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NUMERICAL METHODS FOR THE LÉVY LIBOR MODEL

ANTONIS PAPAPANTOLEON AND DAVID SKOVMAND

Abstract. The aim of this work is to provide fast and accurate approx-
imation schemes for the Monte-Carlo pricing of derivatives in the Lévy
LIBOR model of Eberlein and Özkan (2005). Standard methods can be
applied to solve the stochastic differential equations of the successive
LIBOR rates but the methods are generally slow. We propose an alter-
native approximation scheme based on Picard iterations. Our approach
is similar in accuracy to the full numerical solution, but with the feature
that each rate is, unlike the standard method, evolved independently of
the other rates in the term structure. This enables simultaneous calcula-
tion of derivative prices of different maturities using parallel computing.
We include numerical illustrations of the accuracy and speed of our
method pricing caplets.

1. Introduction

The LIBOR market model has become a standard model for the pric-
ing of interest rate derivatives in recent years. The main advantage of the
LIBOR model in comparison to other approaches, is that the evolution of
discretely compounded, market-observable forward rates is modeled directly
and not deduced from the evolution of unobservable factors. Moreover, the
log-normal LIBOR model is consistent with the market practice of pricing
caps according to Black’s formula (cf. Black 1976). However, despite its ap-
parent popularity, the LIBOR market model has certain well-known pitfalls.

On the one hand, the log-normal LIBOR model is driven by a Brownian
motion, hence it cannot be calibrated adequately to the observed market
data. An interest rate model is typically calibrated to the implied volatility
surface from the cap market and the correlation structure of at-the-money
swaptions. Several extensions of the LIBOR model have been proposed in the
literature using jump-diffusions, Lévy processes or general semimartingales
as the driving motion (cf. Glasserman and Kou 2003, Eberlein and Özkan
2005, Jamshidian 1999), or incorporating stochastic volatility effects (cf. e.g.
Andersen and Brotherton-Ratcliffe 2005).

On the other hand, the dynamics of LIBOR rates are not tractable un-
der every forward measure due to the random terms that enter the dy-
namics of LIBOR rates during the construction of the model. In particular,
when the driving process has continuous paths the dynamics of LIBOR rates
are tractable under their corresponding forward measure, but they are not
tractable under any other forward measure. When the driving process is
a general semimartingale, then the dynamics of LIBOR rates are not even
tractable under their very own forward measure. Consequently: if the driving
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process is a continuous semimartingale caplets can be priced in closed form,
but not swaptions or other multi-LIBOR derivatives. However, if the driving
process is a general semimartingale, then even caplets cannot be priced in
closed form. The standard remedy to this problem is the so-called “frozen
drift” approximation, where one replaces the random terms in the dynamics
of LIBOR rates by their deterministic initial values; it was first proposed by
Brace et al. (1997) for the pricing of swaptions and has been used by several
authors ever since. Brace et al. (2001) among others argue that freezing the
drift is justified, since the deviation from the original equation is small in
several measures.

Although the frozen drift approximation is the simplest and most popular
solution, it is well-known that it does not yield acceptable results, especially
for exotic derivatives and longer horizons. Therefore, several other approxi-
mations have been developed in the literature. We refer the reader to Joshi
and Stacey (2008) for a detailed overview of that literature, and for some
new approximation schemes and numerical experiments.

Although most of this literature focuses on the lognormal LIBOR market
model, Glasserman and Merener (2003b, 2003a) have developed approxima-
tion schemes for the pricing of caps and swaptions in jump-diffusion LIBOR
market models.

In this article we develop a general method for the approximation of the
random terms that enter into the drift of LIBOR models. In particular,
by applying Picard iterations we develop a generic approximation scheme.
The method we develop yields more accurate results than the frozen drift
approximation, while having the added feature that the individual rates can
be evolved independently in a Monte Carlo simulation. This enables the
use of parallel computing in the maturity dimension. Moreover, our method
is universal and can be applied to any LIBOR model driven by a general
semimartingale. We illustrate the accuracy and speed of our method in a
case where LIBOR rates are driven by a normal inverse Gaussian process.

2. The Lévy LIBOR model

The Lévy LIBOR model was developed by Eberlein and Özkan (2005),
following the seminal articles of Sandmann et al. (1995), Miltersen et al.
(1997) and Brace et al. (1997) on LIBOR market models driven by Brow-
nian motion; see also Glasserman and Kou (2003) and Jamshidian (1999)
for LIBOR models driven by jump processes and general semimartingales
respectively. The Lévy LIBOR model is a market model where the forward
LIBOR rate is modeled directly, and is driven by a time-inhomogeneous
Lévy process.

Let 0 = T0 < T1 < · · · < TN < TN+1 = T∗ denote a discrete tenor
structure where δi = Ti+1 − Ti, i ∈ {0, 1, . . . , N}. Consider a complete sto-
chastic basis (Ω,F ,F, IPT∗

) and a time-inhomogeneous Lévy process H =
(Ht)0≤t≤T∗

satisfying standard assumptions such as the existence of expo-
nential moments and absolutely continuous characteristics. The law of H is
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described by the Lévy–Khintchine formula:

IEIPT∗

[
eiuHt

]
= exp

( t∫

0

κs(iu)ds

)
. (2.1)

Here κs is the cumulant generating function associated to the infinitely di-
visible distribution with Lévy triplet (0, c, F T∗), i.e. for u ∈ R and s ∈ [0, T∗]

κs(iu) = −cs

2
u2 +

∫

R

(eiux − 1− iux)F T∗

s (dx). (2.2)

The canonical decomposition of H is:

H =

·∫

0

√
csdW

T∗

s +

·∫

0

∫

R

x(µH − νT∗)(ds,dx), (2.3)

where W T∗ is a IPT∗
-standard Brownian motion, µH is the random measure

associated with the jumps of H and νT∗ is the IPT∗
-compensator of µH . We

further assume that the following conditions are in force.

(LR1): For any maturity Ti there exists a bounded, continuous, deter-
ministic function λ(·, Ti) : [0, Ti] → R, which represents the volatil-
ity of the forward LIBOR rate process L(·, Ti). Moreover, we as-
sume that (i) for all s ∈ [0, T∗], there exist M, ǫ > 0 such that∫ T∗

0

∫
{|x|>1} e

uxFt(dx)dt < ∞, for u ∈ [−(1+ε)M, (1+ε)M ], and (ii)

for all s < Ti

N∑

i=1

∣∣λ(s, Ti)
∣∣ ≤ M.

(LR2): The initial term structure B(0, Ti), 1 ≤ i ≤ N + 1, is strictly
positive and strictly decreasing. Consequently, the initial term struc-
ture of forward LIBOR rates is given, for 1 ≤ i ≤ N , by

L(0, Ti) =
1

δi

(
B(0, Ti)

B(0, Ti + δi)
− 1

)
> 0. (2.4)

The construction of the model starts by postulating that the dynamics
of the forward LIBOR rate with the longest maturity L(·, TN ) is driven by
the time-inhomogeneous Lévy process H and evolve as a martingale under
the terminal forward measure IPT∗

. Then, the dynamics of the LIBOR rates
for the preceding maturities are constructed by backward induction; they
are driven by the same process H and evolve as martingales under their
associated forward measures. For the full mathematical construction we refer
to Eberlein and Özkan (2005).

We will now proceed to introduce the stochastic differential equation that
the dynamics of log-LIBOR rates satisfy under the terminal measure IPT∗

.
This will be the starting point for the approximation method that will be
developed in the next section.
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In the Lévy LIBOR model the dynamics of the LIBOR rate L(·, Ti) under
the terminal forward measure IPT∗

are given by

L(t, Ti) = L(0, Ti) exp




t∫

0

b(s, Ti)ds+

t∫

0

λ(s, Ti)dHs


 , (2.5)

where H = (Ht)0≤t≤T∗
is the IPT∗

-time-inhomogeneous Lévy process. The
drift term b(·, Ti) is determined by no-arbitrage conditions and has the form

b(s, Ti) = −1

2
λ2(s, Ti)cs − csλ(s, Ti)

N∑

l=i+1

δlL(s−, Tl)

1 + δlL(s−, Tl)
λ(s, Tl)

−
∫

R

((
eλ(s,Ti)x − 1

) N∏

l=i+1

β(s, x, Tl)− λ(s, Ti)x

)
F T∗

s (dx), (2.6)

where

β(t, x, Tl, ) =
δlL(t−, Tl)

1 + δlL(t−, Tl)

(
eλ(t,Tl)x − 1

)
+ 1. (2.7)

Note that the drift term in (2.5) is random, therefore we are dealing with a
general semimartingale, and not with a Lévy process. Of course, L(·, Ti) is

not a IPT∗
-martingale, unless i = N (where we use the conventions

∑0
l=1 = 0

and
∏0

l=1 = 1).
Let us denote by Z the log-LIBOR rates, that is

Z(t, Ti) := logL(t, Ti)

= Z(0, Ti) +

t∫

0

b(s, Ti)ds+

t∫

0

λ(s, Ti)dHs, (2.8)

where Z(0, Ti) = logL(0, Ti) for all i ∈ {1, . . . , N}.

Remark 2.1. Note that the martingale part of Z(·, Ti), i.e. the stochastic
integral

∫ ·
0 λ(s, Ti)dHs, is a time-inhomogeneous Lévy process. However, the

random drift term destroys the Lévy property of Z(·, Ti), as the increments
are no longer independent.

3. Picard approximation for LIBOR models

The log-LIBOR can be alternatively described as a solution to the follow-
ing linear SDE

dZ(t, Ti) = b(t, Ti)dt+ λ(t, Ti)dHt, (3.1)

with initial condition Z(0, Ti) = logL(0, Ti). Let us look further into the
above SDE for the log-LIBOR rates. We introduce the term Z(·) in the drift
term b(·, Ti;Z(·)) to make explicit that the log-LIBOR rates depend on all
subsequent rates on the tenor.

The idea behind the Picard approximation scheme is to approximate
the drift term in the dynamics of the LIBOR rates; this approximation
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is achieved by the Picard iterations for (3.1). The first Picard iteration for
(3.1) is simply the initial value, i.e.

Z(0)(t, Ti) = Z(0, Ti), (3.2)

while the second Picard iteration is

Z(1)(t, Ti) = Z(0, Ti) +

t∫

0

b(s, Ti;Z
(0)(s))ds+

t∫

0

λ(s, Ti)dHs

= Z(0, Ti) +

t∫

0

b(s, Ti;Z(0))ds +

t∫

0

λ(s, Ti)dHs. (3.3)

Since the drift term b(·, Ti;Z(0)) is deterministic, as the random terms have
been replaced with their initial values, we can easily deduce that the second
Picard iterate Z(1)(·, Ti) is a Lévy process.

Comparing (3.3) with (2.8) it becomes evident that we are approximat-
ing the semimartingale Z(·, Ti) with the time-inhomogeneous Lévy process

Z(1)(·, Ti).

3.1. Application to LIBORmodels. In this section, we will apply the Pi-
card approximation of the log-LIBOR rates Z(·, Ti) by Z(1)(·, Ti) in order to
derive a strong, i.e. pathwise, approximation for the dynamics of log-LIBOR
rates. That is, we replace the random terms in the drift b(·, Ti;Z(·)) by the

Lévy process Z(1)(·, Ti) instead of the semimartingale Z(·, Ti). Therefore,
the dynamics of the approximate log-LIBOR rates are given by

Ẑ(t, Ti) = Z(0, Ti) +

t∫

0

b(s, Ti;Z
(1)(s))ds+

t∫

0

λ(s, Ti)dHs, (3.4)

where the drift term is provided by

b(s, Ti;Z
(1)(s)) = −1

2
λ2(s, Ti)cs − csλ(s, Ti)

N∑

l=i+1

δle
Z(1)(s−,Tl)

1 + δleZ
(1)(s−,Tl)

λ(s, Tl)

−
∫

R

((
eλ(s,Ti)x − 1

) N∏

l=i+1

β̂(s, x, Tl)− λ(s, Ti)x

)
F T∗

s (dx),

(3.5)

with

β̂(t, x, Tl, ) =
δl exp

(
Z(1)(t−, Tl)

)

1 + δl exp
(
Z(1)(t−, Tl)

)
(
eλ(t,Tl)x − 1

)
+ 1. (3.6)

The main advantage of the Picard approximation is that the resulting

SDE for Ẑ(·, Ti) can be simulated more easily than the equation for Z(·, Ti).
Indeed, looking at (3.1) and (2.6) again, we can observe that each LIBOR
rate L(·, Ti) depends on all subsequent rates L(·, Tl), i+ 1 ≤ l ≤ N . Hence,
in order to simulate L(·, Ti), we should start by simulating the furthest rate
in the tenor and proceed iteratively from the end. On the contrary, the

dynamics of Ẑ(·, Ti) depend only on the Lévy processes Z(1)(·, Tl), i + 1 ≤
l ≤ N , which are independent of each other. Hence, we can use parallel
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computing to simulate all approximate LIBOR rates simultaneously. This
significantly increases the speed of the Monte Carlo simulations which will
be demonstrated in the numerical example.

3.2. Drift expansion. Let us look now at the drift term in (2.6) more

carefully. Observe that there is a product of the form
∏N

k=1(1+ak) appearing;
the expansion of this product has the following form

N∏

k=1

(1 + ak) = 1 +

N∑

k=1

ak +
∑

1≤i<j≤N

aiaj

︸ ︷︷ ︸
#(N2 )

+
∑

1≤i<j<k≤N

aiajak

︸ ︷︷ ︸
#(N3 )

+
∑

i 6=j 6=k 6=l

aiajakal

︸ ︷︷ ︸
#(N4 )

+ · · ·+
N∏

k=1

ak, (3.7)

where the number of terms on the right hand side is 2N . Therefore, we need
to perform 2N computations in order to calculate the drift of the LIBOR
rates. Since N is the length of the tenor, it becomes apparent that this
calculation is feasible for a short tenor, but not for long tenors; e.g. for
N = 40 this amounts to more than 1 trillion computations.

In order to deal with this computational problem, we will approximate
the LHS of (3.7) with the first or second order terms. Let us introduce the
following shorthand notation for convenience:

λl := λ(s, Tl) and Ll := L(s, Tl). (3.8)

We denote by A the part of the drift term that is stemming from the jumps,
i.e.

A =

∫

R

((
eλix − 1

) N∏

l=i+1

(
1 +

δlLl

1 + δlLl

(
eλlx − 1

))
− λix

)
F T∗

s (dx).

(3.9)

The first order approximation of the product term is

A
′ =

∫

R

((
eλix − 1

)(
1 +

N∑

l=i+1

δlLl

1 + δlLl

(
eλlx − 1

))
− λix

)
F T∗

s (dx)

=

∫

R

(
eλix − 1− λix

)
F T∗

s (dx)

+

N∑

l=i+1

δlLl

1 + δlLl

∫

R

(
eλix − 1

)(
eλlx − 1

)
F T∗

s (dx)

= κ
(
λi

)
+

N∑

l=i+1

δlLl

1 + δlLl

(
κ
(
λi + λl

)
− κ
(
λi

)
− κ
(
λl

))
, (3.10)
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and the order of the error is

A = A
′ +O(‖L‖2). (3.11)

Similarly the second order approximation is provided by

A
′′ = κ

(
λi

)
+

N∑

l=i+1

δlLl

1 + δlLl

(
κ
(
λi + λl

)
+ κ
(
λi

)
+ κ
(
λl

))

+
∑

i+1≤k<l≤N

δlLl

1 + δlLl

δkLk

1 + δkLk

×
(
κ
(
λi + λl + λk

)
− κ
(
λi + λl

)
− κ
(
λi + λk

)

− κ
(
λk + λl

)
+ κ
(
λi

)
+ κ
(
λl

)
+ κ
(
λk

))
, (3.12)

and the order of the error is

A = A
′′ +O(‖L‖3). (3.13)

3.3. Caplets. The price of a caplet with strike K maturing at time Ti,
using the relationship between the terminal and the forward measures can
be expressed as

C0(K,Ti) = δB(0, T∗) IEIPT∗

[ N∏

l=i+1

(
1 + δL(Ti, Tl)

)
(L(Ti, Ti)−K)+

]
.

(3.14)

This equation will provide the actual prices of caplets corresponding to sim-
ulating the full SDE for the LIBOR rates. In order to calculate the Picard
approximation prices for a caplet we have to replace L(·, T·) in (3.14) with

L̂(·, T·). Similarly, for the frozen drift approximation prices we must use

L̂0(·, T·) instead of L(·, T·).

4. Numerical illustration

The aim of this section is to demonstrate the accuracy and efficiency of
the Picard approximation scheme for the valuation of options in the Lévy
LIBOR model compared to the “frozen drift” approximation. In addition,
we investigate the accuracy of the drift expansions in section 3.2. We will
consider the pricing of caplets, although many other interest rate derivatives
can be considered in this framework.

We revisit the numerical example in Kluge (2005, pp. 76-83). That is, we
consider a tenor structure T0 = 0, T1 = 1

2 , T2 = 1 . . . , T10 = 5 = T∗, constant
volatilities

λ(·, T1) = 0.20 λ(·, T2) = 0.19 λ(·, T3) = 0.18

λ(·, T4) = 0.17 λ(·, T5) = 0.16 λ(·, T6) = 0.15

λ(·, T7) = 0.14 λ(·, T8) = 0.13 λ(·, T9) = 0.12

and the discount factors (zero coupon bond prices) as quoted on February
19, 2002; cf. Table 4.1. The tenor length is constant and denoted by δ = 1

2 .
The driving Lévy process H is a normal inverse Gaussian (NIG) process

with parameters α = δ̄ = 1.5 and µ = β = 0. We denote by µH the random
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T 0.5Y 1Y 1.5Y 2Y 2.5Y

B(0, T ) 0.9833630 0.9647388 0.9435826 0.9228903 0.9006922

T 3Y 3.5Y 4Y 4.5Y 5Y

B(0, T ) 0.8790279 0.8568412 0.8352144 0.8133497 0.7920573

Table 4.1. Euro zero coupon bond prices on February 19, 2002.

measure of jumps of H and by ν(dt,dx) = F (dx)dt the IPT∗
-compensator

of µH , where F is the Lévy measure of the NIG process. The necessary
conditions are satisfied because M = α, hence

∑9
i=1 |λ(·, Ti)| = 1.44 < α

and λ(·, Ti) <
α
2 , for all i ∈ {1, . . . , 9}.

The NIG Lévy process is a pure-jump Lévy process with canonical de-
composition H =

∫ ·
0

∫
R
x(µH−ν)(ds,dx). The cumulant generating function

of the NIG distribution, for all u ∈ C with |ℜu| ≤ α, is

κ(u) = δ̄α− δ̄
√

α2 − u2. (4.1)

In figure 4.1 we plot the difference in basis points (bp) between caplet
implied volatility calculated from the full numerical solution and implied
volatilities from the frozen drift and the Picard approximation respectively.
In order to isolate the error from the two approximations we use the same
discretization grid (5 steps per tenor length) and the same pseudo random
numbers (10000 paths) in each method. The pseudo random numbers are
generated from the NIG distribution using the standard methodology de-
scribed in Glasserman 2003. The drifts are first calculated without approx-
imation using expression (3.5). It is clear that the Picard approximation
outperforms the frozen drift with an error which is at maximum 0.023 bp.
Since implied volatility is quoted in units of a basis point then 1bp is a
natural maximum tolerance level of error in an approximation. It is clear
that the error in the frozen drift approximation is significantly bigger than
one basis point throughout most strikes and maturities, with a maximum
around 17bp. Both graphs also show that the error in general increases in
absolute terms the smaller the strike.

As we established in (3.7) the number of terms needed to calculate the
drift grows with a rate 2N . In market applications N is often as high as
60 reflecting a 30 year term structure with a 6 month tenor increment. At
this level even the calculation of one drift term becomes infeasible and this
necessitates the use of the approximations introduced in (3.10) and (3.12).
If we investigate the errors introduced by comparing them with the full
numerical solution we get an average error of 0.41 bp with max of 9.5 whereas
the second order approximation performs much better with an average error
of 0.013 and maximum error around 0.38 bp.

In terms of computational time a large gain is realized when using the
approximations in (3.10) and (3.12). In the example above the CPU time
for the full numerical solution is 141 seconds but after applying the first or-
der or second order drift approximation it drops to 0.9 and 1.2 respectively.
Adding the Picard approximation to these three cases does not contribute
to the computational speed unless parallelization is employed. On the left
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Figure 4.1. Difference in implied caplet volatility (in basis
points) between the full SDE and the frozen drift prices (left),
and the full SDE and the Picard approximation (right).
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Figure 4.2. CPU time as function of the number of paths
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(right).

in figure 4.2, CPU time as function of the number of paths for the Picard
approximation and the full numerical solution is plotted. Both use the sec-
ond order drift approximation scheme in (3.12). The computations are done
in Matlab running on an Intel i7 processor with the capability of running
8 processes simultaneously. Here we see the typical linear behavior as the
number of paths are increased but it can be seen that the Picard approxi-
mation has a significantly lower slope. Furthermore, on the right when we
plot CPU time as a function of rates one can see CPU time exponentially
increasing, revealing that large gains in computational time are realizable
when using the Picard approximation scheme and the drift expansion.

5. Conclusion

This paper derives a new approximation method for Monte Carlo deriv-
ative pricing in LIBOR models. It is generic and can be used for any semi-
martingale driven model. It decouples the interdependence of the rates when
moving them forward in time in a simulation, meaning that the computa-
tions can be parallelized in the maturity dimension. We have demonstrated
both the accuracy and speed of the method in a numerical example.
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