second limitation

was the heavy experimental load required for bacterial cloning.

The invention of ‘emulsion PCR’, whereby each DNA library

template is amplified in a water–oil emulsion droplet, and

the development of the 454 platform provided a time-effective

alternative to bacterial cloning by processing hundreds of

thousands of sequencing reactions in parallel [15]. Applied to

DNA extracts from an approximately 28 000 years (28 kyr)

old mammoth bone sample, this technology provided, in a

6 h long run, 28 megabases (Mb) of metagenomic data, of

which approximately 13 Mb belonged to the mammoth

genome [16]. This demonstrated for the first time that

sequencing of complete mammalian genomes was probably

achievable from realistic amounts of bone material.

The field improved further, with the realization that

hair constitutes a remarkable source of high-quality aDNA

[17,18] that could be subjected to efficient decontamination

procedures [19] inapplicable to bones. Deep sequencing of

DNA from ancient mammoth hair yielded approximately

80% of sequences identified as being of mammoth origin

[20], thus providing a first draft covering approximately

70% of the mammoth genome, with an overall sequencing

error rate estimated at 0.345%. These data revealed that

99.4% of the sequenced mammoth genome was identical to

the African elephant genome and identified 29 mammoth

genes with specific non-synonymous mutations of potential

functional importance. Testing this list of gene candidates

following the methodology that revealed the association

between an allelic variant at the MC1R gene and blond

coat-colour [9] could illuminate our understanding of the

genetic make-up of mammoths.
3. The first ancient human genome
By the time the first draft of the mammoth genome was

characterized, new sequencing technologies with higher

throughput were available [21]. The Illumina Genome Analy-

zer II platforms could generate 180 million sequence reads

per run. This massive sequencing throughput, combined

with the high endogenous DNA content of hair, and preser-

vation in a cold environment made the sequencing of the first

ancient human genome possible. The individual sequenced

was a palaeo-Eskimo belonging to the Saqqaq culture, who

lived along the southwestern coast of Greenland 4 kyr ago

[22]. The sequence information gathered represented an aver-

age depth of 20-fold across 79% of the genome and led to the

identification of a large catalogue of high-confidence single

nucleotide polymorphisms (SNPs), some of which not only

confirmed his hair colour but also showed that he was of

the Aþ blood type and most likely had brown eyes, dry

earwax, as well as a metabolism and body mass index

adapted to cold climate. ADMIXTURE [23] and principal com-

ponent analysis [24] of the SNP information indicated no

affinity with modern-day Europeans, thus ruling out possible

contamination, a problem that had plagued ancient human

DNA studies for decades [25], as well as attempts at sequen-

cing the Neandertal genome a few years earlier [26,27].

Analyses also revealed a much closer genetic affinity with con-

temporary Chukchis and Koryak populations of northeast

Siberia, than with present-day Greenlandic Inuit. Divergence

times with the Chukchi population closely matched the radio-

carbon date for the ancient individual, suggesting that the

Saqqaq ancestors entered Greenland soon after they separated

from their Old World relatives and were later replaced by the

ancestors of modern-day Inuits. This study demonstrated

the immense potential of palaeogenomics towards reconstruct-

ing the population history of humans in much greater detail

than what can be achieved from patterns of modern genomic

variation alone.

A recent re-analysis of the Saqqaq sequences also revealed

epigenomic signatures indicative of gene expression. Sequence

depth variation showed a strong approximately 200 bp period-

icity, which is characteristic of the length of one nucleosome and

spacer block [28]. Within a shorter range, a 10 bp periodicity cor-

responding to the size of a DNA helix turn was also detected,

reflecting preferential cleavage of the DNA backbone that

faces away from nucleosome protection. Importantly, patterns

of sequence depth variation at known nucleosome arrays

showed strong correlations with nucleosome occupancy. It

therefore seemed that in addition to the DNA sequence, the

compaction state of the chromatin could survive in fossils, and

that variation in read depth, corrected for base compositional

bias, could be used as a footprint of nucleosome protection to

reconstruct genome-wide nucleosome maps. Regional methy-

lation levels could also be tracked in the Saqqaq genome

sequence owing to the fact that it had been obtained by amplify-

ing DNA libraries using a polymerase that amplifies cytosines

deaminated due to post-mortem damage only when methy-

lated [29–31]. Focusing on read starts, where deamination

rates are highest, estimated methylation levels were found

to recapitulate known genomic patterns at different classes of

CpG promoters, splice sites and CTCF transcriptional repressor

sites. Strikingly, the Saqqaq methylome also appeared closer to

that of modern hair than to other somatic tissues. As nucleo-

some occupancy and cytosine methylation influence gene
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expression, those could be used to predict gene expression levels

in the Saqqaq hair cells. As expected, key structural components

of hair, such as keratins and trichohyalin, were predicted as

highly expressed, demonstrating that ancient gene expression

levels can be gathered directly from ancient sequence data,

even in the absence of RNA. This approach can therefore compl-

ement functional SNP genotyping [32] and proteomics [33]

to gather functional information from ancient individuals

and investigate the dynamics and evolutionary significance of

epigenomic changes.
 g
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4. Ancient anatomically modern humans
Recent mixed ancestries among modern human groups can

limit our ability to infer their true past population history.

Following the sequencing of the Saqqaq genome [22], a variety

of ancient human genomic studies have shed light on major

events in the human population history [34–41]. Of key impor-

tance, post-mortem DNA damage patterns and heterozygosity

levels observed in the mitochondrial genome [42], or on the

X-chromosome of male individuals, have provided robust

approaches to rule out modern contamination.

Using 600 mg of hair collected in the 1920s from an Aborigi-

nal Australian male, Rasmussen et al. [34] were able to

reconstruct his genome at 6.4-fold coverage and found no evi-

dence for recent European admixture or contamination.

Genomic affinity was revealed with present-day Aboriginal

Australians, as well as Bougainville and New Guinea Highland

Papuans. More importantly, being the first Aboriginal Austra-

lian genome sequenced, this dataset allowed for the testing of

two alternate models of modern human dispersal into eastern

Asia. A statistics based on quartet genome alignments (D4P)

showed an excess of genomic sites in support of a population

tree where Aboriginal Australians and Africans cluster together,

separate from Europeans and Asians. Population split times

suggested that Aboriginal Australians separated from the

ancestral Eurasian population around 62–75 kyr ago, which in

turn radiated into the European and Asian branches some

25–38 kyr ago. These results favour the hypothesis of the ‘mul-

tiple dispersal’ model [43], which was also supported by the

excess of shared derived alleles observed between Asians and

Aboriginal Australians, reflecting population migration from

the mainland. By contrast, the Australian Aboriginal genome

lent little support to the alternative ‘single dispersal’ model pro-

posing that humans expanded out of Africa into Eurasia 50 kyr

ago [44] through a series of founder events, which ultimately

gave rise to the colonization of Australia and the diversification

of Aboriginal Australian populations.

Ancient human genomic data has also shed light on

another fiercely debated topic in anthropology, namely the

peopling of the Americas. Genomic signatures of an Upper

Palaeolithic (approx. 24 kyr ago) male juvenile excavated at

the Mal’ta site, south central Siberia, Russia revealed no

strong connection with present-day eastern Asians [39]. Tree-

based analyses of population splits and admixture events

(TREEMIX [45]) instead placed the Mal’ta specimen basal to west-

ern Eurasians and identified gene flow from Mal’ta to Native

Americans. Shotgun sequencing of another individual from

the same region and dating to post-last glacial maximum

(LGM; 17 kyr ago) showed a strong affinity with the Mal’ta

specimen, suggesting that the population’s gene pool was

rather stable during the LGM, and consequently, that the
populations from the region changed within the last 17 kyr.

The western Eurasian component of the Mal’ta specimen

suggests that Upper Palaeolithic populations ancestral to pre-

sent-day western Eurasians had a distribution range that

extended further northeast. This is consistent with the disco-

very of a number of anthropomorphic Venus figurines at

the Mal’ta site, reminiscent of Upper Palaeolithic sites in

western Eurasia. Interestingly, no particular genetic affinity

was detected between present-day western Eurasians and a

40 kyr old individual excavated at the Tianyuan cave in north

east China [38], confirming that the results were not affected

by recent events in the population history of modern eastern

Asians. The contribution of the Mal’ta lineage to the Native

American gene pool gives further support to the hypothesis

of a Siberian origin for present-day Native Americans, and

the gene flow between Mal’ta and the ancestors of 52 Native

American populations from Greenland to southern Chile was

estimated to be responsible for 14–38% of the current Native

American ancestry. This gene flow occurred before 12.6 kyr,

which is the age of a child excavated at the Anzick site, Mon-

tana, USA, whose genome also revealed a ‘Mal’ta-like’

component [40]. The Anzick child belonged to the Clovis cul-

ture, the oldest archaeological complex in North America,

and was part of a meta-population directly ancestral to all con-

temporary Native Americans outside of Canada and the

Arctic. Overall, it appears that the ancestors of present-day

Native Americans were the descendants of at least two popu-

lation backgrounds, one related to the Mal’ta individual,

showing a western Eurasian affinity, and another related to pre-

sent-day eastern Asians, as suggested by the strong eastern

Asian genetic component found among Native Americans

[46]. This new model for the origin of Native Americans poten-

tially solves the mystery surrounding the presence of non-east

Asian morphological features in the skulls of the first

Americans.

Ancient genomics has also provided invaluable clues to

understand the complex genetic make-up of Europeans.

The genome of a 5.3 kyr old Copper Age ‘Tyrolean Iceman’

revealed genetic discontinuity with current inhabitants of

the Alps, with the Iceman showing a greater genetic affinity

with southern European populations, and in particular with

Sardinians [35]. This finding suggests that the current Sardi-

nian population represents a remnant of an ancient and

previously more widespread component of the European

gene pool. Similarly, genome-wide data indicated that an

approximately 5 kyr old early farmer from Sweden was

more closely related to southern Europeans than to present-

day northern Europeans and three contemporary hunter–

gatherers of Sweden [36]. Those three hunter–gatherers as

well as two 7 kyr old hunter–gatherers from the Spanish

cave called La Braña [37,41] fell outside the present-day

European genomic diversity but exhibited a closer genetic

affinity with present-day populations of northern Europeans.

One La Braña individual [41] was found to share ancestry with

the Siberian Mal’ta individual, thus providing further evidence

for the genetic and cultural links between the West Eurasian

Mesolithic and the Siberian Upper Palaeolithic. All together,

these results suggest a shared genomic background of

hunter–gatherers across North Eurasia, as well as a migration-

driven transition associated with the advent of the agricultural

lifestyle in Europe.

Genomic data from ancient humans in Europe revealed

information about their likely phenotypes and health status.
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For instance, the Tyrolean Iceman probably had brown eyes,

belonged to the Oþ blood group and was lactose intolerant.

He was also homozygous for alleles associated with major

risks for coronary heart disease and atherosclerosis, and

infected with Borrelia burgorferi, the pathogen responsible

for Lyme disease [35]. La Braña hunter–gatherers probably

had difficulties digesting milk and starch, were dark haired

and dark skinned and had non-brown eyes. The derived vari-

ants of immunity genes found in the La Braña genome

suggested that hunter–gatherers were adapted to resist

multiple types of infection that were commonly believed to

have emerged much later with the advent of the agricultural

lifestyle [41].
 rans.R.Soc.B
370:20130387
5. The genomics of archaic hominins
The Neandertal genome project represents a milestone

in ancient genomics, as it led to major technical improve-

ments, both for generating and analysing aDNA data [47].

Most of the final sequences used for the first genome draft

assembly required no more than 400 mg of bone material

sampled from three female specimens excavated at the

Vindija cave, Croatia and dated to 38–44 kyr ago [47]. More

recently, Prüfer et al. [48] generated a high-quality genome

from a female Altai Neandertal from the Denisova cave,

Russia, and a low-coverage draft genome from an approxi-

mately 60–70 kyr old Neandertal infant. The high-quality

genome could be obtained owing to a combination of excep-

tionally high fraction of reads aligning to the human genome

and minimal contamination levels. This vast genomic dataset

makes the Neandertals the best-characterized extinct species

today. The high-quality Altai genome revealed high inbreed-

ing coefficients compatible with half-sibling mating, and

temporal variations in the Neandertal population size,

which was estimated to have been about a tenth of that of

present-day humans, despite a broad Eurasian geographical

range extending from the Iberian Peninsula to the Altai

mountains.

Earlier genetic screening of a finger bone excavated at the

Denisova cave had revealed the presence of an archaic homi-

nin belonging to a mitochondrial lineage very distinct from

modern humans and Neandertals [49]. Enzymatic treatment

prior to DNA library preparation eliminated the vast majority

of nucleotide misincorporations resulting from post-mortem

damage, and further, employing paired-end sequencing

and collapsing mate reads that showed sufficient overlap

delivered a first draft of the nuclear genome with limited

error rates [50]. The nuclear sequence data supported a differ-

ent population scenario than the mitochondrial data. The

archaic hominin appeared indeed to belong to a group dis-

tinct from both modern humans and Neandertals, but more

closely related to Neandertals than to modern humans. This

group was named Denisovans after the cave where it was

first discovered. A molar tooth excavated at the Denisova

cave contained enough endogenous DNA to reconstruct

another full mitochondrial sequence using target enrichment.

The latter appeared closely related to the sequence from the

finger bone. The development of a new DNA library prepa-

ration method targeting single-stranded molecules enabled

the reconstruction of an ancient genome showing a quality

comparable to that of modern genomes sequenced at similar

depth [51].
The temporal limits of archaic human genomics were

recently pushed back with the sequencing of the complete

mitochondrial genome of a 400 kyr old hominin from

the Sima de los Huesos cave in northern Spain [52]. The

sequenced individual is morphologically characterized as

Homo heidelbergensis, a lineage commonly considered as pre-

Neandertal. Yet, the mitochondrial genome appeared closer

to Denisovans than Neandertals. Further genetic information,

at the nuclear level, is required before this mitochondrial

affinity can be confirmed or this result can alternatively

be demonstrated as a consequence of a complex population

history involving incomplete lineage sorting and/or gene

flow [53].

The Neandertal and Denisovan genomes have revealed

important information regarding admixture among archaic

hominins and anatomically modern humans. D-statistics [54]

indicate that Neandertals shared an excess of derived alleles

with non-African modern populations [47–48,50–51]. This

suggests that anatomically modern humans and Neandertals

admixed in Eurasia. According to the latest estimates [48],

this gene flow introduced 1.5–2.1% of Neandertal ancestry

(most closely related to the individual from the Caucasus

than the Altai) into the genome of non-African individuals.

However, it is still debated whether the genomic patterns

observed result from admixture between anatomically

modern humans and Neandertals [55,56] or reflect ancestral

population structure in Africa [57,58]. In contrast to Neander-

tals, Denisovans showed no evidence of gene flow into most

present-day Eurasian populations, but did contribute to the

gene pool of modern Melanesians [51,59] and, to a lower

extent, of mainland Asian populations [48,60]. The admixture

signature in present-day Papuans is greater on the autosomes

than on the X-chromosome, possibly indicating the presence

of hybrid incompatibility alleles on the X-chromosome, or

that the gene flow preferentially involved Denisovan males

and human females. Archaic hominin populations also

appear to have mixed with each other. The level of Neandertal

gene-flow into Denisovans is currently estimated at more

than 0.5% [48] and an additional gene-flow into Denisovans

originating from an unidentified hominin population (repre-

senting an outgroup to modern humans, Denisovans and

Neandertals) has been proposed.

The archaic hominin genomes have importantly helped

narrow down the genetic changes that make us humans

[47–48,50–51]. Our understanding of how those relate to

phenotype is, however, still in its infancy. In Denisovans,

one difference was found in EVC2, a gene whose mutated

alleles cause wider dental pulp cavities and fusion of tooth

roots, both of which are common in the teeth of archaic homi-

nins [51]. In Neandertals, some genetic variants in the

RUNX2 gene have been linked to cleidocranial dysplasia,

which is associated with bell-shaped rib cages and changes

in dental morphology, all of which represent major phenoty-

pic differences between Neandertal and modern humans

[47]. Functional assays also showed that the microRNA

mir-1304 might be one factor involved in the difference in

tooth morphology between modern humans and Neander-

tals [61]. The availability of the genome sequence allows

anyone interested in a particular locus to investigate the vari-

ants present in archaic hominins, and potentially discover

advantageous alleles that some modern human populations

acquired from archaic hominins. Many such examples are

now described and concern genes that are almost exclusively

http://rstb.royalsocietypublishing.org/
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6. Towards Middle Pleistocene genomes and
proteomes

With high-quality genomes from the Holocene and the Late

Pleistocene in hand, the question soon became how far

back in time palaeogenomics could be pushed. In 2012,

deep sequencing of DNA extracts from a 110–130 kyr old

bone delivered genome-wide information from a polar bear

[65]. This suggested that, at least in cold environmental con-

ditions, such as those found in the Arctic Ocean Svalbard

archipelago where the polar bear material was discovered,

palaeogenomics could break the Middle Pleistocene time

barrier (125–781 kyr ago). At that time, the genetic evidence

that DNA could survive over several hundreds of thousand

years was rather scarce and limited to the pyrosequencing

of no more than 16 bp of mitochondrial bases from approxi-

mately 400 kyr old cave bear specimens [66], PCR amplicon

sequencing of minibarcodes from 450–700 kyr old ice cores

[67] and 400–600 kyr old sediment cores [68]. Yet, suc-

cessfully sequencing Middle Pleistocene genomes would

provide much needed perspectives across a broad range of

evolutionary biology questions. Not less than five archaic

hominins were living during the Middle Pleistocene [69],

including the most recent common ancestor of anatomically

modern humans, Neandertals and Denisovans. The Middle

Pleistocene also experienced numerous radiations and extinc-

tions of fascinating megafauna lineages [70,71], as well as

major climatic changes, involving the succession of many

glacial and interglacial episodes, in contrast to only one for

the Late Pleistocene. Clearly, pushing the limits of palaeoge-

nomics to the Middle Pleistocene would represent a major

step forward.

The empirical demonstration that such a step is possible

came from a fragment of horse metapodial bone excavated in

2003 at Thistle Creek (TC), Yukon, Canada [72]. The specimen

was found within a stratigraphic layer associated with the Gold

Run tephra and dated to 735+88 kyr BP, in agreement with

palaeobotanical and micromammal fossil analyses, which

also indicated an Early–Middle Pleistocene age [73–75]. The

line of evidence suggesting that biomolecules, including

DNA, could survive for such a long time included: (i) the detec-

tion of amino acids within the bone matrix by time of flight

secondary ion mass spectrometry, (ii) the identification of the

three most abundant amino acids in the primary sequence of

collagen (glycine, proline and alanine) in the bone matrix,

(iii) the direct sequencing of a variety of peptides representing

72 proteins from the bone matrix and the circulating blood,

(iv) the presence of significantly greater levels of protein degra-

dation by glutamine deamidation in the TC horse than in a

younger Late Pleistocene Siberian mammoth, and (v) the esti-

mation of considerably higher levels of DNA damage in the

TC horse than in younger Late Pleistocene horses also pre-

served in the Arctic permafrost. Additionally, phylogenetic

inference based on complete mitochondrial genomes revealed

that the TC horse fell outside the range of genetic variation of

modern and Late Pleistocene horses. This was confirmed

using the full set of protein-coding nuclear genes and a total

of eight other genomes sequenced for comparison, including

a 43 kyr old horse [72]. In addition, the retrieval of genomic
information from Middle Pleistocene specimens is compatible

with the long-term survival of DNA predicted by the empirical

model of DNA degradation through time proposed in [76].

The TC horse genome was sequenced at approximately

1.1-fold coverage using a combination of second-generation

(Illumina) and third-generation (Helicos) sequencing. The

latter, based on true single DNA molecule sequencing

(tSMS), appeared to be advantageous when targeting short

and damaged molecules for several reasons. First, this technol-

ogy is PCR-free and, thus, devoid of PCR-related bias. Second,

it does not require extensive enzymatic manipulation or

repeated DNA purification steps, thereby maximizing DNA

recovery and reducing the risks of enzyme incompati-

bility with chemically modified ancient templates. Third, this

technology operates with single DNA strands and from any

available 30-hydroxyl group available. Consequently, with

higher densities of single-strand breaks compared with

modern DNA, aDNA templates present a higher chance

of being sequenced on this platform. Methodological improve-

ments of the sequencing protocol [77,78] and the development

of dedicated bioinformatics strategies to improve the sensi-

tivity and accuracy of read alignment against the horse

reference genome [79] were necessary to optimize the analysis

of aDNA molecules using tSMS. Altogether, this resulted in the

identification of 4.21% of Helicos reads as endogenous horse

DNA versus only 0.47% for Illumina reads.

The TC horse genome sequence was used first to date the

time of the most recent common ancestor of horses, donkeys,

zebras and asses at approximately 4.0–4.5 million years

(Myr), which corresponds to twice the age of the first widely

accepted Equus fossil from the palaeontological record. This

new calibration point provided a genome-wide mutation rate

that was used for scaling the palaeodemographic profile recon-

structed from high-quality modern diploid genomes following

pairwise sequentially Markovian coalescent inference. The pro-

file revealed three major periods of demographic expansions

and contractions for horses within the last 2 Myr, the last of

which was consistent with ecological niche modelling and

palaeoenvironmental data showing grassland expansion prior

to the LGM followed by a massive post-LGM range contraction

[80]. Interestingly, Bayesian skyline reconstructions based on

the ancient mitochondrial genomes sequenced in this study,

as well as tip-calibration, showed similar demographic changes,

providing an independent validation of the novel calibration

point proposed for Equus.
More fundamentally, the sequence data provided a unique

snapshot of aDNA molecules from the Middle Pleistocene,

revealing for the first time the presence of 30 overhangs [77]

and fragmentation levels compatible with the survival of

ultra-short fragments (25 mers) over 1 Myr. As the latter pro-

vide sufficient information for mapping, environmental

conditions close to those in place at TC should therefore

enable the characterization of 1 Myr old genome [81]. Outside

the Arctic, temperate caves that represent an environment with

virtually no variation in temperature are also likely to offer

preservation conditions compatible with the reconstruction of

Middle Pleistocene genomes, as shown recently by the analysis

of bone material from Sima de los Huesos at Atapuerca [52,82].

In these studies, the experimental procedure, which combined

a newly developed extraction method tailored to the retrieval

of ultra-short DNA fragments, single-strand Illumina DNA

libraries [51,83] and target-enrichment capture, recovered

enough high-quality DNA reads to reconstruct a near complete
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mitochondrial genome of a Middle Pleistocene cave bear and

H. heidelbergensis [52].
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7. Non-mammalian palaeogenomics
Despite major advances in genomic technologies, assembling

complete plant genomes is a major challenge even for modern

samples owing to their large, highly repetitive and heterozy-

gous genomes, confounded by varying ploidy-levels, even

within genera. Thus small-scale plant aDNA studies have

been undertaken on maize [84], barley [85], cotton [86], wheat

[87] and bottle-gourd [88], revealing patterns of crop adaptation

and migration (reviewed in [89]). Larger and more in-depth

studies using ancient plant genomes are expected in the

coming years given the economic importance of major crops

and the possibility of reintroducing alleles involved at various

stages of the domestication process. Herbarium collections

hold great potential as resources for future investigations of his-

torical genomics as the specimens are generally well preserved

and often meticulously annotated. High endogenous DNA con-

tent has allowed the genomic characterization of ‘ancient’

genomes of the plant pathogen Phytophthora infestans, the

oomycete responsible for the Irish potato famine [90–92]. Her-

barium collections also hold potential for population genomics.

Future studies on ancient plant pathogens should reveal more

details about their coevolution with food crops and the history

of their human-mediated migrations, potentially leading to

insights for crop breeding and management. Furthermore, the

study of aDNA from non-domesticates such as forest trees

will probably shed light on changes in biodiversity during

past climatic events [93].

It has also recently been shown that RNA is preserved in

some ancient seeds, even better than aDNA in maize kernels

[94], presenting an opportunity to directly test evolutionary

changes in gene expression at a key developmental stage [94].

Comparative genomic approaches and selection scans will

also probably narrow a series of candidate loci that were adap-

tive in a range of environmental conditions. It should also be

stressed that new aDNA reservoirs, such as egg shells [95]

and dental calculus [96,97], are constantly being discovered,

and should greatly benefit from deep-sequencing approaches.
8. Ancient genomes: a user’s manual
(a) DNA damage patterns as authenticity indicators
With the introduction of genomics, new authentication cri-

teria for DNA have emerged, with one of the most essential

being the detection of typical signatures of post-mortem

damage. Using blunt-end ligation of double-stranded tem-

plates, cytosine deamination at 50-overhangs results in

greater C! T misincorporation rates towards sequence

starts [98]. At read ends, this signature is converted into a

complementary increase in G! A misincorporation rates.

This typical post-mortem damage signature is modified

depending on the molecular tools used during library build-

ing and amplification. AT-overhang ligation, for instance,

was shown to introduce significant biases in the sequence

composition of library inserts, which discriminates against

templates starting with thymine residues [99] and, conse-

quently, deaminated cytosines (molecular analogues of

thymines). This not only reduces the molecular complexity
of DNA libraries, but also transforms the expected nucleotide

misincorporation pattern, which peaks at the second position

from sequencing termini. Likewise, DNA polymerases of the

Pfu family, such as Phusion, cannot bypass uracil residues

[22]. As a result, no increase in C! T misincorporation

rates are detected at sequence starts [31], except at methylated

CpGs [29].

Procedures based on single-stranded templates also show a

different nucleotide misincorporation profile. With Helicos

tSMS, a sequence reverse complementary to the original tem-

plate strand is generated by extension from the blocking site

(figure 1a). Cytosine deamination at 30-overhangs of the tem-

plate strand will, therefore, increase G! A instead of C! T

misincorporation rates [77,78]. With single-strand Illumina

DNA libraries [51,83], whenever inserts are paired-end

sequenced or sequenced over their full length, the expected mis-

incorporation pattern corresponds to an increase of C! T rates

at both sequence starts and sequence ends (figure 1b).

One type of DNA damage pattern, where the genomic posi-

tion located upstream of sequence starts is enriched in purines

[98], appears to be common to all library building protocols.

This probably reflects a mostly depurination-driven post-

mortem DNA fragmentation process. Preferential loss of ade-

nine over guanine residues has been observed for aDNA

extracts younger than a century [100], but guanine residues

are preferentially lost for much older material, suggesting

two temporally independent depurination dynamics at ade-

nine and guanine residues. The resonance structure present

within guanine residues and reducing the activation energy

required to break the bond with the deoxyribose might influ-

ence these dynamics [101].

Restricting analyses to the population of sequences exhi-

biting typical damage patterns has been shown to enable

genuine data recovery, even in the presence of significant

levels of contamination [39,52,102]. Nucleotide misincorpora-

tion and DNA fragmentation patterns can be detected using

ad hoc programs such as the MAPDAMAGE software [103,104],

and post-mortem degradation parameters can be quantified

from read alignments against reference genomes [103,104].

In light of the versatility of the signatures described above,

we recommend that the same molecular methods should be

used when comparing DNA damage parameters across a

range of samples.
(b) Limiting the impact of post-mortem DNA damage
Fitting a DNA damage model to the data can also be used to

limit the impact of C! T and G! A misincorporations in

downstream analyses. In particular, the confidence placed on

any nucleotidic base along a sequence can be downscaled

post-mapping according to the probability of the base being

affected by post-mortem damage [104]. This approach was

shown to reduce the false positive rate of SNP calls on the

Saqqaq data [104]. Ideally, the damage model should be

applied during the mapping step itself, in order to improve

read alignment accuracy and sensitivity, as currently

implemented in the programs MIA [105], ANFO [47] and

sesam [22], but usage of these softwares has been limited

mostly owing to long-running times (MIA) and the inability

to handle indels (sesam).

For now, the most common strategy for limiting the

impact of misincorporations in downstream analyses has

consisted in a first authentication of the data based on a
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small subset of sequences followed by a second production

phase using nucleotide misincorporation-free libraries

[47,106–108]. This is done by treating the aDNA extract with

a cocktail of two enzymes, where the uracil-DNA glycosylase

targets deaminated cytosines and generates abasic sites,

which represent the targets for the EndoVIII endonuclease

[29]. As a result, shorter DNA templates cleaved at damaged

sites are ligated to adapters and incorporated into libraries.

This strategy, in addition to high depth-of-coverage and

paired-end sequencing where almost every single base position

of the insert is read twice, has been essential for generating the

high-quality Denisovan genome sequence [51].
(c) Increasing the relative amount of target DNA I:
ancient DNA extraction

While standard silica-based extraction procedures [108]

are biased towards molecules longer than approximately

40 bp, a recent extraction method has been developed to

target the ultra-short fraction of DNA extracts [82]. Assuming

that DNA fragmentation follows a one-order kinetics, the

amount of aDNA available decreases exponentially with frag-

ment size [76,109]. By targeting short DNA fragments, the new

extraction method should thus drastically increase the amount

of aDNA material in extracts, thereby increasing the molecular

complexity of DNA libraries. This method is an important

advance towards the sequencing of significantly older DNA

templates, as well as DNA from environments offering poor

preservation conditions. Methods have been devised for the

preferential extraction of DNA from molecular preservation

niches that can be found within fossils. Such niches have

been proposed to correspond to crystal aggregates present in

the most interior parts of bones where endogenous DNA is

protected from hydrolysis and microbial invasion [110]. One
promising method has shown great success with permafrost

preserved bone material, such as mammoth [111] and horses

[77,78,112]. This method involves a first partial digestion of

the bone powder, before undigested bone pellets are recovered

and digested a second time in a fresh buffer. Pairwise tests have

shown higher endogenous contents in the extract prepared

from the second digest, as well as lower levels of cytosine dea-

mination [77,78,112] and fragmentation [78]. If confirmed by

additional tests on a range of ancient samples, targeting such

molecular preservation niches could significantly reduce the

costs related to ancient genome sequencing.
(d) Increasing the relative amount of target DNA II:
ancient DNA library construction and amplification

Apart from library construction methods [99], the type of DNA

polymerase used also significantly impacts the complexity of

amplified DNA libraries [113]. Standard polymerases for

aDNA research, such as Taq Gold, significantly skew the size

distribution and base composition of the pool of molecules

amplified towards short and GC-rich templates, which limits

the ability to sequence the entire molecular diversity originally

present in the DNA library. DNA polymerases can also be

blocked during library amplification owing to the presence of

atypical bases in aDNA templates [114], which can in turn pro-

vide an advantage to non-modified modern contaminants. The

exact amount of such blocking DNA lesions is still largely

unknown but would represent 10–40% of library templates

according to a recent estimate using a limited number of

fossil specimens from permafrost and temperate caves [114].

Devising methods for repairing such templates and/or captur-

ing preferentially damaged templates [53] could further

improve accessibility to aDNA molecules. DNA polymerases

capable of bypassing damage lesions in DNA molecules have
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been engineered and shown to significantly increase amplifica-

tion success from Pleistocene specimens, but their efficiency

has not been investigated yet with next generation sequencing

approaches [115].

(e) Increasing the relative amount of target DNA III:
ancient DNA enrichment

The fact that most aDNA extracts show a minority of

endogenous templates (figure 2) has led to the development

of enrichment approaches aimed at reducing sequencing

costs and improving the sequence quality of the targeted

loci. Primer extension capture was the first of such methods

and succeeded in recovering full mitochondrial sequence

information from five Neandertal specimens [116] and from

an approximately 30 kyr old modern human [117]. It was

later superseded by other in-solution enrichment methods

relying on biotinylated baits, either designed from known

sequences and manufactured commercially [118], or prepared

from modern DNA extracts [119]. These baits are sub-

sequently used to target complementary library inserts.

Both methods have shown great success in various aDNA

contexts, often delivering complete mitochondrial genome

sequences with high depth of coverage [42,72,117,119–123]

and even pre-selected regions from the Mycobacterium
tuberculosis genome [124]. The method has also been found

to be relatively robust to the evolutionary distance separating

probes and targets, yielding to significant enrichment despite
10–13% of sequence divergence [125]. Microarray-based

hybridization capture has also performed well in enriching

Neandertal DNA libraries [32] containing very low endoge-

nous DNA content, and delivering the full bacterial genome

of the causative agent of the mediaeval Black Death epide-

mic [106,126] as well as of historical leprosy strains [127].

One drawback of such approaches is that microarrays are

designed from modern reference genomes. As a consequence,

untargeted plasmids and/or loci potentially present in the

historical strains and/or chromosomal rearrangements

specific to the historical strain could remain undetected.

This problem can be solved by using de novo genome assem-

bly in cases where samples with exceptionally high pathogen

DNA contents are available, such as for one of the three

ancient leprosy samples that were genome sequenced [127].

Other types of enrichment approaches have been developed

to target full human chromosomes [38], and even complete gen-

omes [128,129], which performed well on poorly preserved

DNA material. One such approach converts custom-designed

microarray probes into an immortalized and amplifiable bioti-

nylated library of baits that can be used for pulling-down

orthologue inserts from aDNA libraries. This strategy enabled

Fu et al. [38] to reconstruct all non-repetitive sequences of

chromosome 21 in a 40 kyr old anatomically modern human

from Tianyuan cave, China, from a set of immortalized baits

recovered from nine microarrays and corresponding to 8.7

million probes across 30 Mb of the chromosome. A second

approach achieves full genome enrichment in solution with
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no prior need for microarray purchase, therefore cutting down

on prohibitive microarray costs [128,129]. Here, modern DNA

from a given organism is first built into a DNA library down-

stream of RNA polymerase T7-promoters so that genome-

wide biotinylated RNA baits can be transcribed in vitro. Baits

are then used to pull down orthologue inserts from regular

aDNA libraries, followed by several washing steps to rid the

library of exogenous DNA library inserts. This method has

shown twofold to 13-fold enrichment in human DNA content,

which provided enough SNP information for population

assignment with minimal sequencing effort. Up to 19-fold

enrichment was obtained on mammoth aDNA extracts, thus

demonstrating that this approach can be applied on extinct

species, even in absence of reference genomes [129]. Sequencing

of genome-wide captured libraries is cost-effective, and thereby

well suited for the analysis of large numbers of samples, which

promises to move forward the field towards population geno-

mics. aDNA whole genome enrichment and the development

of capture methods targeting damaged DNA molecules will

probably facilitate the characterization of Middle Pleistocene

genomes in the near future.
7

9. What next?
Looking back 5 years, no one could have predicted the current

state of ancient genomics. New sequencing technologies

requiring no heavy infrastructure are being developed with

the promise of delivering gigabases of sequence information

at small cost. We can anticipate that ancient genomics will

move on to the scale of population studies, with probable

research areas in the reconstruction of human dispersal

routes and demographic processes, such as the ones associated
with the Neolithic transition in Europe. In addition, we expect

that palaeogenomics will soon help better understand the ori-

gins, evolution and pathogenicity of the bacterial and viral

agents responsible for major historical pandemics in human

history. Ancient genomics will also probably illuminate the

domestication process by revealing the genes that have been

artificially selected to transform wild animal and plant species

into the variety of domesticated forms that we know today.

Additionally, high-quality ancient genomes of megafaunal

species together with genome-wide SNP surveys will docu-

ment past demographic trajectories at unprecedented levels

[130]. This type of approach will complete our current under-

standing of how species responded to major climatic changes

in the past [80], a key to conservation genomics in the face of cur-

rent global warming. Moreover, the accumulation of aDNA data

will probably provide additional information on post-mortem

DNA base modifications, which will be essential for under-

standing and correcting ancient genomic datasets, and also for

reconstructing ancient methylation marks. Finally, we predict

advances in the recovery of functional information from ancient

specimens through proteomics [131], which has already

delivered partial proteomes from extinct mammalian species

[33,72], and through ancient epigenetic marks and nucleosome

maps [28]. There is little doubt that, together, these prospects

will catalyse yet another revolution in aDNA research.
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Derevianko A, Pääbo S. 2010 A complete mtDNA
genome of an early modern human from Kostenki,
Russia. Curr. Biol. 20, 231 – 236. (doi:10.1016/j.cub.
2009.11.068)

118. Avila-Arcos MC et al. 2011 Application and
comparison of large-scale solution-based DNA
capture-enrichment methods on ancient DNA. Sci.
Rep. 1, 74. (doi:10.1038/srep00074)

119. Maricic T, Whitten M, Pääbo S. 2010 Multiplexed
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