How important are local inventive milieus

Ejermo, Olof; Hansen, Høgni Kalsø

Published in:
Geoforum

DOI:

Publication date:
2015

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
How important are local inventive milieus: The role of birthplace, high school and university education

Olof Ejermo a, Høgni Kalsø Hansen b,*

a CIRCLE, Lund University, Sweden
b Department of Geosciences and Natural Resource Management, Geography Section, University of Copenhagen, Denmark

ARTICLE INFO

Article history:
Received 1 February 2014
Received in revised form 1 December 2014
Available online 23 December 2014

Keywords:
Inventor
Time–space
Regional unevenness
Context
Local milieu
Education

ABSTRACT

Using data on the entire population in combination with data on almost all individuals in Sweden listed as inventors, we study how the probability of being listed on a patent as inventor is influenced by the density of other future inventors residing in the same region. In this process, we control for demographic and sector effects along with the educational characteristics of parents. This approach allows us to trace how location history influences individuals’ inventive capacity. We focus on three types of influences: (a) future inventors in the municipality around the time of birth, (b) future inventors around the time of graduation from high school and (c) future inventors at graduation from higher education. We find suggestive evidence that co-locating with future inventors may impact the probability of becoming an inventor. The most consistent effect is found for place of higher education; some positive effects are also evident from birthplace, whereas no consistent positive effect can be derived from individuals’ high school location. Therefore, the formative influences mainly deriving from family upbringing, birth region and from local milieu effects arising from a conscious choice to attend a higher education affect the choice of becoming an inventor.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

To what extent do local milieus influence individuals’ abilities to become an inventor? Marshall (1920) famously observed that closely related industries tended to locate in the same district, and he noted several advantages as being critical to their success. One advantage was that knowledge was as if in the ‘air’. The question raised in this paper is whether different ‘airs’ or socio-cultural relations are ‘contagious’ in the sense that they have a positive impact on an individual’s probability of becoming an inventor. We study this by measuring the volume and density of co-located inventors at various stages and estimate whether such socio-cultural imprints are lasting. Moreover, we investigate their relative strength during upbringing and later on through education.

Existing literature on the role of place for inventive activity looks mainly at regional characteristics at the time when the creative act takes place, leaving the background of individuals largely unaccounted for. Even when historical perspectives are brought into the analysis, the region usually receives attention as opposed to the individuals’ backgrounds, i.e. if they migrated from one location to another along with other information on background. Hence, rather than writing another ‘history of locations of inventive ideas’ in this study, we examine ‘the location history of inventors’ and focus on an individual’s probability of becoming an inventor by studying the eventual impact from the level and density of other nearby future inventors over time. We use the entire population born in 1955–1977 which can be observed in 2007 and study how the probability of being listed on a patent as inventor is influenced by the density of other future inventors residing in the same region.

We focus on three such densities: (a) future inventors in the municipality around the time of birth, (b) future inventors around the time of graduation from high school and (c) future inventors at graduation from higher education. We have two objectives. First, we want to get a qualitative understanding of whether certain birth and educational milieus matter more as experiences are accumulated over time. Second, we want to estimate whether exposure to other inventors has a relative impact on the probability of individuals becoming inventors. For this purpose, we employ probit regressions to estimate the extent to which each density impacts on the probability of becoming an inventor.

Our main finding is that a local milieu with a high density of future inventors at an individual’s birthplace or at the place of

http://dx.doi.org/10.1016/j.geoforum.2014.12.002
0016-7185/© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
higher education indeed has a significant positive effect on the probability that this individual becomes an inventor. However, effects from high school are less consistent with such an interpretation. This suggests that the local inventive milieu within a birth region and/or during higher education is the most promising candidates for future study of the relation between geography and inventiveness.

The paper is structured as follows. In Section ‘Literature review’, we review the literature examining the location of inventive and innovative activity. In Section ‘Data and research design’, we describe the data and method used to examine the inventors and describe the distribution of future inventors found at different locations. In Section ‘Empirical analysis’, a descriptive analysis of the distribution of future inventors is made followed by a regression model investigating the effects of birthplace, high school and university on future inventors. Section ‘Interpretation of findings and conclusions’ concludes.

Literature review

An abundant selection of literature examines the location of activities related to knowledge creation at the time of its occurrence. Economic geographers and other scholars with interest in regional studies have a long tradition of explaining innovative activity and regional economic development partly as an outcome of socio-cultural variables. The learning region debate in the 1990s (Asheim, 1996; Maskell and Malmberg, 1999; Morgan, 1997) stresses this relation by arguing that on the local level, embedded institutions and both strong as well as weak relations between economic actors can shape a strong innovative environment. Such environments can turn out to be stable over time and provide long periods with continuously innovative activities that help regions stay competitive. These regions can be based on high-tech and research, e.g. Silicon Valley and Grenoble region, or more low-tech production like furniture production in northern Jutland in Denmark. Compared to the local institutional setup the level of technological input is not necessarily decisive in explaining whether an environment turns out to be an innovative and competitive milieu. However, the local institutional setup does not do the job alone; global ‘pipelines’ are also essential to access and exchange knowledge generated in the greater surroundings (Bathelt et al., 2004).

Shefer and Frenkel (1998) state that innovative milieus should be defined by the rate of innovation in a specific locality in combination with the degree of socio-economic interaction among firms closely located. This is basically what this paper aims to sketch out using register based data on an individual level: The probability of becoming an inventor if you are brought up or educated in a specific milieu.

The innovative milieu concept partly has its origin in the GREMI (the European Research Group into Innovative Milieus) research program, which was underpinned by analyses of factors that made some regions or locations more dynamic than others with respect to innovation. According to Crevoisier (2004), innovative milieus are “a synthetic analytical tool for analysing and understanding current economic change” (p. 369) and consist of three important axes: technological dynamics, change in territories and organizational change. The argument put forward by Crevoisier (2004) is that over time, a milieu stays innovative by “mobilizing the resources constituted by the past that are then adapted to new techniques and markets and are incorporated within new products” (p. 373). Accordingly, to understand innovation, and thus also inventiveness, time and space relations become essential. Also, time–space geography takes into account that creative people, at least partly, are formed by their experiences in the past, and this opens for an attempt to analyse the relation between the past and the present. According to Törnqvist (2011), a majority of Nobel Prize winners in economics and physics have attended Princeton University, Harvard University and University of Chicago at some point in their careers either as students, visiting researcher or in more permanent positions. Based hereon, Törnqvist argues that some places – or milieus provide more creative or stimulating settings than others. This is an excellent example of the hypothesis that some institutions and organisations that materialise in place have a more dominant role in generating knowledge, creative thinking, etc., compared to others. This view on connecting time, space and human activity demonstrates that prior experiences may give valuable insights to understanding individuals’ present creativity. Thus, in the light of the theoretical and empirical work developed within time–space geography, we argue that milieus such as place of birth (childhood), high schools and universities may provide valuable insights to explaining creative and thus inventive behaviour of individual human beings.

Other literature examines to what extent innovation is concentrated in certain regions and to what extent research and development (R&D) as well as education facilities can be linked to inventive outcomes, such as patents (Ejermo and Gråsjö, 2011; Jaffe, 1989). This literature invariably finds that, irrespective of which traditional innovation indicator is used (Acemoglu et al., 2002), innovative activity is geographically concentrated, even after controlling for population size (Ejermo, 2009). Supplementary literature has examined whether knowledge spillovers, typically using patent citations as a proxy, are bounded by geographical space. Jaffe et al. (1993) found strong evidence for geographical boundedness while later contributions moderated the spillover interpretation but improved the understanding of what mechanisms could explain these patterns. These studies focused on labour mobility (Almeida and Kogut, 1999; Moen, 2005; Zucker et al., 1998) and social networks (Singh, 2005). The social networks literature suggests that geography matters for spillovers when inventors are not bound together by prior social links (Agrawal et al., 2006).

However, to some extent social networks can also substitute geographical interaction and thus become important for the distribution of knowledge.

This is also one of the major points stressed by Saxenian’s (1994) famous study on the IT industry. She argues that some of the more successful examples of knowledge circulation across regions can be linked to the mobility of creative, innovative and entrepreneurial individuals and are largely dependent on the social relations in which these individuals engage. This suggests that entrepreneurial or inventive behaviour may be a part of the socio-cultural setting that is inherited through the experiences obtained in one region and then transferred through individual mobility to other regions.

Entrepreneurship studies address the location of creative acts through the study of new firms. This literature highlights other aspects than those obtained by innovation indicators. While new firms are undoubtedly concentrated, similar to innovations, they are not always found in urban centres. For instance, based on studies from the small Gnosjö region, Sweden, Johansson (1986) argues that some regions have a socio-cultural milieu that facilitates entrepreneurship in a way not found in surrounding regions. This demonstrates that the contextual setting of a place can be of great importance for the regions’ ability to prosper and also for how individuals act. By the same token, Vogelius and Sørensen (1987) study uneven geographies of entrepreneurship and labour culture in Denmark, revealing that areas dominated by large enterprises tend to develop a worker-based culture that lacks entrepreneurial spirit. In contrast regions based on small firms and agriculture tend to have a larger proportion of people willing to engage in entrepreneurial activities such as own start-ups.
In the same line of thinking, Fritsch and Wyrwich (2012) find that regions characterised by a high level of new firm formation in 1925 were also entrepreneurial in 2005, despite the interruption of World War II and shifts between capitalist and communist regimes in Eastern Germany. Thus according to Fritsch and Wyrwich, socio-cultural institutions and traits towards entrepreneurial activity are so strongly embedded in the socio-cultural milieu of certain regions that it can survive beyond formal institutions provided by society. This focus on the local institutional setting stresses the path dependent nature of economic development; i.e. whether it results in a positive or less positive reproduction of place specific characteristics such as socio-cultural milieus that influence the learning process and the ability to develop and utilise accumulated knowledge as highlighted by Markussen (1996), Storper (1997) and Gertler (2004). Thus, local milieus may stimulate knowledge creation, whether through invention, innovative activity or entrepreneurship, and can be expected to influence individuals’ behaviour, consciously or not.

Well aware that it is a very difficult task to measure local milieu’s effects on regional inventiveness, this study suggests that the number and density of future inventors in space and across time can be used as a proxy for the inventive milieu of a certain place. Therefore, and based on the above theoretical discussion, this paper sets out to study whether local inventive milieus, understood as the level and density of inventors present in the region of birth, at high school and at higher education, affect the likelihood of an individual becoming an inventor in the future.

Data and research design

This study uses Swedish municipalities as the units under which we gauge the local milieu effects from other inventors around the time of birth, high school and higher education. There are 290 municipalities in Sweden with only slight changes the last 40 years. However, coding changes prior to this required us to standardise municipality codes from old systems, where tables of old municipality coding systems were manually coded and converted into the present system. About 99% of the birth locations of Swedish-born could be delineated through this new system. It would have been possible to employ e.g. functional regions including several municipalities based on travel to work patterns. We argue, however, that since this study focuses on upbringing milieu, high school and university, the municipality level is the right unit for this type of analysis since, differently from adults that frequently commute across municipal borders, the strongest socio-cultural effects arguably incur to young people in the same municipality where they are born or educated. For instance, when considering effects from upbringing, the affected individuals are yet to become inventors and are less likely to draw inspiration from individuals in nearby municipalities.

Time trends and associated trends in location of inventive activity may disturb the study of regional influences on individuals’ careers towards becoming an inventor. For instance, Ejermo and Kander (2011) documented a rise in patent activity for Sweden over the period 1985–1998, and Ejermo and Andersson (2013) show that this trend continues, also after considering that R&D has risen over time. These trends in patenting are linked to both institutional changes related to intellectual property (Sanyal and Jaffe, 2005) and firm strategies. For instance, it is well documented that patents are used as bargaining chips in negotiations between major ICT firms (The Economist, 2005). With respect to inventive activity over space, Ejermo (2009) shows that inventive activity has tended to become geographically more concentrated towards the larger metropolitan regions Stockholm, Gothenburg and Malmo over time, which in turn of course is a function of the patent profiles of different firms and their associated strategies in those regions.

We draw on a rich database of inventors, encompassing 23,000 or 80% of inventors with Swedish addresses listed on European Patent Office applications over the period 1978–2007. Our inventors are linked to directories of the entire Swedish population as observed in 2007, or slightly more than 7 million individuals aged 16 or more.

We select the subset of inventors who patented during 2002–2007 (and possibly also before) who can be observed in 2007. To be able to observe municipal characteristics and average grades (as a proxy for ability) for virtually all individuals, we only include individuals aged 33–52 years at the end of 2007, i.e. those born 1955–1974. This restriction was put because almost all individuals graduate from high school within a few years after their 18th birthday, and we only have information on high school graduation and associated grades under the same unified standard for the period 1973–1996. We also control for age in our regressions because of the high dependence of inventive activity on age. Jung and Ejermo (2014) provide more details about the construction of the database. They show that the average Swedish inventor is in his/her 40s, with female inventors being slightly younger at the time of patenting.

We include all individuals born in Sweden because we want to be able to study the role of the birth region. We exclude individuals employed in the public sector because their inventive opportunities are likely to be constrained by their employer. An important set of control variables use variants based on parents’ education, from both the biological mother and father, which to some extent weeds out family background effects which may otherwise disturb some of the local milieu effects, especially from young age (i.e. birth region). Nevertheless, our analysis does not give rise to a causal interpretation. For instance, it may very well be that individuals select to attend a higher education, a force that coincides with any peer effect. Also, our inclusion of parental education variables does not for instance distinguish or sort out any pre-birth self-selection of parents to reside in a particular region. The ambition of our analyses is therefore mainly to sort and through regressions make a descriptive (but advanced) set of correlation analyses that condition the likelihood to observe that someone is inventive based on place-specific covariates. In order to capture the local milieu effect of inventiveness, we use probit regressions to estimate the probability of becoming an inventor by taking future inventors present in the same municipality into consideration. Thus, we examine the sum of other future inventors located in the same municipality as our focal person around (but not at) the exact same time of birth, high school degree and higher education. The reason for excluding the same year is that we would otherwise enter into a circular causation problem because the share of inventors from a specific region in a specific year is a function of the number of inventors, and therefore, this share drives

1. Certainly, there are inventors that for instance (i) never file patents, (ii) only go through the Swedish patent office (PRV), or (iii) only go through the U.S. patent office (USPTO). Group (i) is for obvious reasons unknown but probably quite small, though there are indications that secrecy or moving down the learning curve are more efficient ways of protecting innovations which are sector-specific, see e.g. Levin et al. (1987). Inventors that only file with (ii) is a small and shrinking group whose inventions most likely are less valuable. Using (iii) would as well capture more valuable inventions in theory, but such inventors are more difficult to identify because their addresses are less clearly specified. Also, inventions that make it to the EPO would in most cases make it to the USPTO, making this distinction less important in practice.

2. We excluded immigrants from the analysis because we suspect that they may respond differently to external effects. See e.g. Agrawal et al. (2008) for a study of Indian inventors’ social networks. Moreover, recent studies of the role of immigrants in invention and entrepreneurship, see e.g. Hunt (2011) for the U.S. and Zheng and Ejermo (2014) for Sweden.
the probability of observing an inventor from that region (see 4.6 in Angrist and Pischke, 2009 for a discussion).

Below, we present the variables that are used in the regression model in more detail. It should be noted that when we speak of e.g. inventor density in the birth municipality (and similarly for high school and higher education variables), it is not the current density of invention at the time of birth, but the density of future inventors that we refer to. For birth variables we thus count individuals that will eventually end up as inventors and happen to be born at almost the same time and same place as the focal inventor. We examine the strength of three types of effects from being geographically proximate to other future inventors. One effect emanates from having many future inventors in the approximate same birth cohort, the second from those that were around at the time of high school and the third from higher education attendees. Attendance at high school is not mandatory in Sweden, but the vast majority of inventors have a high school degree.

Birth variables

With respect to the birth cohort, we considered that both the absolute value of a given number of future inventors or the number of future inventors as a share could impact on the likelihood that an individual becomes an inventor. Although it may seem natural to use a relative measure to control for population size, it is not self-evident that it is a relative share that matters most for a specific individual if selection of these individuals brings them to specific locations. For instance, Stockholm municipality (Sweden's largest in terms of inhabitants) may see a large number of future inventors taking a specific high school exam. A relative share may underestimate their joint importance of local inventive milieu that we try to measure. Ideally, we would therefore like both absolute and relative measures to contribute positively if our theory of a positive local milieu effect on inventive capability is correct.

Our measures capture inventors around the time of birth. Such measures have the advantage of smoothing out high and random year-by-year fluctuation. We construct the following candidate variables:

Inventors around at birth: If the focal individual was born in \(t \), this variable counts the number of inventors born in the same municipality in a five-year interval around this person, i.e. in \(t - 2, t - 1, t + 1, t + 2 \).

Inventors share around time of birth: This variable uses the same basis as the above and divides by population, i.e. it sums the number of inventors born in \(t - 2, t - 1, t + 1, t + 2 \), and divides by the population born \(t - 2, t - 1, t + 1, t + 2 \).

High school variables

Out of 1,276,519 persons in our sample, 886,323 persons (69%) are recorded for a high school degree. Among inventors, almost everyone has a high school degree: 6836 out of 7341 or 93%. High school programs are nowadays almost invariably three years starting at age 16–17 and ending at 18–19 years of age.\footnote{In the past, programs were divided between two-year, practically oriented programs and three-year theoretical programs.} Data include information on specific high school programmes that individuals have attended. Although there is a large variation in terms of the programs that individuals have attended, the 3-year technical program accounts for 51% of the degrees for inventors and the 3-year natural sciences program accounts for an additional 25%. The corresponding share among the whole population (restricted to our age groups and sectors) in our sample is just 13% and 7%.

High school variables are constructed very similarly to birth variables; we either count the number of future inventors graduating or use shares in five-year intervals:

Inventors around high school: This variable counts the number of inventors graduating in a five-year interval around the focal individual’s graduation year.

Inventor share around high school: Takes the share of persons that graduate and later become inventors in a five-year interval around the focal individual.

Higher education (university) variables

Ejermo (2012a) and Jung and Ejermo (2014) have shown that Swedish inventors have high and rising levels of education despite the fact that they tend to get younger. Similarly, high levels of education among inventors have been recorded for other European countries (Giuri et al., 2007; Toivanen and Väänänen, forthcoming) Japan (Nagaoka and Walsh, 2009) and the US (Nagaoka and Walsh, 2009). Toivanen and Väänänen (4) study the causal effect of accessibility to higher education using distance to the closest engineering school as an instrumental variable for the choice of attending those schools, exploiting the start of new education facilities in the 1950s and 1960s. They found that the number of Finnish inventors rose, stimulated by the establishment of education facilities, and therefore led to increased patenting. Therefore, for more than one reason, other inventors taking higher education may potentially be a strong influence on an individual’s choice of pursuing an inventor career.

The following measures are used in the analysis:

Inventors around HE counts all inventors in a five-year interval around the focal person taking any program.

Inventor share around HE measures the number of inventors taking a higher education degree in a municipality in a five-year interval around the focal individual in relation to everyone taking a degree.

Other variables

A number of control variables are included in the regressions. First, we include basic demographic controls. These include a dummy for female, age and age\(^2\). Earlier studies show that most inventors tend to be male (e.g. Frietsch et al., 2009) even though Swedish data suggest that this male dominance is slowly declining (Jung and Ejermo, 2014). Gender thus captures, to some extent, socially inherited effects. Moreover, the fact that the median inventor is in his 40s, motivates the inclusion of age-variables that capture life-cycle effects, well documented in science and to some extent also among inventors (Jung and Ejermo, 2014; Levin and Stephan, 1991). We also include variables measuring whether having children in the family, as well as their numbers, impose trade-offs that negatively affect the possibilities for inventive activity because of tighter time-constraints. It is not certain, however, that having children show a negative sign. First of all, men and women may be affected differently. Men may not see the same time-constraints as women when trying to balance work and personal life. Moreover, having children may also induce individuals to reduce their work time by working harder or more concentrated when in office. Possibly, this effect may be somewhat stronger for men considering they may be the most important bread-winner in the family. A completely opposite effect could, however, be expected if children are indicative of underlying productivity. For these reasons, and in order to potentially control for different effects for men and women, we include four interaction variables based on a dummy for gender multiplied with respectively a dummy for whether the family has at least one child and, alternatively, the
Empirical analysis

In the following, we analyse the geography of inventiveness and its relation to indicators of inventive local milieu, namely place of birth, high school and university. We start with a descriptive analysis of geographical patterns of inventors’ background, summarise the variables used for the regressions and end by employing a probit regression model looking at the effects of surrounding inventors at birthplace, high school and university for future inventors.

Descriptive analysis

Fig. 1 shows the location of birth (left panel) and density (right) of future inventors at time of birth in Sweden’s present 290 municipalities. The top 10 municipalities sorted by birth municipality of inventors are given in Table 1 in terms of both absolute numbers and density. Note that the table and the maps include all inventors without restriction on age or sector. Not surprisingly, the highest number of inventors at time of birth is found in Stockholm municipality, followed by Gothenburg, Malmö and Uppsala (ranked 1, 2, 3 and 4 in population size). Then follows Lund (ranked 14 by population size) which hosts the largest university in Sweden. This suggests that local characteristics are indeed important. Looking at density, only one of the municipalities among the top 10 in absolute numbers, Lund, is also on the high-density list. The data show that a person born in a top 10 density municipality has 2–3 times higher chances of becoming an inventor on average compared to a person born in any other municipality. Four municipalities can be characterised as within-commuting distance to Malmö (Lund, Burlöv, Staffanstorp and Lomma). Two are in the Stockholm region (Täby, Solna) and only one (Vårgräda) is in the vicinity (65 km) from Gothenburg. Vårgräda is a small municipality but some well-known inventors were born there. Also on the list are Gnosjö and Gislaved located in the famous Gnosjö region, well-known for its high level of entrepreneurship. These examples suggest that inventive cultures, possibly with both entrepreneurial and/or academic traits, may be formative for the career paths of Swedish inventors.

Examining high school locations, in terms of absolute values we find that major cities again appear on top (Fig. 2 and Table 2). Again, Lund ranks higher than what can be explained only by its population size, as it is also ranked number three in terms of density. Arjeplog, Norberg and Storford are very small municipalities (less than 6000 inhabitants each), thus their high rankings may partially be due to a larger variability among smaller municipalities.

Turning to the location of higher education (Fig. 3), the concentration of inventors’ education locations is very pronounced, mainly towards the larger metropolitan regions. Inventors most often graduate from Lund, the Royal Institute of Technology in Stockholm, Chalmers University in Gothenburg and the universities in Uppsala or Linköping.

We thus find that the largest regions in Sweden are also the regions that host most inventors. Relating absolute values to the number of inhabitants, high school and especially university graduates results in a more concentrated pattern than for birth region. A few municipalities stand out as places that give birth to a disproportionally large part of future inventors by providing them with the socio-cultural fabric which is believed to influence their probability of becoming an inventor in the future.

Descriptive statistics for all variables used in the regression analyses are presented in Table 3 (the sample used is the same as in Model 5). The following facts can be noted:

- About 1% of the individuals listed in the sample were inventors in 2002–2007.
- The share of females is low, 34%, because of the exclusion of public sector employees.
- Half of the individuals in the sample live in one of the ‘metro’ regions.
- The share of highly educated is about one quarter on average, with technical science education being the most common.
- On average, about 10% of parents have short higher education; a similar share with long higher education.
- Fathers have technical educations much more frequently than mothers. This share (29%) is much smaller for the parent generation than for the generation in the sample.

Regression analysis

With the descriptive results in mind, we turn to a regression analysis investigating the effect of respectively birthplace, high school and university as proxies for different inventive local milieus. All regressions using shares are shown in Table 3, whereas absolute value results are only reported. We do not report coefficients for sector variables, nor demographic variables (gender and child variables and interaction variables created from these) to save space. The first column (model 1) shows the regression with merely control variables. Age has no significant effect because our examined data consist of people in their most patent-productive age. Females are found to be less likely to invent which is consistent with many earlier studies and our expectations. It can be noted that this tendency remains after controlling for an individual’s education, which means that it is not only the result of e.g. less technical education attainment among women. Concerning the role of having children, the dummy turns out to be positive for both men and women. This contradicts the idea that children necessarily entail a lower work productivity, and instead it suggests that having children might reflect higher productivity. However the number of children is not significantly different from zero. Since the coefficient is more positive for men, it suggests that some trade-off effect with regards to time-constraints may still be present, though the net effect is positive. However, it gives rise to a less positive probability effect for women. Residing in one of the larger
Fig. 1. Counts of inventors and density of future inventors in birth municipalities.

Table 1
Top 10 inventor municipalities in absolute numbers and by future inventor density at birth.

<table>
<thead>
<tr>
<th>Rank #</th>
<th>Municipality</th>
<th># Inventors born (%)</th>
<th>Density</th>
<th>Inventors/1000 persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stockholm</td>
<td>1870 (10%)</td>
<td>Municipality</td>
<td>Burloëv</td>
</tr>
<tr>
<td>2</td>
<td>Gothenburg</td>
<td>1170 (6%)</td>
<td></td>
<td>Gnosjö</td>
</tr>
<tr>
<td>3</td>
<td>Malmö</td>
<td>580 (3%)</td>
<td></td>
<td>Täby</td>
</tr>
<tr>
<td>4</td>
<td>Uppsala</td>
<td>406 (2%)</td>
<td></td>
<td>Lund</td>
</tr>
<tr>
<td>5</td>
<td>Lund</td>
<td>297 (2%)</td>
<td></td>
<td>Solna</td>
</tr>
<tr>
<td>6</td>
<td>Solna</td>
<td>289 (2%)</td>
<td></td>
<td>Värgårda</td>
</tr>
<tr>
<td>7</td>
<td>Jönköping</td>
<td>265 (1%)</td>
<td></td>
<td>Staffanstorp</td>
</tr>
<tr>
<td>8</td>
<td>Västerås</td>
<td>250 (1%)</td>
<td></td>
<td>Laxå</td>
</tr>
<tr>
<td>9</td>
<td>Linköping</td>
<td>244 (1%)</td>
<td></td>
<td>Lomma</td>
</tr>
<tr>
<td>10</td>
<td>Skellefteå</td>
<td>222 (1%)</td>
<td></td>
<td>Gislaved</td>
</tr>
<tr>
<td>Sum 1–10</td>
<td></td>
<td>5593 (30%)</td>
<td></td>
<td>Sum 1–10</td>
</tr>
<tr>
<td>Other municipalities</td>
<td></td>
<td>12,890 (70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventors born in Sweden</td>
<td></td>
<td>18,483 (100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown*</td>
<td></td>
<td>–</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21,474</td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

*This group consists mostly of immigrants.
metropolitan regions, as expected, quite clearly influences the likelihood of becoming an inventor. As expected, a technical, natural science or medical education makes it much more likely that a person becomes an inventor compared to other types of education. With respect to sector of work in 2007, the strongest effect on the likelihood to become an inventor shows for persons who work in

![Fig. 2. Counts of inventors and density of future inventors based on high school degree in municipalities.](image)

Table 2
Top 10 municipalities in absolute numbers and by density of future high school graduation location.

<table>
<thead>
<tr>
<th>Rank #</th>
<th>Municipality</th>
<th># Graduating future inventors</th>
<th>Density</th>
<th>Future inventors/persons graduating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stockholm</td>
<td>831</td>
<td>Arjeplog</td>
<td>35.7</td>
</tr>
<tr>
<td>2</td>
<td>Gothenburg</td>
<td>737</td>
<td>Norberg</td>
<td>12.4</td>
</tr>
<tr>
<td>3</td>
<td>Malmö</td>
<td>351</td>
<td>Lund</td>
<td>9.9</td>
</tr>
<tr>
<td>4</td>
<td>Lund</td>
<td>269</td>
<td>Storfors</td>
<td>8.4</td>
</tr>
<tr>
<td>5</td>
<td>Uppsala</td>
<td>256</td>
<td>Eslov</td>
<td>7.8</td>
</tr>
<tr>
<td>6</td>
<td>Helsingborg</td>
<td>229</td>
<td>Gislaved</td>
<td>7.7</td>
</tr>
<tr>
<td>7</td>
<td>Jönköping</td>
<td>228</td>
<td>Kungälvsusual</td>
<td>7.6</td>
</tr>
<tr>
<td>8</td>
<td>Linköping</td>
<td>212</td>
<td>Alingsås</td>
<td>7.5</td>
</tr>
<tr>
<td>9</td>
<td>Västerås</td>
<td>211</td>
<td>Helsingborg</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>Karlstad</td>
<td>198</td>
<td>Gothenburg</td>
<td>7.4</td>
</tr>
</tbody>
</table>

*Not all municipalities host high schools, and therefore, individuals later becoming inventors would tend to commute to such schools in nearby municipalities.
extraction of crude petroleum and natural gas and ancillary services, in pharma and chemicals, in electronics, in computer and related activities or in R&D. Finally, introducing parental education to control for family background adds about 2% of the explanatory value to the regressions (measured as pseudo-R^2). Most parental education variables have a significant and positive effect on the probability of observing an inventor. Clearly, this effect grows stronger with the level of education, for both mothers and fathers. These coefficients are larger for fathers with PhDs and a long education, but are smaller for short higher education, compared to mothers’ effects. With respect to the type of education, the strongest effect is obtained from fathers with natural science and fathers with technical education, whereas medical education is usually insignificant. For mothers, the strongest effect comes from technical education, whereas natural science education is insignificant and medical education frequently has a negative significant effect. Therefore, the father’s education usually has a stronger effect, which may not be surprising considering that they may be more formative towards inventors who are frequently men. Also, the formative influence is, as expected, stronger for technical education fields which are intrinsically more likely to lead to patents than the other fields. All these control variables are very stable in all our regressions.

Turning to our birth variables, our empirical estimations show that the likelihood of becoming an inventor is positively affected by future inventors born in the municipality, whether measured in absolute numbers (not reported) or as a share of the population. This effect remains after inclusion of other shares and when including a variable for the share of higher educated people in the birth region, although including this variable reduces the size of the birth variables somewhat. Nevertheless, there seems to be persistence in the birth effect that stays on throughout growing up and into working life.

When examining high school effects only Inventors around high school and Inventor share around high school show conflicting signs. The first variable shows a highly significant negative effect in model 3 while the latter shows a strong significant positive effect (not reported). The latter has slightly stronger predictive power,
but in conclusion, high school effects are not consistent with a positive inventive milieu effect. Possibly, the reason for this result may be the imprecision of the high school density variable; a lot of different types of students attend the same school and most of them never become inventors.

In model 4 investigating the regressions on higher education variables, we find that the share of inventors around the year of the focal person attending higher education is positive and significant. This is also the case when considering absolute numbers (not reported). There is a distinct possibility, however, that the number of other inventors captures job location after higher education graduation, and it is therefore indicative of job opportunities of inventors, although this should be mitigated to some extent by the inclusion of sector, metro and education dummies for the 2007 characteristics of individuals as controls.

A combined evaluation

Model 5 puts together birth, high school as well as higher education variables into one combined regression and as before apply shares for our variables of interest. Clearly, they remain strong and strongly significant reflecting the same pattern as in the other models. Also, the size estimates of the coefficients do not change dramatically suggesting some stability in the effects. Note, however, that our earlier finding of the opposite of the expected sign for high school effects remains.

Finally, marginal effects are investigated in column (5b) through a linear probability model; the strongest absolute effect that comes from the higher education share. As previously, it should be noted, however, that higher education effects reflect both the combination of a conscious choice to attend a higher education and any milieu effects. Interestingly, despite the fact that individuals’ who want to become inventors strongly select environments with other inventors, a socio-cultural effect from birth region where no self-selection effect exists is still apparent. This suggests that all the effects of inventive local milieu found, birth region effects persists the longest for an individual.

Interpretation of findings and conclusions

Our starting point for this paper was to examine the location history of inventors in contrast to more traditional analyses that look at the history of location. We have done this by tracking the location histories of inventors over a period of time (born in 1955–1974 and patenting in 2002–2007). This method has allowed us to address to what extent different milieus that a future inventor is exposed to, in early life, can help us understand whether specific places can make individuals develop better inventive mind-sets. Moreover, this location history approach allowed us to get an understanding of the interplay between innovative mind-sets and places as providers of innovative milieus.

We have examined the impact of early years’ local milieu of inventors by analysing the effects of birthplace, high school and higher education. We find that having many other future inventors around in the municipality of birth and place of higher education has a significant positive effect on a person’s possibility of becoming an inventor. It is notable that birthplace seems to have such a persistent role, given the lack of self-selection, also after controlling for parents’ educational characteristics. By comparison, the fact that higher education is positive is not so surprising given that this result reflects the combination of self-selection to attend a higher education and local milieu effects. Studying this topic therefore leaves us with the impression that the institutional fabric of the early childhood milieu can have a critical effect on whether an individual becomes an inventor or not in the future. Our findings correspond to those of entrepreneurial studies where
provinces, such as characteristic relationships. We find that, while
inventor variables refer to density of individuals that will become inventors in the future.

\[
\begin{array}{l}
\text{Dum humanities} = 0.290^{**} \\
\text{Dum soc sciences} = -0.111^{**} \\
\text{Dum natural sciences} = 0.604 \\
\text{Dum technical sciences} = 0.672^{**} \\
\text{Dum agricultural sciences} = 0.116^{**} \\
\text{Dum medicine} = 0.406^{***} \\
\text{Short HE mother} = 0.209^{**} \\
\text{Short HE father} = 0.164 \\
\text{Long HE mother} = 0.254^{**} \\
\text{Long HE father} = 0.286^{**} \\
\text{PhD mother} = 0.318^{**} \\
\text{PhD father} = 0.395^{**} \\
\text{Dum natural sciences mother} = 0.0357 \\
\text{Dum technical sciences mother} = 0.0573^{**} \\
\text{Dum medicine mother} = -0.0302^{**} \\
\text{Dum natural sciences father} = 0.160^{**} \\
\text{Dum technical sciences father} = 0.115^{**} \\
\text{Dum medicine father} = 0.0486 \\
\text{Children and gender dummies} = \text{Yes} \\
\text{Sector dummies} = \text{Yes} \\
\text{Observations} = 1,085,362 \\
\text{Pseudo R}^2 = 0.238 \\
\end{array}
\]

\[
\begin{array}{l}
\text{Age} = 0.00658 \\
\text{Age}^2 = 0.000205 \\
\text{Dum metro} = 0.263 \\
\text{Highly educated share around time of birth} = 0.470^{**} \\
\text{Inventors share around time of birth} = 4.574^{***} \\
\text{Inventors share, around secondary school} = -16.21^{***} \\
\text{Inventors share, around HE} = 30.10^{***} \\
\end{array}
\]

Constant included. Standard errors in parentheses. (5b) is the linear probability model version of (5). Inventor variables refer to density of individuals that will become inventors in the future.

\[
\begin{array}{l}
\text{p} < 0.1. \\
\text{p} < 0.05. \\
\text{p} < 0.01.
\end{array}
\]

e.g. Johannisson (1986) points to the socio-cultural context of regions to be critical for the entrepreneurial spirit. In addition to upbringing in entrepreneurial milieus, we find that upbringing in an academic milieu or close by also has a positive influence on being an inventor. We are not aware of any earlier studies in e.g. entrepreneurship (and certainly not inventiveness) that are able to capture the influence of local characteristics on the individual level.

Still, we should also stress the limitations of our study. First, our approach has not really enabled us to pinpoint the exact important factor in the local innovative milieu, nor do we include information on potential important influences later in the career path of the individual inventor. These are obvious themes for future research. Nonetheless, the approach employed in this study has provided us with valuable information on how preconditions of future inventors can help their innovative activity in present time.

Second, we must also stress the lack of a causal interpretation of our findings. The results indicate that local milieus is important in order to shape future inventors, but the study does not capture the very essence of what these local inventive milieus are based
on. For this we would need to go further into the specifics of each stage. Instead, we offer a first step of looking at the location history of inventors to identify common patterns.

In further research we will use more qualitative research techniques to generate a better picture of the essence of local milieus from the inventors’ point of view. Interviewing inventors will give insights into how to develop indicators of different types of inventive milieus that can also be used in more quantitative analysis. With respect to birthplace effects, we have already shown that educational background of parents also play an important role for the probability of becoming an inventor and that controlling for parents’ level of education strengthens the argument that early childhood years are critical. The parental effect could be further investigated by looking at formative role of upbringing that may stem from parents’ preferences about occupations, education or could be inherited (Dustmann, 2004). For instance, a recent study based on adoption and associated data on biological and adopting parents’ occupations finds that entrepreneurial traits are both inherited (nature) and obtained (nurtured) from adopting parents (Lindquist et al., forthcoming). Finding similar experimental settings may yield insights into causal mechanisms behind the effects we find. Moreover, this study highlights the need to sort out, not only the role of self-selection vs. education type, but also to address the role of peer effects on invention stemming from education (cf. Vardardottir, 2013).

Summing up, this study suggests that we can expect local milieus to have a notable effect on the probability of becoming an inventor, distinguishing between effects from different local milieus, birthplace, high school and university, we find that only birthplace and place of higher education have a positive effect. Thus, we can expect characteristics of the local milieu to partly explain why both individuals and regions become inventive and creative – or why they do not.

References

Ejermo, O., 2009. Regional innovation measured by patent data: does quality matter? Ind. Innovat. 16 (2), 141–165.
