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Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum.Very little
is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available.
We have successfully generated bona fide induced pluripotent stem cell (iPSC) lines of SCA2 patients in order to
study a disease-specific phenotype. Here, we demonstrate the gene correction of the iPSC line H266 clone 10
where we have exchanged the expanded CAG repeat of the ATXN2 genewith the normal length found in healthy
alleles. This gene corrected cell line will provide the ideal control to model SCA2 by iPSC technology.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Name of stem cell construct
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 Adele G. Marthaler, Alisa Tubsuwan
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 May 2015
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 Human induced pluripotent stem cell line
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patient with spinocerebellar ataxia type 2
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 Episomal plasmids containing hOCT4, hSOX2,

hL-MYC, hKLF4, hLIN28, and shP53 (Addgene
plasmids 27077, 27078 and 27080;
Okita et al., 2011)
uthentication
 Identity and purity of stem cell line
confirmed (Fig. 1)
nk to related literature (direct
URL links and full references)

formation in public databases
In
nd Veterinary Animal Science,
sberg C, Denmark

pen access article under the CC BY-N
2. Resource details

An induced pluripotent stem cell (iPSC) line had been generated from
human skin fibroblasts of a female, symptomatic 25-year-old
spinocerebellar type 2 (SCA2) patient (anonymized as H266) using epi-
somal vectors carrying transcripts for human OCT4, SOX2, KLF4, L-MYC,
LIN28, and small hairpin RNA for TP53 (Okita et al., 2011). This cell line,
H266 clone (c) 10, has been described as a bona fide iPSC line with a nor-
mal karyotype (Marthaler et al., 2013-in this issue).

We have generated a gene-corrected clone of H266 c10 using the
CRISPRs/Cas9 system (Ran et al., 2013), where the expanded 44 CAG
region in the ATXN2 gene has been replaced with a wildtype 22 CAG
repeat (Fig. 1A). Successful exchange was validated by sequencing
(Fig. 1B). We have furthermore confirmed that the DNA sequence
stayed intact and no frameshift or other mutation had been introduced
into the gene edited site, by analyzing the region around the CRISPR
cutting site (nucleotides 121–143 in Fig. 1A).

Subsequently, we confirmed that the gene corrected clone of H266
c10, termed H266 c10 GC, remained truly pluripotent. This was demon-
strated by expression of key pluripotency markers on RNA, as well as
protein level (Fig. 1 C and D). Additionally, H266 c10 GC retained the
potential to differentiate into cell types of the three germ layers upon
embryoid body formation (Fig. 1E). More importantly, no genetic chro-
mosomal aberrations were introduced by the gene editing process and
the cells still exhibit a normal karyotype (Fig. 1F).

In summary, we have generated an isogenic, gene-corrected iPSC
line of an existing SCA2 iPSC line. Together with two more SCA2
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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patient-derived iPSC lines and their corresponding isogenic, gene-
corrected controls (Marthaler et al., submitted to Stem Cell Research),
they will serve as an ideal study tool for in vitro disease modeling of
SCA2.

3. Materials and Methods

3.1. CRISPR design

Isogenic gene-corrected controls were obtained using the
CRISPRs/Cas9 system in combination with a homologous construct
in the pEasy Flox II vector. CRISPRs targeting each site of the CAG
repeat of the ATXN2 locus were designed at http://crispr.mit.edu/.
The CRISPRs were generated following the protocol from Ran et al.
(2013) in a single plasmid containing both sgRNA and the Cas9
(Addgene plasmid ID 48139).

3.2. Nucleofection

iPSCs growing on dishes coated with matrigel (Corning
Bioscience) in E8 medium (Gibco) were detached using Accutase
(Gibco). 106 cells were co-nucleofected with 2 μg of each CRISPR/
Cas9 plasmid and 1 μg of the resistance marker using the Amaxa 4D
Nucleofector (program CA167) and P3 Primary Cell Kit according to
the manufacturer's instructions (Lonza). iPSCs were subsequently
transferred back to a matrigel-coated dish in E8 medium
supplemented with 1 mM ROCK inhibitor (Sigma). 24 h post-
nucleofection, cells were subjected to neomycin selection and
allowed to recover for a week. Resistant colonies were then picked
and expanded for genotyping.

3.3. Genotyping

DNA for genotyping was extracted using the FlexiGene Kit
(Qiagen). PCR genotyping was performed using TEMPase Hot Start
DNA Polymerase (Ampliqon) according to the manufacturer's
instructions at an annealing temperature of 58 °C. The following
primers were designed 300 base pairs up- and downstream of the
CRISPR cutting site to ensure detection of insertion at homologous
site: SCA2 long1 forward 5′-CAGACCCGCCTTGAGGAAG-3′ and SCA2
long1 reverse 5′-GAGGAGACCGAGGACGAGG-3′. Clones where the
expanded SCA2 allele was successfully replaced with the ATXN2
wildtype construct were subjected to sequencing to exclude
introduction of frameshifts or other mutations.

3.4. Sequencing

Sanger sequencing of a 300 base pair region around the CAG repeat
region of the ATXN2 gene was carried out in an ABI PRISM 310 Genetic
Analyzer using the primers SCA2 seq2 forward 5′-CTTGGTCTCGGCGG
GC-3′ and SCA2 seq2 reverse 5′-GAGGAGACCGAGGACGAGG-3′.

3.5. RNA extraction, cDNA synthesis, and quantitative real-time PCR (qRT-PCR)

RNA was extracted using RNeasy Mini (QIAGEN) and cDNA
synthesis was performed using Revert Aid First Strand cDNA synthesis
kit (Thermo Scientific) according to the manufacturers' protocols.
qRT-PCR was carried out using LightCycler 480 SYBR Green I Master
Fig. 1. The gene-corrected H266 c10 GC is a bona fide iPSC line with a normal karyotype. (A
(B) Simultaneous sequencing of both ATXN2 alleles showing 22 CAGs, highlighted in blue. The
TRA1-60, and SSEA4 immunofluorescence images of H266 c10 GC, counterstained with Hoech
Data were plotted relative to H1 human ESCs. Fibroblasts served as a negative control. Erro
housekeeping genes, ACTB, RPL37a, HSP90AB1, and GAPDH. (E) Immunocytochemistry fo
(mesoderm), and AFP (endoderm), after in vitro differentiation of H266 c10 GC by embryoid
normal 46, XX karyotype.
(Roche). Data was plotted using the delta delta Ct algorithm, 2(−ΔΔCt).
The following primers were used:
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5′-CCCCAGGGCCCCATTTTGGTACC-3′

CT4 rev
 5′-ACCTCAGTTTGAATGCATGGGAGAGC-3′

X2 for
 5′-TTCACATGTCCAGCACTACCAGA-3′

X2 rev
 5′-TCACATGTGTGAGAGGGGCAGTGTGC-3′

ANOG for
 5′-AAAGAATCTTCACCTATGCC-3′

ANOG rev
 5′-GAAGGAAGAGGAGAGACAGT-3′

EX1 for
 5′-TTTCTGAGTACGTGCCCAGGCAA-3′

EX1 rev
 5′-CTCTGAGAAAGCATCTCTCCTTC-3′

N28 for
 5′-AGCCATATGGTAGCCTCATGTCCGC-3′

N28 rev
 5′-TCAATTCTGTGCCTCCGGGAGCAGGGTAGG-3′

CTB for
 5′-TCAAGATCATTGCTCCTCCTGAG-3′

CTB rev
 5′-ACATCTGCTGGAAGGTGGACA-3′

PL13A for
 5′-TTCCAAGCGGCTGCCGAAGA-3′

PL13A rev
 5′-TTCCGGCCCAGCAGTACCTGT-3′

SP90AB1 for
 5′-TCCGGCGCAGTGTTGGGAC-3′

SP90AB1 rev
 5′-TCCATGGTGCACTTCCTCAGGC-3′

APDH for
 5′-CTGGTAAAGTGGATATTGTTGCCAT-3′

APDH rev
 5′-TGGAATCATATTGGAACATGTAAACC-3′.
G
3.6. Immunocytochemistry

Immunocytochemistry was performed as previously described
(Marthaler et al., 2013). The following primary antibodies were used:
Anti-OCT4 (Santa Cruz, sc 8628); anti-NANOG (Peprotech, 500P236);
anti-TRA1-60 (BioLegend, 330602); anti-SSEA4 (BioLegend, 330402);
anti-TUBB3 (Millipore, MAB1637); anti-SMA (Dako, M0851), anti-AFP
(Dako, A0008); all 1:500. Secondary antibodies used were: Alexa Fluor
488 donkey anti-rabbit (A21206), donkey anti-goat (A11055), and
goat anti-mouse (A11017), all 1:2000 (Invitrogen).
3.7. Embryoid body differentiation

iPSCs growing in E8 medium (Gibco) on matrigel (Corning
Bioscience) were dissociated with EDTA (Gibco) and allowed to form
aggregates in none-coated cell culture dishes. On day 3, aggregates
were transferred to matrigel-coated dishes and medium was switched
to differentiationmedium:DMEM/F12 containing 20% FBS, L-glutamine,
and non-essential amino acids (all Gibco) for meso- and endoderm
induction, or DMEM/F12 containing 50% neurobasal medium, B27, N2,
and L-glutamine (all Gibco) for ectoderm induction. Cells were fixed
for immunocytochemistry on day 14.
3.8. Verification and authentication

An intact genome was demonstrated by karyotyping using
G-banding (Fig. 1F). Analysis was performed at the Institute of Medical
Genetics and Applied Genomics, University of Tübingen, Tübingen,
Germany.
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