Maternal diabetes and risk of childhood acute lymphoblastic leukaemia in the offspring

Søegaard, Signe Holst; Rostgaard, Klaus; Kamper-Jørgensen, Mads; Schmiegelow, K.; Hjalgrim, Henrik

Published in:
British Journal of Cancer

DOI:
10.1038/bjc.2017.351

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Maternal diabetes and risk of childhood acute lymphoblastic leukaemia in the offspring

Signe Holst Søegaard*,1, Klaus Rostgaard1, Mads Kamper-Jørgensen2, Kjeld Schmiegelow3,4 and Henrik Hjalgrim1,5

1Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark; 2Department of Public Health, University of Copenhagen, Copenhagen DK-1123, Denmark; 3Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen DK-2100, Denmark; 4Institute of Clinical Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark and 5Department of Haematology, University Hospital Rigshospitalet, Copenhagen DK-2100, Denmark

Background: Maternal diabetes may be linked to childhood acute lymphoblastic leukaemia (ALL) in the offspring.

Methods: We assessed the association between maternal pregestational or gestational diabetes and offspring risk of childhood ALL in a register-based study, including all singletons born in Denmark during 1996–2015 (n = 1 187 482).

Results: Adjusted hazard ratios of childhood ALL were 2.91 (95% confidence interval (CI): 1.30–6.51) for maternal pregestational diabetes and 1.75 (95% CI: 1.02–2.98) for maternal gestational diabetes. Paternal diabetes did not alter offspring ALL risk, and we found no association between offspring ALL and later maternal risk of diabetes.

Conclusions: Regardless that absolute ALL risk among offspring of women with diabetes remains low, our findings suggest that characteristics of the diabetic intrauterine environment promote ALL development. This offers a setting for future research into the biological mechanisms underlying childhood ALL.

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer, with an annual incidence of approximately 4 in 100 000 person-years among children below 15 years of age in developed countries (Hjalgrim et al, 2003a; Stiller et al, 2006). Apart from certain genetic syndromes, accounting for less than 5% of cases (Stieglitz and Loh, 2013) and a well-established association with high birth weight (Hjalgrim et al, 2003b; Caughey and Michels, 2009), risk factors for childhood ALL remain largely unknown. The prenatal origin of most childhood ALL cases has been irrefutably demonstrated by the presence of clone-specific mutations in patient neonatal blood spots (Wiemels et al, 1999; Hjalgrim et al, 2002; Gruhn et al, 2008). While the intrauterine development of preleukaemic cell clones remains unexplained, the association between birth weight and childhood ALL risk suggests that it is related to foetal growth. In addition, a recent study reported an increased ALL risk in children born to women with diabetes (Contreras et al, 2016), whose offspring are at increased risk of macrosomia (Schmidt et al, 2001; Crowther et al, 2005; Temple et al, 2006). However, it is unclear whether this association varies by type of maternal diabetes and between ALL subtypes, which may have distinct aetiologies.

We therefore evaluated the risk of ALL among offspring of women with pregestational or gestational diabetes in a cohort study, including all singletons born in Denmark during 1996–2015 identified using nationwide registers with detailed information on maternal antidiabetic medication and ALL subtypes.

MATERIALS AND METHODS

Based on the unique personal identifiers of the children and their parents, we linked information on birth characteristics obtained from the Danish Medical Birth Register (Knudsen and Olsen, 1998) with information on maternal diabetes recorded in the Danish National Patient Register (NPR) (Lynge et al, 2011). The NPR contains records of all hospitalisations since 1977, including outpatient contacts since 1995 with diagnoses classified according to the International Classification of Diseases (ICD) 8th (1977–
To estimate the risk of childhood acute lymphoblastic leukaemia (ALL) associated with maternal diabetes, we linked maternal diabetes with the Nordic Society of Paediatric Haematology and Oncology leukaemia database (Schmiegelow et al., 2010). The children were followed from birth until the first diagnosis of childhood ALL, loss to follow-up/emigration, death, age 15 years, or in 2015, whichever occurred first. We used Cox proportional hazards models with the underlying time scale to estimate hazard ratios (HRs) for childhood ALL.

Based on the potential confounders maternal age at delivery (continuous), ethnicity (Danish or other), birth order (1, 2 or >3), maternal smoking during pregnancy (yes or no) and birth weight (100-g intervals), gestational age (1-week intervals) and mode of delivery (caesarean section or vaginal) (Hjalgrim et al., 2004; Chang et al., 2006; Thomopoulos et al., 2015; Contreras et al., 2017). Further, we tested the heterogeneity of the association between maternal diabetes and offspring risk of ALL by birth weight using the median as cut-off (<3540 g vs ≥3540 g).

Childhood ALL was grouped as: (1) all types combined; (2) B-cell precursor ALL; (3) and a group comprising the frequent, prenatally initiated karyotypes (ETV6/RUNX1-positive and high-hyperdiploidy ALL).

In subsequent analyses we tested whether paternal diabetes was associated with childhood ALL. Also, we assessed the risk of developing diabetes in women with and without offspring with ALL. In this analysis, we included women with ≥1 live births between 1996 and 2015, followed from their first birth after 1995 until diabetes diagnosis (outcome), death, emigration, or in December 2015, whichever occurred first. We used Cox proportional hazards models with age as the underlying time scale to estimate hazard ratios (HRs) for childhood ALL.

Based on the potential confounders maternal age at delivery (continuous), ethnicity (Danish or other), birth order (1, 2 or >3), maternal smoking during pregnancy (yes or no) and birth weight (100-g intervals), gestational age (1-week intervals) and mode of delivery (caesarean section or vaginal) (Hjalgrim et al., 2004; Chang et al., 2006; Thomopoulos et al., 2015; Contreras et al., 2017). Further, we tested the heterogeneity of the association between maternal diabetes and offspring risk of ALL by birth weight using the median as cut-off (<3540 g vs ≥3540 g).

Childhood ALL was grouped as: (1) all types combined; (2) B-cell precursor ALL; (3) and a group comprising the frequent, prenatally initiated karyotypes (ETV6/RUNX1-positive and high-hyperdiploidy ALL).

In subsequent analyses we tested whether paternal diabetes was associated with childhood ALL. Also, we assessed the risk of developing diabetes in women with and without offspring with ALL. In this analysis, we included women with ≥1 live births between 1996 and 2015, followed from their first birth after 1995 until diabetes diagnosis (outcome), death, emigration, or in December 2015, excluding women with diabetes diagnosed before start of follow-up. History of offspring ALL was included as a time-varying variable (exposed from date of offspring ALL diagnosis) with adjustment for maternal age, parity and year of delivery.

All analyses were conducted using SAS statistical software (9.4, SAS Institute, Inc., Cary, NC, USA) with 95% confidence intervals (CIs) based on Likelihood-ratio tests.

Table 1. Person-years of follow-up and number of cases of childhood acute lymphoblastic leukaemia (ALL), according to baseline characteristics and parental diabetes among singletons born in Denmark during 1996–2015

<table>
<thead>
<tr>
<th></th>
<th>Person-years at risk (%)</th>
<th>ALL N (%)</th>
<th>BCP N (%)</th>
<th>ETV6-RUNX1/HeH N (%)</th>
<th>Total cohort N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>11 196 998 (100)</td>
<td>492 (100)</td>
<td>431 (100)</td>
<td>266 (100)</td>
</tr>
<tr>
<td>Sex</td>
<td>Boys</td>
<td>5 745 498 (51.3)</td>
<td>262 (53.3)</td>
<td>222 (51.5)</td>
<td>145 (54.5)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>5 451 500 (48.7)</td>
<td>230 (46.7)</td>
<td>209 (48.5)</td>
<td>121 (45.5)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Danish</td>
<td>9 334 246 (83.4)</td>
<td>423 (86.0)</td>
<td>370 (85.8)</td>
<td>233 (87.6)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1 862 752 (16.6)</td>
<td>69 (14.0)</td>
<td>61 (14.2)</td>
<td>33 (12.4)</td>
</tr>
<tr>
<td>Birth order</td>
<td>1</td>
<td>4 863 355 (43.4)</td>
<td>223 (45.3)</td>
<td>196 (45.5)</td>
<td>116 (43.6)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4 184 761 (37.4)</td>
<td>183 (37.2)</td>
<td>162 (37.6)</td>
<td>104 (39.1)</td>
</tr>
<tr>
<td></td>
<td>≥3</td>
<td>2 148 882 (19.2)</td>
<td>86 (17.5)</td>
<td>73 (16.9)</td>
<td>46 (17.3)</td>
</tr>
<tr>
<td>Maternal smoking</td>
<td>No</td>
<td>9 292 764 (83.0)</td>
<td>424 (86.2)</td>
<td>374 (86.8)</td>
<td>229 (86.1)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1 904 234 (17.0)</td>
<td>68 (13.8)</td>
<td>57 (13.2)</td>
<td>37 (13.9)</td>
</tr>
<tr>
<td>Birth weight (g)*</td>
<td>3601</td>
<td>3588</td>
<td>3578</td>
<td>3524</td>
<td></td>
</tr>
<tr>
<td>Gestational age (weeks)*</td>
<td>39.5</td>
<td>39.4</td>
<td>39.3</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td>Mode of delivery</td>
<td>Vaginal</td>
<td>9 359 216 (83.6)</td>
<td>400 (81.3)</td>
<td>350 (81.2)</td>
<td>208 (78.2)</td>
</tr>
<tr>
<td></td>
<td>Caesarean section</td>
<td>1837 782 (16.4)</td>
<td>92 (18.7)</td>
<td>81 (18.8)</td>
<td>58 (21.8)</td>
</tr>
<tr>
<td>Maternal diabetes</td>
<td>No</td>
<td>10 976 192 (99.0)</td>
<td>472 (95.9)</td>
<td>415 (96.3)</td>
<td>253 (95.1)</td>
</tr>
<tr>
<td></td>
<td>Pregestational</td>
<td>46 598 (0.4)</td>
<td>6 (1.3)</td>
<td>5 (1.2)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td></td>
<td>Gestational</td>
<td>174 208 (1.6)</td>
<td>14 (2.8)</td>
<td>11 (2.5)</td>
<td>9 (3.4)</td>
</tr>
<tr>
<td>First-time pregestational diabetes treatment</td>
<td>Insulin</td>
<td>35 000 (75.1)</td>
<td>5 (3.3)</td>
<td>5 (3.3)</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Age at pregestational diabetes diagnosis</td>
<td><30</td>
<td>40 081 (86.0)</td>
<td>6 (100)</td>
<td>5 (100)</td>
<td>4 (100)</td>
</tr>
<tr>
<td></td>
<td>≥30</td>
<td>6517 (14.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Paternal diabetes*</td>
<td>No</td>
<td>10 963 593 (98.7)</td>
<td>482 (98.6)</td>
<td>423 (98.8)</td>
<td>261 (99.2)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>148 517 (1.3)</td>
<td>7 (1.4)</td>
<td>5 (1.2)</td>
<td>2 (0.8)</td>
</tr>
</tbody>
</table>

Abbreviations: ALL = acute lymphoblastic leukaemia; BCP = B-cell precursor ALL; ETV6/RUNX1 = ETV6/RUNX1-positive ALL; HeH = high-hyperdiploidy ALL.

*Mean.

†Paternal diabetes diagnosed at any time before end of follow-up, including 1 187 212 singletons whose fathers were known from the Civil Registration System.
RESULTS

Among 1 187 482 studied singletons, 492 developed ALL before age 15 years (Table 1), corresponding to an annual incidence rate of 4.40 (95% CI: 4.02–4.80) per 100 000 person-years. In total, 3409 children were born to women with pregestational diabetes (mean birth weight: 3519 g) of whom six developed ALL (mean birth weight: 3894 g; mean age at diagnosis: 4.2 years, age range 2–8 years). All mothers to these six children with ALL were diagnosed with diabetes before age 30 years and five mothers had received insulin as first-time antidiabetic treatment. Further, we identified 24 306 children born to women with gestational diabetes (mean birth weight: 3537 g) of whom 14 developed ALL (mean birth weight: 3707 g; mean age at diagnosis: 3.4 years, age range 1–7 years).

After adjusting for potential confounders, childhood ALL risk among children born to women with pregestational or gestational diabetes was 2.91-fold (95% CI: 1.30–6.51) and 1.75-fold (95% CI: 1.02–2.98) increased, respectively, compared with children born to nondiabetic women (Table 2). In analysis of pregestational diabetes, HR were statistically significantly increased for B-cell precursor ALL and for the prenatally initiated karyotypes (ETV6-RUNX1 or high-hyperdiploidy ALL), while HRs associated with gestational diabetes were only statistically significantly increased among the prenatally initiated karyotypes. The risk estimates remained unchanged in models including only potential confounders (Table 2) and both potential confounders and mediators, respectively (data not shown).

HRs for ALL associated with gestational diabetes did not differ in strata of birth weight (birth weight < 3540 g: HR = 1.68, 95% CI: 0.75–3.81 vs birth weight ≥ 3540 g: HR = 1.78, 95% CI: 0.88–3.61; p for interaction = 0.92). Neither did we find statistically significant differences between the HRs for ALL associated with pregestational diabetes stratified by birth weight (birth weight < 3540 g: HR = 1.10, 95% CI: 0.16–7.87 vs birth weight ≥ 3540 g: HR = 4.30, 95% CI: 1.77–10.43; p for interaction = 0.16).

Paternal diabetes was not statistically significantly associated with childhood ALL risk (HR = 1.20, 95% CI: 0.57–2.53) (Table 2). Finally, we found no association between offspring ALL and later risk of diabetes in the mother (HR = 0.92, 95% CI: 0.46–1.85, based on eight mothers diagnosed with diabetes after offspring ALL).

DISCUSSION

In this nationwide register-based cohort study, we found that the risk of childhood ALL in children born to women with pregestational or gestational diabetes was 2.9- and 1.7-fold increased, respectively.

The observed association with pregestational diabetes in our study is likely attributable to type 1 diabetes because the vast majority of these women had received insulin as first-time antidiabetic treatment and were diagnosed before age 30 years. However, the fact that gestational diabetes was also associated with ALL risk suggests that the association with maternal diabetes is not exclusively related to the autoimmunity of type 1 diabetes.

Because of its level of detail regarding both maternal diabetes and offspring ALL, our investigation expands the existing literature on the association between the two conditions considerably. Recently, a statistically significantly 1.4-fold increased ALL risk in offspring of women with pregestational diabetes and a statistically non-significantly 1.3-fold increased ALL risk in offspring of women with gestational diabetes were observed in a California birth record study (Contreras et al, 2016). However, unlike in our investigation, information was available on neither type of pregestational diabetes nor on ALL subtypes in the California study. Limitations of similar nature concerning exposure and outcome combined with small study populations have hampered the interpretation of other previous investigations reporting statistically non-significantly increased risks of ALL (McLaughlin et al, 2006; Milne et al, 2007) or of leukaemia (Petridou et al, 1997; Podvin et al, 2006) or statistically significantly increased risks of cancer overall (Westbom et al, 2002; Wu et al, 2012) in offspring of women with diabetes.

Not mirrored by similarly strong associations with paternal diabetes or later maternal diabetes, the increased ALL risk in children born to women with diabetes is unlikely to reflect shared genetic risk factors; rather it may reflect that circumstances characteristic of diabetic pregnancies such as intrauterine hyperglycaemia promote offspring ALL development. In support hereof, we observed that children born to women with pregestational diabetes who developed ALL weighed on average 400 g more than those who did not, suggesting that maternal hyperglycaemia was more pronounced in the former. Birth weight is positively associated with the level of insulin-like growth factor I, which could increase childhood ALL risk by causing proliferation of progenitor or preleukaemic cells (Ross et al, 1996). Moreover, maternal hyperglycaemia has been associated with a number of epigenetic modifications in the offspring (Ma et al, 2015), which potentially mediate the link between maternal diabetes and offspring’s development of ALL.

Although we observed markedly increased relative risks, the cumulative incidence of childhood ALL in offspring of women with diabetes remains low, that is, 0.15 and 0.08% among children
below 15 years of age born to women with pregestational and gestational diabetes, respectively.

The strengths of this study include its nationwide coverage, longitudinal and independent ascertainment of maternal diabetes and offspring ALL development as well as information on important covariates including birth weight. Contrary to previous investigations, our study included information on pregestational diabetes treatment and detailed information on ALL subtypes. Conversely, the low number of children with ALL born to women with pregestational or gestational diabetes had implications for the precision of risk estimates, reflected by the wide CIs. Finally, the apparent absence of association with paternal diabetes or later maternal diabetes was based on a small number of exposed events.

In conclusion, we found that maternal pregestational and gestational diabetes are risk factors for childhood ALL in the offspring. Further studies are needed to identify the biological mechanisms underlying this association.

ACKNOWLEDGEMENTS

This work was supported by the Danish Childhood Cancer Foundation (grant number 2014-50); the Arvid Nilsson Foundation and the Danish Cancer Research Foundation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-Non Commercial-Share Alike 4.0 Unported License.