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Decreasing relative risk premium

Frank Hansen

February 22 2007

Abstract

We consider the risk premium π demanded by a decision maker
with present wealth x in order to be indifferent between obtaining
a new level of wealth y1 with certainty, or to participate in a lottery
which either results in unchanged wealth x or a level of wealth y2 > y1.
We then define the relative risk premium λ as the quotient between π
and the increase in wealth y1−x which the decision maker puts on the
line by choosing the lottery in place of receiving y1 with certainty. We
study preferences such that the relative risk premium is a decreasing
function of present wealth, and we determine the corresponding class
of utility functions which has several attractive properties and contains
functions frequently used in the literature, including the power utility
functions. The functions in the class are automatically continuously
differentiable, and we characterize them in several ways. Decreasing
relative risk premium in the small implies decreasing relative risk pre-
mium in the large, and decreasing relative risk premium everywhere
implies risk aversion. We finally introduce the notion of partial risk
neutral preferences on binary lotteries and show that partial risk neu-
trality is equivalent to preferences with decreasing relative risk pre-
mium.

JEL classification: D8 and G12.

Key words: Expected utility theory, relative risk premium, preferences
on lotteries, partial risk neutrality.

1 Introduction
In the theory of Morgenstern and von Neumann (with later contributions)
preferences over lotteries are resolved by calculating expected utility from
a utility function u which is unique up to the composition with increasing
affine transformations. The assumptions of greed and risk aversion are then
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characterized by the requirements that u is non-decreasing and concave. It
is well-known [9] that some utility functions within this class imply an im-
plausible fast depreciation of marginal utility as a function of wealth. This
applies for example to functions with constant absolute risk aversion.

Consider a decision maker with wealth x who is given the choice between
obtaining an alternative level of wealth y1 with certainty, or to participate in
a lottery which will result in either unchanged wealth x or a level of wealth
y2 strictly bigger than y1.

The problem arises in situations where the decision maker is confronted
with a choice between two mutually exclusive possibilities. Either engage in
an activity which results in wealth y1 with certainty, or try an alternative
activity which, if successful, gives a higher level of wealth y2 > y1 but may
fail to materialize and then leaves the decision maker with the present level
of wealth x unchanged.

x y1 a y2

Let a = a(x, y1, y2) be the expected level of wealth in the lottery between x
and y2 which gives the same expected utility as obtaining y1 with certainty.
The agent is thus indifferent between obtaining the level of wealth y1 for sure
or participate in a lottery between x and y2 giving the expected wealth a.
We define for y1 < y2 the relative risk premium

λ(x) =
a− y1

y1 − x
x 6= y1

as the quotient between the risk premium π = a− y1 divided by the oppor-
tunity cost y1 − x which the agent puts on the line by choosing the lottery
in place of y1 with certainty. We note that a and therefore λ only depend
on x, y1, y2 and the values of the utility function in these three points. It is
by construction a reflection of the agent’s preferences and is therefore left
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invariant under affine transformations of the utility function, which may also
be verified directly.

The discussion above is made under the implicit assumptions that the
utility function is concave and x < y1 such that the risk premium is positive
and the certainty equivalent is placed between y1 and y2. But this is done
only to facilitate the reader’s perception, and no such restrictions are to be
imposed. If for example the utility function is convex, then the risk premium
is negative.

Definition 1.1. Let u be an increasing utility function defined in an open
interval I = (α, β). We say that u represents decreasing relative risk premium,
if the relative risk premium λ(x), for arbitrary y1 < y2 in I, is a decreasing
function in x ∈ I\{y1, y2}.

We develop a very easy-to-use criterion for determining whether a utility
function represents decreasing relative risk premium, cf. Theorem 2.4 (iii),
and it follows that often used utility functions like

u(x) = xα, u(x) =
x

x + λ
, u(x) = log x,

where α ∈ [0, 1] and λ ≥ 0 and their compositions like for example

u(x) =

(
x

x + λ

)α

and u(x) = log

(
x

x + λ

)

all represent decreasing relative risk premium. The property is thus satisfied
in many situations already considered by economists. But there are also
functions, used in for example financial theory, which are not in the class.
This applies most notably to functions like u(x) = 1−exp(−x) with constant
absolute risk aversion.

The notion of relative risk premium focuses more on the terminal level
of wealth than on the pay-off in the lottery. As will be demonstrated later,
it has a local version which makes it possible to compare it with Pratt’s
measure [7] of absolute risk aversion. The two notions are different, but
decreasing relative risk premium implies decreasing absolute risk aversion.
The function u(x) = 1 − exp(−√x) does not represent decreasing relative
risk premium, but it is increasing, concave and the absolute risk aversion is
tending to zero as x approaches infinity.

In Section 3 we consider lotteries of the form (x̃, p) with outcomes (x1, x2),
where p is the probability of obtaining x1. To every set of intertwined out-
comes x1 < y1 < x2 < y2 we introduce in equation (5) a mapping p → q(p),
depending only on the outcomes, of the unit interval into itself. The expected
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outcomes of the lotteries satisfy E(x̃, p) ≤ E(ỹ, q) for every p ∈ [0, 1] and
every q ∈ [0, q(p)]. We say that a decision maker is partially risk neutral if he
prefers (ỹ, q) to (x̃, p) for every p ∈ [0, 1] and every q ∈ [0, q(p)], that is if the
decision maker chooses as if he were risk neutral in these choice situations.

We finally obtain that a decision maker is partially risk neutral if and only
if his preferences represent decreasing relative risk premium. This opens up
the possibility of analyzing markets with highly inhomogeneous investors.

2 Decreasing relative risk premium
It is not at all obvious that a sum of two utility functions, each with de-
creasing relative risk premium, has decreasing relative risk premium, but we
do note that the point-wise limit of utility functions with decreasing relative
risk premium retains the property.

2.1 Geometric description

The expected level of wealth a is calculated by setting

u(x) + (a− x)
u(y2)− u(x)

y2 − x
= u(y1),

therefore the risk premium

π = a− y1 = (y1 − x)

(
[x, y1]u
[x, y2]u

− 1

)
,

where the divided difference [t, s]u is defined by setting

[t, s]u =
u(t)− u(s)

t− s
t 6= s.

The relative risk premium λ is therefore given by

λ(x) =
π

y1 − x
=

[x, y1]u − [x, y2]u
[x, y2]u

,

and it is the relative increase in slope of the line connecting (x, u(x)) and
(y1, u(y1)) in comparison with the line connecting (x, u(x)) and (y2, u(y2)).
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2.2 Various characterizations

We begin by characterizing utility functions with decreasing relative risk
premium in terms of their monotonicity properties when lifted to functions
of two by two matrices. The characterization implies that a sum of utility
functions, each with decreasing relative risk premium, retains the property.
The notion of decreasing relative risk premium may therefore be used also in
the study of aggregated demand.

Let A = (aij) be a Hermitian two by two matrix with eigenvalues λ and
µ in the interval I. It can be written on the form

A =

(
a11 a12

a21 a22

)
= Q

(
λ 0
0 µ

)
Q−1,

where Q is an orthogonal matrix. The functional calculus is defined by setting

u(A) = Q

(
u(λ) 0

0 u(µ)

)
Q−1.

We say that u is 2-monotone in the interval I if

A ≤ B ⇒ u(A) ≤ u(B)

for all Hermitian two by two matrices A and B with eigenvalues in I. Note
that the order relation is defined by setting A ≤ B if B − A is positive
semi-definite.

Theorem 2.1. The relative risk premium λ of an increasing function u is
decreasing if and only if u is 2-monotone.

Proof. The relative risk premium is decreasing if and only if

[x1, y1]u
[x1, y2]u

≥ [x2, y1]u
[x2, y2]u

or equivalently, that the determinant of the (non-symmetric) matrix

(1) det

(
[x1, y1]u [x1, y2]u

[x2, y1]u [x2, y2]u

)
≥ 0

for x1 < x2 and y1 < y2. But Löwner’s theorem [5] characterizes the 2-
monotone functions by exactly this condition. QED
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Inspection of the reference reveals that condition (1) is only required for
points in I with x1 < y1 < x2 < y2 and then it is automatically satisfied for
all points with (x2 − x1)(y2 − y1) > 0. Löwner’s characterization of matrix
monotonicity is highly sophisticated even in the case of only two by two
matrices, and it is outside the scope of the present paper to give the proof.
Although the area has received much attention there are no good references
other than the (difficult to read) original article. This is because later authors
have concentrated on alternative ways of characterizing matrix monotonicity
resulting in a situation where condition (1), even among specialists, is not
well known.

Corollary 2.2. Let I be an open interval.

(i) The set of utility functions defined in I with decreasing relative risk
premium is a convex cone.

(ii) If u1 and u2 are utility functions with decreasing relative risk premium
defined in open intervals I1 and I2 and u1(I1) ⊆ I2, then the composed
utility function u(x) = u2(u1(x)) has decreasing relative risk premium.

Proof. The two assertions are trivial consequences of 2-monotonicity. Indeed,
if A ≤ B are Hermitian two by two matrices with eigenvalues in I and u1

and u2 are 2-monotone, then

(u1 + u2)(A) = u1(A) + u2(A) ≤ u1(B) + u2(B) = (u1 + u2)(B)

which shows that u1 + u2 is 2-monotone and hence have decreasing relative
risk premium. Similarly, u1(A) ≤ u1(B) and hence u2(u1(A)) ≤ u2(u1(B))
showing that u1 ◦ u2 is 2-monotone and therefore has decreasing relative risk
premium. QED

Corollary 2.3. Let u be a utility function defined in an open interval I with
decreasing relative risk premium, then

(i) u is automatically continuously differentiable.

(ii) If the derivative u′(x) = 0 in some point x ∈ I, then u is constant.

Proof. The first item is a non-trivial part of Löwner’s theorem [5]. Since u
is continuously differentiable we may in condition (1) let y1 tend to x1 and
let y2 tend to x2 to obtain

(2) u′(x1)u
′(x2) ≥ [x1, x2]

2
u ≥ 0.

Thus, if u′(x1) = 0 then u(x2) = u(x1) for all x2 in I. QED
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The necessary condition in equation (2) may be reformulated as positive
definiteness of the matrix

(3)
(

u′(x1) [x1, x2]u
[x1, x2]u u′(x2)

)
x1, x2 ∈ I.

For a continuously differentiable function u this condition also implies 2-
monotonicity [5] and therefore decreasing relative risk premium.

A utility function with decreasing relative risk premium is automatically
continuously differentiable, but it may not be twice differentiable. However,
we may in most applications assume that it is even infinitely many times
differentiable. Indeed, let ϕ be a positive and even C∞-function defined in
the real axis, vanishing outside the closed interval [−1, 1] and normalized
such that ∫ 1

−1

ϕ(x) dx = 1.

For any locally integrable function u defined in an open interval (a, b) we
form its regularization

uε(t) =
1

ε

∫ b

a

ϕ

(
t− s

ε

)
u(s) ds t ∈ R

for small ε > 0, and realize that it is infinitely many times differentiable. For
t ∈ (a + ε, b− ε) we may also write

uε(t) =

∫ 1

−1

ϕ(s)u(t− εs) ds.

If u is continuous, then uε converges uniformly to u on any compact subinter-
val of (a, b). If u is a utility function with decreasing relative risk premium,
then it is 2-monotone in (a, b) and uε is 2-monotone in the slightly smaller
interval (a + ε, b − ε). In conclusion, u is the uniform limit in any compact
subinterval of (a, b) of the utility functions uε which are infinitely many times
differentiable and have decreasing relative risk premium.

We can now give a concrete description of the set of utility functions
representing preferences with decreasing relative risk premium (the proof
may be found in the appendix).

Theorem 2.4. Let u be a strictly increasing three times continuously differ-
entiable function defined in an open interval I. The following conditions are
equivalent:

(i) u has decreasing relative risk premium.
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(ii) The matrix 


u′(x)
u′′(x)

2

u′′(x)

2

u′′′(x)

6




is positive semi-definite for each x ∈ I.

(iii) The derivative u′ can be written on the form

u′(x) =
1

c(x)2
x ∈ I,

where c is a positive concave function.

It is an easy consequence of Theorem 2.4 (iii) that the utility functions
mentioned in the introduction represent decreasing relative risk premium.
Indeed, if we for each of these functions calculate the corresponding function
c(x) such that u′(x) = c(x)−2,

u(x) = xα c(x) = α−1/2x(1−α)/2

u(x) =
x

x + λ
c(x) = λ−1/2(x + λ)

u(x) = log x c(x) = x1/2,

then we realize that c(x) in each case is positive and concave. But we also
realize that utility functions which are not concave may have the same prop-
erty. Consider for example the function

u(x) =
1

1− x
0 < x < 1,

then u′(x) = c(x)−2 where c(x) = 1− x is positive and concave in (0, 1). The
increasing function u(x) is therefore both convex and represents decreasing
relative risk premium.

Finally, the utility function u(x) = 1− e−x is increasing, concave and has
constant absolute risk aversion, but does not represent decreasing absolute
risk premium. Indeed, u′(x) = c(x)−2 and the function c(x) = ex/2 is not
concave.

2.3 In the small and in the large

The notion of decreasing relative risk premium depends on the comparison
of utility values for different and possibly wildly separated levels of wealth,
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and it is therefore of a global nature by construction. A priory it is far from
obvious whether it would be possible to piece together utility functions, which
each has decreasing relative risk premium in small but overlapping intervals,
and in this way obtain a function with decreasing relative risk premium in
the union of the intervals.

Corollary 2.5. Decreasing relative risk premium in the small implies de-
creasing relative risk premium in the large.

Proof. Consider a function u defined in the union of two overlapping open
intervals I1 and I2 such that the restrictions u|I1 and u|I2 have decreasing
relative risk premium. We want to prove that u necessarily has decreasing
relative risk premium also in the union I1 ∪ I2. Possibly by first taking its
regularization we may assume that u is three (or infinitely many) times con-
tinuously differentiable. If u′(x) = 0 for any x in the union I1∪ I2 then u is a
constant function. We may therefore also assume that u is strictly increasing.
The statement is now a consequence of item (ii) in Theorem 2.4.

Consider now a utility function u defined in an open interval I such that u
has decreasing relative risk premium in a (possibly very small) neighborhood
of each point x ∈ I. Consider a fixed x in I and let J be the union of all
open intervals in I containing x and such that u has decreasing relative risk
premium in each of the intervals. It follows by the preceding argument that u
has decreasing relative risk premium in J. If J is a proper subset of I there is
a y ∈ J which is a boundary point of J and a small open interval containing
y in which u has decreasing relative risk premium. Repeating the argument
we may thus conclude that u has decreasing relative risk premium in a larger
interval than J contradicting the construction of J. Therefore J = I and u
has decreasing relative risk premium in I. QED

Corollary 2.6. Let u be a function with decreasing relative risk premium in
the interval (x0,∞) for some x0 ∈ R. Then u is concave. If in addition u
is three times continuously differentiable, then the representing function c in
Theorem 2.4 (iii) is increasing.

Proof. We may by possibly considering its regularization assume that u is
three times continuously differentiable. The derivative then has the form

u′(x) =
1

c(x)2
,

for some positive concave function c. But a positive concave function defined
on (x0,∞) can not decrease in any point, since otherwise it would, because
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of concavity, become negative for large values of x ∈ (x0,∞). Therefore
c′(x) ≥ 0 and

u′′(x) = −2
c′(x)

c(x)3
≤ 0

showing that u is concave. QED

It is remarkable that decreasing relative risk premium, which is a measure
of risk taking, implies risk aversion on infinite intervals (x0,∞). The reason
is clear from the above proof. If u(x) were not concave everywhere, then
c′(x) would be negative for some x and c(x), which is concave, would then go
to zero in a bounded interval. The utility function would consequently tend
asymptotically to infinity as x approached some finite value. In other words,
if the decreasing relative risk premium were not tempered by risk aversion,
then the utility would increase towards infinity for finite levels of wealth.

Corollary 2.7. Let u be a three times continuously differentiable function
representing decreasing relative risk premium in the interval (x0,∞) for some
x0 ∈ R.

(i) The Arrow-Pratt measure of absolute risk aversion −u′′(x)/u′(x) is a
decreasing function in x and tends to zero as x approaches infinity.

(ii) The measure of relative risk aversion, −xu′′(x)/u′(x), is for x ≥ 0 an
increasing function of x.

Proof. The derivative of the absolute risk aversion

d

dx

(
−u′′(x)

u′(x)

)
=

u′′(x)2 − u′′′(x)u′(x)

u′(x)2

is negative if and only if u′(x)u′′′(x) ≥ u′′(x)2. But since u satisfies the even
stronger condition

u′(x)u′′′(x) ≥ 3

2
u′′(x)2 x ∈ I,

cf. Theorem 2.4 (ii), we derive that the absolute risk aversion is decreasing
in x. The absolute risk aversion may be written on the form

−u′′(x)

u′(x)
=

2c′(x)

c(x)

where we used Theorem 2.4 (iii), and we note that it is non-negative by
Corollary 2.6. The derivative c′(x) is decreasing since c(x) is concave. The
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absolute risk aversion therefore tends to zero if c(x) goes to infinity. If on
the other hand c(x) is bounded, then the derivative c′(x) goes to zero as x
approaches infinity, and we obtain the same conclusion.

The second statement is obtained by considering the derivative of the
relative risk aversion

d

dx

(
2xc′(x)

c(x)

)
= 2

c′(x)− xc′′(x)

c(x)2
,

which for x ≥ 0 is non-negative since c is increasing and concave. QED

3 Preferences on lotteries
Suppose that a decision maker with utility function u has to decide between
lotteries x̃ and ỹ with outcomes (x1, x2) and (y1, y2) respectively. Then ỹ is
preferred if the expected utilities satisfy

Eu(x̃, p) = pu(x1) + (1− p)u(x2) ≤ qu(y1) + (1− q)u(y2) = Eu(ỹ, q),

where p is the probability of outcome x1 in x̃ and q is the probability of
outcome y1 in ỹ. The only case difficult to analyze is when the outcomes are
intertwined like x1 < y1 < x2 < y2. We then introduce the numbers

(4) a =

√
(x2 − y1)(y2 − x1)

(x2 − x1)(y2 − y1)
, b =

√
(y1 − x1)(y2 − x2)

(x2 − x1)(y2 − y1)

and note that they only depend on the possible outcomes.

Lemma 3.1. Let x1 < y1 < x2 < y2 be real numbers. The mapping

(5) q(p) = pa2 + 2p1/2(1− p)1/2ab + (1− p)b2,

where a and b are defined in (4), maps the unit interval [0, 1] into itself. It
is minimal in the sense that there exists a probability p ∈ [0, 1] such that
the expected outcomes E(x̃, p) and E(ỹ, q(p)) of the two lotteries are equal.
Furthermore, the expected outcomes satisfy

E(x̃, p) ≤ E(ỹ, q)

for every p ∈ [0, 1] and q ∈ [0, q(p)].
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Proof. A simple calculation shows that a2 + b2 = 1, therefore the matrix

Q =

(
a b
−b a

)

is orthogonal, that is Q∗ = Q−1. The vector given by

Q

(
p1/2

(1− p)1/2

)
=

(
ap1/2 + b(1− p)1/2

bp1/2 − a(1− p)1/2

)

is consequently a unit vector, and since

(ap1/2 + b(1− p)1/2)2 = pa2 + 2p1/2(1− p)1/2ab + (1− p)b2 = q(p)

we obtain 0 ≤ q(p) ≤ 1. We obtain by tedious calculations

(6) Q−1

(
y1 0
0 y2

)
Q−

(
x1 0
0 x2

)
=

(
α2 αβ
αβ β2

)
,

where

α =

√
(y1 − x1)(y2 − x1)

(x2 − x1)
, β =

√
(x2 − y1)(y2 − x2)

(x2 − x1)
.

Since the right hand side of (6) is positive semi-definite, we have for arbitrary
p ∈ [0, 1] that

E(x̃, p) = px1 + (1− p)x2

=

((
x1 0
0 x2

)(
p1/2

(1− p)1/2

) ∣∣∣
(

p1/2

(1− p)1/2

))

≤
(

Q−1

(
y1 0
0 y2

)
Q

(
p1/2

(1− p)1/2

) ∣∣∣
(

p1/2

(1− p)1/2

))

=

((
y1 0
0 y2

)
Q

(
p1/2

(1− p)1/2

) ∣∣∣Q
(

p1/2

(1− p)1/2

))

= q(p)y1 + (1− q(p))y2

= E(ỹ, q(p)) ≤ E(ỹ, q), 0 ≤ q ≤ q(p).

Finally, for p = α(α2 + β2)−1/2 we obtain E(x̃, p) = E(ỹ, q(p)). QED

The proof of the next theorem may be found in the appendix.
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Theorem 3.2. Let u be a utility function defined in an open interval I, and
let x1 < y1 < x2 < y2 be intertwined outcomes in two lotteries x̃ and ỹ. If u
has decreasing relative risk premium, then the expected utilities

Eu(x̃, p) ≤ Eu(ỹ, q) 0 ≤ q ≤ q(p)

for every p ∈ [0, 1], where q(p) is the function defined in Lemma 3.1. If on
the other hand a decision maker share these preferences on lotteries, then he
necessarily has decreasing relative risk premium.

A decision maker with decreasing relative risk premium makes the same
decisions as a risk neutral decision maker would do when confronted with
the choices in the preceding theorem, cf. Lemma 3.1. This is not surprising
since a risk neutral decision maker has decreasing relative risk premium.

Definition 3.3. We say that a decision maker is partially risk neutral, if
he prefers (ỹ, q) to (x̃, p) for every p ∈ [0, 1] and q ∈ [0, q(p)] for all binary
lotteries (x̃, p) and (ỹ, q) with intertwined outcomes x1 < y1 < x2 < y2, where
q(p) is the function defined in Lemma 3.1.

Note that the expected outcomes of the lotteries in the preceding defini-
tion satisfy E(x̃, p) ≤ E(ỹ, q). We have thus established:

Theorem 3.4. A decision maker is partially risk neutral if and only if his
preferences represent decreasing relative risk premium.

3.1 Examples

Heterogeneous decision makers with possibly very different utility functions,
but of the form mentioned in the introduction, nevertheless share preferences
on the risky lotteries exhibited in this section. In the following example we
set x1 = 1, y1 = 2, x2 = 3 and y2 = 4. We obtain a =

√
3/2, b = 1/2 and

calculate the probability map

q(p) =
1

4
+

p

2
+

√
3

2
p1/2(1− p)1/2.

We consider two decision makers with utility functions u1(x) = x1/2 and
u2(x) = x4/10. The expected utility of (x̃, p) as a function of p is for the two
decision makers indicated by the two straight lines in the diagram. Since u2 ≥
u1 in the four outcomes, we realize that the upper straight line represents the
expected utility Eu2(x̃, p). We note that, although the decision makers are
heterogeneous, they have for all p ∈ [0, 1] the same preferences on the lotteries
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(x̃, p) and (ỹ, q(p)). In fact, they share these preferences with all decision
makers, some risk averse and some risk lovers, with decreasing relative risk
premium in an open interval containing the four outcomes.

0.2 0.4 0.6 0.8 1
p

1.2

1.4

1.6

1.8

Expected utility

Eu1Hy
�

 , q HpLL

Eu2Hy
�

 , q HpLL

We learned in Theorem 3.2 that a decision maker may share the preferences
on the type of risky lotteries considered in this section with one (and then
with all) decision makers with decreasing relative risk premium, if and only
if he himself has decreasing relative risk premium.

Let us now consider a decision maker with a utility function

u3(x) = 1− exp(2− x)

with constant absolut risk aversion. It does not represent decreasing relative
risk premium, and this is reflected in the next diagram.

0.05 0.1 0.15 0.2 0.25
p

0.1

0.2

0.3

0.4

0.5

0.6

Expected utility

Eu3Hy
�

 , q HpLL
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For small values of p the third decision maker prefers (x̃, p) for (ỹ, q(p)), thus
disagreeing with the first two decision makers.

We have shown that preferences with decreasing relative risk premium
may be equivalently expressed by preferences on risky lotteries. It seems
very difficult to obtain this equivalence without first characterizing the cor-
responding class of utility functions.

4 Appendix
Proof of Theorem 2.4: We rely heavily on the work of Dobsch [1] and
Donoghue [2]. Firstly, we remind that higher ordens divided differences (in
mutually distinct points) are defined recursively by setting

[x1, x2, x3]u =
[x1, x2]u − [x2, x3]u

x1 − x3

[x1, x2, x3, x4]u =
[x1, x2, x3]u − [x2, x3, x4]u

x1 − x4

.

They are symmetric functions in the arguments x1, x2 etc. and if u is three
times continuously differentiable, then the second and third order divided
differences above may be extended to continuous functions. The mean value
theorem for divided difference implies that

[x, x, x]u =
u′′(x)

2!
and [x, x, x, x]u =

u′′′(x)

3!

for arbitrary x ∈ I.
(i) ⇒ (ii) :

If u represents decreasing relative risk premium, then the determinant

D = det

(
[x1, x1]u [x1, x2]u

[x1, x2]u [x2, x2]u

)
≥ 0,

where we write [x, x]u = u′(x). Let x1 6= x2 and subtract the first column
from the second. By using the recursive property of divided differences we
obtain

D = (x2 − x1) det

(
[x1, x1]u [x2, x1, x1]u

[x1, x2]u [x2, x2, x1]u

)
.

Next we subtract the first row from the second row in the new matrix and
obtain

D = (x2 − x1)
2 det

(
[x1, x1]u [x1, x1, x2]u

[x1, x2, x1]u [x1, x2, x1, x2]u

)
.
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By letting x1 and x2 tend to x we obtain

det




u′(x)
u′′(x)

2

u′′(x)

2

u′′′(x)

3!


 ≥ 0.

Since u′(x) > 0 we realize that u′′′(x) cannot be negative. All three principal
determinants in the matrix are thus non-negative, and this implies (ii).
(ii) ⇒ (iii) : Put c(x) = u′(x)−1/2 for x ∈ I. Then c is a positive function
and u′(x) = c(x)−2. By differentiation we obtain u′′(x) = −2c(x)−3c′(x) and

u′′′(x) = 6c(x)−4c′(x)2 − 2c(x)−3c′′(x).

The determinant
1

6
u′(x)u′′′(x)− 1

4
u′′(x)2

is non-negative by (ii), thus inserting the derivatives we obtain

1

6
c(x)−2(6c(x)−4c′(x)2 − 2c(x)−3c′′(x))− 1

4
(−2c(x)−3c′(x))2

= −1

3
c(x)−5c′′(x) ≥ 0,

hence c′′(x) ≤ 0 for every x ∈ I and c is concave.
(iii) ⇒ (i) : First order divided differences may trivially be expressed by

[x1, x2]u =

∫ 1

0

u′((1− t)x1 + tx2) dt.

This is a small part of the Hermite formulae [3]. By using (iii) and the
concavity of c we obtain

[x1, x2]u =

∫ 1

0

1

c((1− t)x1 + tx2)2
dt

≤
∫ 1

0

1

((1− t)c(x1) + tc(x2))2
dt

= −
∫ 1

0

g′((1− t)c(x1) + tc(x2)) dt

= −[c(x1), c(x2)]g

where we set g(x) = x−1 and used the Hermite formula once more. But since

−[c(x1), c(x2)]g =
1

c(x1)c(x2)
=

√
u′(x1)u′(x2)
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we obtain u′(x1)u
′(x2) ≥ [x1, x2]

2
u. But this is the local condition (3) for

2-monotonicity. Therefore u represents decreasing relative risk premium.
QED

Proof of Theorem 3.2: Since by Theorem 2.1 the utility function u is 2-
monotone, we may apply it in the matrix inequality

(
x1 0
0 x2

)
≤ Q−1

(
y1 0
0 y2

)
Q

derived from (6) and obtain
(

u(x1) 0
0 u(x2)

)
≤ Q−1

(
u(y1) 0

0 u(y2)

)
Q.

Consequently,

Eu(x̃, p) = pu(x1) + (1− p)u(x2)

=

((
u(x1) 0

0 u(x2)

) (
p1/2

(1− p)1/2

) ∣∣∣
(

p1/2

(1− p)1/2

))

≤
(

Q−1

(
u(y1) 0

0 u(y2)

)
Q

(
p1/2

(1− p)1/2

) ∣∣∣
(

p1/2

(1− p)1/2

))

= q(p)u(y1) + (1− q(p))u(y2)

= Eu(ỹ, q(p)) ≤ Eu(ỹ, q), 0 ≤ q ≤ q(p),

where we used that Q transforms the probability distribution (p, 1− p) into
the distribution (q(p), 1− q(p)).

Suppose on the other hand that a decision maker with increasing utility
function u defined in an open interval I prefers the lotteries (ỹ, q(p)) for (x̃, p)
for arbitrary outcomes x1 < y1 < x2 < y2 in I and every p ∈ [0, 1], where
q(p) is defined as in Lemma 3.1. Let now A and B be Hermitian two by two
matrices with eigenvalues in I and suppose

B = A + cP,

where c > 0 and P is the orthogonal projection on a single unit vector.
Donoghue proved [2, Chapter VI] that if x1, x2 are the eigenvalues of A and
y1, y2 are the eigenvalues of B, both written in increasing order, then they
are intertwined x1 < y1 < x2 < y2 and the equation B − A = cP may be
uniquely written as in equation (6). The decision maker’s preferences on
lotteries therefore imply that u(A) ≤ u(B). Let finally A and B be arbitrary
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Hermitian two by two matrices with eigenvalues in I and suppose that A ≤ B.
By the spectral theorem we may write

A ≤ C ≤ B,

where the differences C − A and B − C both are positive multiples of one-
dimensional projections. Repeated application of the previous result thus
entails u(A) ≤ u(B). But this means that u is 2-monotone and the decision
maker therefore has decreasing relative risk premium. QED
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