Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities

Liu, Shibin; Pu, Shengyan; Deng, Daili; Huang, Hongyan; Yan, Chun; Ma, Hui; Razavi, Bahar S.

Published in: Environment International

DOI: 10.1016/j.envint.2019.105277

Publication date: 2020

Document version Publisher's PDF, also known as Version of record

Document license: CC BY-NC-ND

Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities

Shibin Liub,c,1, Shengyan Pua, Chun Yanb, Hui Maad, Bahar S. Razaviee

Keywords:
Soil contamination
Enzyme activities
Manure
Biochar
Rhizosphere

ABSTRACT
Chromium (Cr) contamination is especially hazardous to soil biota. Application of manure and biochar has been frequently proposed to remediate Cr-contaminated soil. However, the understanding of mechanisms behind manure and biochar impacts on soil enzyme activities requires advanced visualization technologies. For the first time, we compared manure and its biochar influence on the spatial distribution of β-glucosidase, N-acetyl-glucosaminidase and phosphomonoesterase activities in Cr-contaminated soil using direct zymography. Maize was planted for 45 days in (a) soil mixed with manure, (b) soil mixed with manure-derived biochar and (c) soil without any addition. Soil pH decreased over 45 days, inducing an increase in acid soluble Cr. The concomitant decrease in β-glucosidase and N-acetyl-glucosaminidase activities explained the narrowing rhizosphere extent of enzyme activities by 13–44%, indicating that increased Cr bioavailability decreases microbial activities. A larger maize performance index and the greatest plant shoot/root ratio after biochar application suggested enhanced maize growth (p < 0.05). In contrast, manure induced the narrowest extent of β-glucosidase and phosphomonoesterase activities due to the addition of labile organic compounds and nutrients following its application. Our study emphasizes the importance of pH on Cr bioavailability and enzyme activities and demonstrates that biochar application is more ideally suited for remediating Cr-contaminated soil.

1. Introduction

Soil contamination with chromium (Cr) has gained substantial attention worldwide because of the high risk of inducing hazardous consequences (Shahid et al., 2017). For instance, Cr contamination alters soil microbial community structure and activities, and depresses plant growth and development (Mallick et al., 2010; Carpio et al., 2018; Ertani et al., 2017). The influence of Cr on plant growth is much stronger in the rhizosphere (e.g., a small volume up to a few millimeters surrounding living roots) compared to bulk soil (Hinsinger et al., 2009; Antoniadis et al., 2017a). The rhizosphere contains various rhizodeposits released by roots, which stimulate microbial activities and enzyme production and form one of the most dynamic and intense hotspots of enzyme activities in terrestrial ecosystems (Bais et al., 2006; Oburger et al., 2014). Through the rhizosphere, excessive Cr may inhibit plant growth by decreasing chlorophyll content, depressing plant growth and inhibiting germination (Rizvi and Khan, 2018). Enzymes are the main biological drivers of soil carbon and nutrient cycling processes and an early indicator of soil microbial and root activities to reflect the impact of heavy metal contamination (Sinsabaugh et al., 2008). Sharp gradients are formed for rhizosphere enzyme activity and typically demonstrate a sigmoidal curve (Kuz yakov and Razavi, 2019). The distance from the root center to bulk soil where enzyme activities become stable has been generally defined as the rhizosphere extent of enzyme activity. Many previous studies have focused on visualizing the rhizosphere extent of enzyme activity using the in situ zymography techniques (Razavi et al., 2016; Liu et al., 2017; Pu et al., 2019). For instance, the rice rhizosphere extent of enzyme

ARTICLE INFO
Handling editor: Da Chen
Keywords:
Soil zymography
Heavy metal
Soil contamination
Enzyme activities
Manure
Biochar
Rhizosphere

* Corresponding author at: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, PR China.
E-mail addresses: pushengyan13@cdut.cn, pushengyan@gmail.com (S. Pu).
1 The authors declare that there is no conflict of interests regarding the publication of this paper. S. Liu and D. Deng contributed equally to this work.
https://doi.org/10.1016/j.envint.2019.105277
Received 5 August 2019; Received in revised form 9 October 2019; Accepted 16 October 2019
Available online 11 November 2019
0160-4120/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
activities in response to phosphorus and cellulose applications has been investigated (Wei et al., 2018). The total enzymatic hotspot area for the whole soil profile as affected by multiple heavy metals was also calculated (Duan et al., 2018).

Regarding the impact of heavy metals, the activities and dynamic behaviors of enzymes are mainly governed by the type, speciation and bioavailability of contaminants (Abdu et al., 2016; Shahid et al., 2017). For instance, Cr(VI) is more toxic to plants and microbes compared to Cr(III) because of its high reactivity with other elements. The potentially mobile fractions, e.g., the exchangeable, reducible, and oxidizable fractions, are considered to be bioavailable (Rinklebe and Shaheen, 2017). Many in situ approaches have been used to remediate heavy metal contamination, with the goal of weakening the migration of heavy metals and reducing their bioavailability (Eivazi and Tabatabai, 1977). Increasing soil organic matter content has yielded promising outcomes with respect to amending Cr-contaminated soil and reducing stress to microbial and root activities (Antoniadis et al., 2017b, 2018; Abbas et al., 2019). Both manure and the biochar involved in remediating Cr-contaminated soils and improving microbial and root activities have their own specific mechanisms (Park et al., 2011; Li et al., 2017). First, although both manure and biochar can immobilize heavy metals by adsorption, promote the formation of soil aggregates and drive heavy metal reduction reactions, the capacities of manure and biochar are diverse and heavy metal-specific (Park et al., 2011; Li et al., 2017; Zhu et al., 2017). Second, the loading of indigenous enzymes and microbes from manure into soil will occur following their application (Criotet et al., 2007), which does not occur with manure-derived biochar. Third, manure and biochar provide organic compounds with various stabilities (Yanardağ et al., 2017). Manure generally maintains easily decomposed organic matters and nutrient contents, while highly recalcitrant aromatic compounds are found in manure-derived biochar (Dinesh et al., 1998; Zornoza et al., 2016). This leads to a trade-off between more complete decomposition and mineralization and the incorporation of these compounds as soil organic matter. Though manure and its biochar have been widely recommended, there is a lack of mechanistic understanding regarding the enzymatic responses of plants and microorganisms to manure and biochar application in Cr-contaminated soil.

Here, we used direct soil zymography to visualize the spatial distribution of enzyme activities on the soil profile. Soil samples were collected from a chromium slag field. Maize (Zea mays L.) plants were grown in the rhizoboxes. We compared cow manure with its biochar application using three treatments: 1) Manure: mixed manure throughout the soil; 2) Biochar: mixed biochar throughout the soil; and 3) Control: a control with only soil. The BCR sequential extraction procedure was used to determine the chemical speciation of Cr in soil. Considering the possible diverse impact of Cr for different enzymes, direct soil zymography was used to visualize the spatial and temporal distribution of the activity for the three enzymes: β-glucosidase, phosphomonooesterase and N-acetyl-glucosaminidase. β-glucosidase is responsible for catalyzing the hydrolysis of terminal 1,4-linked β-D-glucose residues from β-D-glucosides and is involved in the carbon (C) cycle (German et al., 2012). Phosphomonooesterase, which catalyzes the hydrolysis of organic phosphorus (P) compounds to inorganic P, is involved in the P cycle (Eivazi and Tabatabai, 1977; Malcolm, 1983). N-acetyl-glucosaminidase (chitinase), which catalyzes the decomposition of chitin to yield low molecular weight chito-oligomers, is responsible for C- and nitrogen (N) acquisition (Huang, 2012). We hypothesized that: (1) the application of manure and its biochar will reduce the bioavailability of Cr to varying degrees; (2) the rhizosphere extent of enzyme activities will be wider than the bulk soil hotspots extent of enzyme activities because of the co-release of enzymes by roots and microbes within the rhizosphere (here the bulk soil hotspots were defined as the small volume of bulk soil where microorganisms gather and aggregate (Ekschmitt et al., 2005)); (3) the extent will be narrower in manure-treated soil compared to biochar-treated soil due to high nutrient content and the integration of easily decomposed organic compounds.

2. Materials and methods

2.1. Soils, manure and its biochar

Soil samples were collected at a depth of 0–30 cm close to an abandoned chemical plant (105° 31′ 32” E, 28° 54′ 19” N, 290 m a.s.l.) located in Luzhou, Sichuan province, China. The chemical plant mainly produced potassium dichromate and was abandoned in 1998. The soil was highly contaminated by Cr because of slag accumulation. Samples were stored in Ziploc bags and immediately transported to the laboratory at Chengdu University of Technology. After removing roots and stones, soil samples were passed through a 2-mm sieve and stored in a 4 °C refrigerator before the subsequent incubation experiment. A small amount of soil was air-dried, milled through a 100-mesh sieve and then prepared for basic physical and chemical analyses.

Cow manure was collected from a farm located in the suburb of Suining, Sichuan province. Manure was spread under a shed, air-dried for two weeks and then passed through a 2-mm sieve for further analysis. Manure-derived biochar was produced from pyrolysis in a temperature-controlled muffle furnace under oxygen-limited conditions. The temperature was ramped at 5 °C min⁻¹ up to 420 °C, and held constant for 120 min at 420 °C. After natural cooling, biochar was milled through a 2-mm sieve and used for basic property analysis (Fig. S1). The basic characteristics of soil, manure and biochar are listed in Tables 1 and 2.

2.2. Experimental set-up

This study included three treatments: (1) Manure: mixed manure throughout the Cr-contaminated soil; (2) Biochar: mixed biochar throughout the Cr-contaminated soil; and (3) Control: Cr-contaminated soil without any addition. Manure and its biochar were homogeneously mixed with soil at a dose of 5 g C kg⁻¹ soil to ensure that the responses of microbial properties (e.g., enzyme activities) to the additives were intense (Yanardağ et al., 2017). This corresponds to 34 wt-% of C in the soil before manure and biochar application. Preincubation was initiated in triplicate for each treatment by loading fresh samples into 9 rhizoboxes (23 cm × 16 cm × 2 cm), each containing 700 g soil. From the application dose of 5 g C kg⁻¹ soil, the amount of manure and biochar added in each rhizobox was 8.97 g and 7.0 g, respectively. Maize (Zea mays L.) seeds were surface-sterilized and then germinated in a sterile culture dish for 72 h to ensure plant growth and to avoid fungal contamination.

| Properties* | Moisture (%) 27.00 ± 0.21 | Cr(VI) 150 ± 36.12 | pH 5.00 ± 0.01 | Cr(T) 2000 ± 64.00 | CEC (c mol kg⁻¹) 7.90 ± 0.17 | Pb 0.33 ± 0.00 | EC (μS cm⁻¹) 33 ± 0.58 | Cu 23.00 ± 21.87 | SOM (%) 2.50 ± 0.04 | Zn 110 ± 11.43 | TN (g kg⁻¹) 1.60 ± 0.01 | Cd 0.06 ± 0.12 | TP (g kg⁻¹) 0.33 ± 0.00 | Ni 26.00 ± 1.90 | MBC (g kg⁻¹) 0.22 ± 0.00 | As 9.20 ± 0.38 |
|-------------|----------------|------------------|-------------|------------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|

*The unit of all heavy metal is mg kg⁻¹. CEC: cation exchange capacity; EC: electrical conductivity; SOM: soil organic carbon; TN: total nitrogen; TP: total phosphorus; MBC: microbial biomass carbon. Mean ± SE, n = 3.
<table>
<thead>
<tr>
<th>Properties</th>
<th>Manure</th>
<th>Biochar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>0.082 ± 0.005</td>
<td>0.043 ± 0.001</td>
</tr>
<tr>
<td>pH</td>
<td>8.60 ± 0.015</td>
<td>9.5 ± 0.033</td>
</tr>
<tr>
<td>Ash content (%)</td>
<td>11.0 ± 0.066</td>
<td>27.0 ± 0.46</td>
</tr>
<tr>
<td>CEC (c mol kg⁻¹)</td>
<td>13.00 ± 0.67</td>
<td>44.0 ± 0.28</td>
</tr>
<tr>
<td>Cr (mg kg⁻¹)</td>
<td>16.0 ± 1.6</td>
<td>57.0 ± 2.7</td>
</tr>
<tr>
<td>Total carbon (%)</td>
<td>39.0 ± 0.30</td>
<td>50.0 ± 0.42</td>
</tr>
<tr>
<td>TN (g kg⁻¹)</td>
<td>15.0 ± 0.34</td>
<td>26 ± 0.49</td>
</tr>
<tr>
<td>TP (g kg⁻¹)</td>
<td>2.6 ± 0.12</td>
<td>5.6 ± 0.054</td>
</tr>
<tr>
<td>BET (m²·g⁻¹)</td>
<td>0.95</td>
<td>7.0</td>
</tr>
<tr>
<td>Biochar yield (%)</td>
<td>–</td>
<td>30 ± 1.3%</td>
</tr>
</tbody>
</table>

CEC: cation exchange capacity; EC: electrical conductivity; TN: total nitrogen; TP: total phosphorus. BET: Brunauer-Emmett-Teller specific surface area. Biochar yield was calculated by biochar mass/ feedstock dry mass × 100%. Mean ± SE, n = 3.

The rhizoboxes were placed in an incubator with a constant temperature of 25 °C, a photosynthetically active radiation in- (et al., 2016). The rhizoboxes were placed in an incubator with a constant temperature of 25 °C, a photosynthetically active radiation intensity of 300 mmol m⁻²·s⁻¹ and a daytime of 14 h, which are similar to field conditions during growing season. Soil water content was maintained at 65% of the water holding capacity by maintaining the rhizobox at constant weight with distilled water during the growth period.

<table>
<thead>
<tr>
<th>pH</th>
<th>6.70 ± 0.033</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN (g kg⁻¹)</td>
<td>15.5 ± 1.6</td>
</tr>
<tr>
<td>TP (g kg⁻¹)</td>
<td>2.6 ± 0.12</td>
</tr>
<tr>
<td>BET (m²·g⁻¹)</td>
<td>0.95</td>
</tr>
<tr>
<td>Biochar yield (%)</td>
<td>–</td>
</tr>
</tbody>
</table>

To quantify the zymogram images, a standard calibration that relates the activities of various enzymes to zymogram fluorescence (i.e., fluorescence of the saturated membrane) is required. The calibration was established by adding 15 µL of the MET-fluorescent tag substrate solution at concentrations of 0.01, 0.2, 0.5, 1, 2, 4, 6, and 10 mM to the 2 × 2 cm membrane. The area of the MET diffusion was calculated by ImageJ (National Institutes of Health). The membranes used for calibration were imaged under UV light and analyzed in the same manner as the samples (Guber et al., 2018). The processed 16-bit grayscale images were used for further analysis. We calculated the average enzyme activity on the soil profile from the membrane application area to compare the effects of the amendments on soil enzyme activity. The data are shown in Table S1.

To qualify the capacity of roots and microbes to immobilize nutrients and utilize C, the rhizosphere and the extent of bulk soil hotspots of enzyme activities were also calculated based on zymograms (Figs. S5 and S6). Bulk soil hotspots were defined as regions in the bulk soil where enzyme activities are much higher compared to the average soil conditions (i.e., very bright regions in the bulk soil of each zymogram) (Yakov and Blagodatskaya, 2015). The bulk soil hotspots extent of enzyme activities was calculated to indicate the impact of manure and biochar application on soil microbes and to compare with the rhizosphere extent of enzyme activities. Briefly, based on the actual size of the membrane (M), the size of each pixel (E) was calculated by drawing a line along one membrane side and counting the pixel number on this line (N): E = M/N. Five to six straight lines in each of the three zymogram replicates were drawn, starting from the root center or bulk soil hotspot center. Gray values from each line were extracted and the pixel numbers were recorded. Scatter-plots of distance from the root center or bulk soil hotspot center. Gray values were calculated from the distance from the root/bulk soil hotspot center to the constant level of the regression curve was considered as the extent of enzyme activities.

2.3. Soil zymography and imaging procedures

We followed the protocol optimized by Razavi et al. (2016) with a slight modification. Briefly, membranes saturated with 4-methylumbelliflorone (MUF)-substrates were used to visualize enzyme activities. The MUF substrates become fluorescent when enzymatically hydrolyzed, and intensities were visualized by confocal imaging under ultraviolet light (Spohn and Kuzmak, 2013). 4-Methylumbelliferyl-β-D-glucoside (MUF-G), 4-methylumbelliferyl-phosphate (MUF-P) and the MUF-N-acetyl-β-D-glucosaminide (MUF-C) were used as substrates to detect β-glucosidase, phosphatase and N-acetyl-glucosaminidase activity, respectively. All substrates were purchased from Aladdin (China). Each of these substrates was separately dissolved to a concentration of 12 mM in universal buffer (MES buffer, pH: 6.7) (Hoang et al., 2016; Liu et al., 2017). Polyamide membrane filters (i.e., diameter = 2 cm and pore size = 0.45 µm) were cut and adjusted to fit the rhizobox size (i.e., 15.5 × 12.5 cm), then saturated with the specified substrate of each enzyme. The rhizoboxes were opened from the lower, root side and the saturated membranes were placed directly to the soil surface (Razavi et al., 2016; Liu et al., 2017). After incubation for one hour, the membranes were carefully stripped from the soil surface, and the attached soil particles were gently removed with a brush. Then, the membranes were placed in a light-proof box and illuminated by ultraviolet (UV) light. The fluorescence from the previous zymography has no effect on the following zymography according to our test, which was similar with Ma et al. (2017). The position of the UV lamp, the camera (Sony α 6000, Sony Inc.) and the samples was fixed (Fig. S2). The fluorescent intensity of the substrate is proportional to the enzyme activity under UV light.

To quantify the zymogram images, a standard calibration that relates the activities of various enzymes to zymogram fluorescence (i.e., fluorescence of the saturated membrane) is required. The calibration was established by adding 15 µL of the MET-fluorescent tag substrate solution at concentrations of 0.01, 0.2, 0.5, 1, 2, 4, 6, and 10 mM to the 2 × 2 cm membrane. The area of the MET diffusion was calculated by ImageJ (National Institutes of Health). The membranes used for calibration were imaged under UV light and analyzed in the same manner as the samples (Guber et al., 2018). The processed 16-bit grayscale images were used for further analysis. We calculated the average enzyme activity on the soil profile from the membrane application area to compare the effects of the amendments on soil enzyme activity. The data are shown in Table S1.

To qualify the capacity of roots and microbes to immobilize nutrients and utilize C, the rhizosphere and the extent of bulk soil hotspots of enzyme activities were also calculated based on zymograms (Figs. S5 and S6). Bulk soil hotspots were defined as regions in the bulk soil where enzyme activities are much higher compared to the average soil conditions (i.e., very bright regions in the bulk soil of each zymogram) (Yakov and Blagodatskaya, 2015). The bulk soil hotspots extent of enzyme activities was calculated to indicate the impact of manure and biochar application on soil microbes and to compare with the rhizosphere extent of enzyme activities. Briefly, based on the actual size of the membrane (M), the size of each pixel (E) was calculated by drawing a line along one membrane side and counting the pixel number on this line (N): E = M/N. Five to six straight lines in each of the three zymogram replicates were drawn, starting from the root center or bulk soil hotspot center. Gray values from each line were extracted and the pixel numbers were recorded. Scatter-plots of distance from the root center or bulk soil hotspot center. Gray values were calculated from the distance from the root/bulk soil hotspot center to the constant level of the regression curve was considered as the extent of enzyme activities.

2.4. Sample analysis

Soil water content was determined gravimetrically at 105 °C for 8 h. Soil pH was determined using a glass electrode meter (pHs = 320) (ISO 10390, 2005) in a suspension of 1:5 soil/water ratio (w/v). Soil electrical conductivity (EC) was measured based on the electrode method (MEEC, 2016). The cation exchange capacity (CEC) of soil, manure and its biochar was determined by the hexaminecobalt trichloride solution-spectrophotometric method (Aran et al., 2008). The Brunauer-Emmett-Teller (BET) specific surface area was determined through nitrogen adsorption isotherm measurements (Jaroniec et al., 1998). Soil
organic carbon (SOC) was measured with a TOC analyzer coupled with SSM-5000A, and soil organic matter was calculated by multiplying SOC by a coefficient of 1.724 (CSBTS, 1988; Johnston et al., 2009). Total N (TN) was measured using the Kjeldahl method (Elsas, 1995). Total phosphorus (TP) was measured via visible light spectrophotometry (UV-6100, METASH, China) after wet digestion with ethanol and NaOH. Microbial biomass carbon (MBC) was determined using the fumigation-extraction procedure after extraction with 0.5 M K2SO4 (Vance et al., 1987). Total chromium and its chemical speciation were determined by flame atomic absorption spectrophotometry (Ggx-9 Haiguang Beijing) and the BCR sequential extraction procedure modified by Rauret et al. (Rauret et al., 1999; Gao et al., 2010). The concentrations of other heavy metals in digested samples were determined using ICP-MS (ELAN-6000DRC-e). Specifically, 100 mg soil samples were digested by 6 ml chlorozonic acid (mixture of HNO3 and HCl) with a volume ratio of 3:1. Soil NO3−-N and available P concentrations after the incubation were measured by an ultraviolet spectrophotometer (SFAC, 2016; MARAC, 2017). The main characteristics of manure and its biochar were determined accordingly. Fourier transform infrared spectroscopy (FT-IR, IS10) was used to analyze the surface functional groups of manure and biochar before and after incubation. Briefly, after being ground and mixed thoroughly, the test powder was prepared via the KBr disk method (Shi et al., 2019). The spectra were collected in the wavenumber range from 400 cm−1 to 4000 cm−1, with a resolution of 2 cm−1. The average FT-IR spectrum was generated from 10 measurements. The FT-IR spectra were processed through baseline correction, noise reduction and normalization. Manure and biochar were picked out using a tweezer after incubation. The morphological properties (e.g., color and size) of both materials were the criteria for the separation.

2.5. Statistical analysis

Statistical analysis was performed using the SPSS 23.0 software package for Windows (SPSS Inc., Chicago, IL, USA). A one-way analysis of variance (ANOVA) and a least significant difference (LSD) multiple comparisons test (p < 0.05) were used to assess significant differences in soil properties, Cr chemical speciation, enzyme activity and its extent among the three treatments. Pearson correlation analysis was performed to explore the pairwise relationship between different variables (i.e., enzyme activity, heavy metals, and soil pH). The relationship between enzyme activities and the distance away from the root center or bulk soil hotspot center was correlated using a 4-parameter logistic regression. All figures were developed using Origin 9.0 (Origin Lab Inc.).

3. Results

3.1. Soil and plant characteristics

Soil samples taken from the abandoned chemical plant were highly contaminated by chromium (CrT0 = 2000 ± 64 mg kg−1) and the pH equaled 5.0. After incubation for 45 days, soil pH decreased for the Control, Manure and Biochar groups (p < 0.05, Fig. 1A). Before the shoots were cut, soil pH in the Biochar group was higher than that in the Manure group (p < 0.05). At day 45, soil pH in the Biochar group showed a sudden decrease and became lower compared to the pH in the Manure group. Soil pH in the Control group also experienced a strong decrease within the first 15 days and was similar to the Biochar group, but strongly decreased after shoot cutting. Rhizosphere soil pH in the Manure group was lower than bulk soil (p < 0.05), while the pH between the rhizosphere and bulk soil in the Control and Manure groups remained unchanged (p > 0.05, Fig. S5A).

Shoot biomass was higher in the Biochar group compared to the Control and Manure groups (p < 0.05, Fig. 1B). The maize performance index (PI) results calculated from shoot biomass showed that the Biochar group had better maize growth than the Manure group (PIBio = 2.27, PIman = 0.88). The ratio of shoot to root biomass was the highest in the Biochar group (ca. 2.32), followed by the Control (ca. 1.32) and Manure groups (ca. 0.87).

3.2. Chemical speciation of Cr

Manure and its biochar application induced significant chemical speciation dynamics of Cr (Fig. 2 and S6). Exceptions were the oxidizable and residual fractions, which were not influenced by manure and its biochar application during the whole incubation period. However, both fractions were the main speciation of Cr, which in total accounted for approximately 95% of Cr (T).

Acid soluble Cr increased over time, but the increment with time was smaller in the Manure and Biochar groups compared to the Control group (Fig. 2A). This resulted in a decline in acid soluble Cr by 10.66% and 12.38% in the Manure and Biochar groups, respectively, at day 30 compared to the Control group (p < 0.05). A similar decline was found at day 45 (p < 0.05). A negative relationship between soil pH and acid soluble Cr was also confirmed, indicating the strong impact of soil pH on the dynamics of Cr chemical speciation (Table 3). Reducible Cr increased at day 15 and then decreased again (p < 0.05).

At day 45, acid soluble Cr in the rhizosphere soil of the Control group was 19.25% higher compared to bulk soil (Fig. 2C). Rhizosphere soil in the Manure and Biochar groups had higher reducible Cr versus bulk soil (p < 0.05).

3.3. Spatio-temporal distribution of enzyme activities

By applying manure and biochar at a dose of 5 g C kg−1 soil, the rhizosphere extent of enzyme activities varied among the three treatments and decreased gradually from day 5 to day 30 (β-glucosidase: reduction of ca. 1.1 mm in the Control group, 0.3 mm in the Biochar group and 0.4 mm in the Manure group; phosphomonoesterase: reduction of ca. 0.4 mm in the Control group, 0.5 mm in the Biochar group and 0.2 mm in the Manure group). Negative relationships between the extent of β-glucosidase and phosphomonoesterase activities and acid soluble Cr were found (p < 0.05, Table 4). Manure and its biochar application reduced the rhizosphere extent compared to the Control group (p < 0.05; Figs. 3, 4, 57 and 58). The rhizosphere extent of β-glucosidase and phosphomonoesterase activities were the narrowest in the Manure group, followed by the Biochar and Control groups. Furthermore, the rhizosphere extent of enzyme activities were also wider than the bulk soil hotspots extent (Fig. 4). The rhizosphere extent of β-glucosidase activities ranged from 1.2 to 2.5 mm, while the range of bulk soil hotspots extent ranged from 1.0 to 1.8 mm. Phosphomonoesterase activities in the rhizosphere extended from 1.3 to 1.9 mm, but its activities in bulk soil hotspots ranged from 1.1 to 1.8 mm.

A positive relationship between average N-acetyl-glucoaminidase and β-glucosidase activities on soil profile and soil pH was found (p < 0.05, Table 3), while phosphomonoesterase had no significant relation with soil pH. β-glucosidase and phosphomonoesterase were both negatively correlated with acid soluble Cr (p < 0.05). Further, N-acetyl-glucoaminidase was positively correlated with the reducible fraction of Cr.

4. Discussion

4.1. Impact of organic amendments on soil acidification

Soil pH in the Control group strongly decreased by 0.4 units during the first 15 days of incubation and then became stable until day 30. In this process, the H+ concentration increased by 2.5-fold, indicating that the soil became more acidic. Findings from previous studies suggested that soil acidification could result from decomposition of organic
Fig. 1. A, response of soil pH to manure and its biochar application during the whole incubation period; B, plant biomass and shoot/root ratio. The lower-case letters represent significant differences among treatments ($p < 0.05$). Error bars represent standard error (SE). Control: a control soil without any addition. Biochar: soil homogeneously mixed with manure-derived biochar. Manure: soil homogenously mixed with cow manure.

Fig. 2. A, effects of manure and its biochar application on acid soluble Cr; B, effects of manure and its biochar application on reducible Cr; C, acid soluble Cr in rhizosphere soil and non-rhizosphere soil at the end of incubation; D, reducible Cr in rhizosphere soil and non-rhizosphere soil at the end of incubation. Lower-case letters above the bars indicate significant differences among Control, Manure and Biochar ($p < 0.05$). Capital letters in Fig. 2C & D indicate significant differences between rhizosphere and non-rhizosphere soil ($p < 0.05$). Error bars represent standard error (\pm SE). Control: a control soil without any addition. Biochar: soil homogeneously mixed with manure-derived biochar. Manure: soil homogenously mixed with cow manure. Rhizosphere: rhizosphere soil. Non-rhizosphere: non-rhizosphere soil.
Table 3
Correlation coefficients between enzyme activities of soil profile and chemical speciation of Cr based on Pearson correlation.

<table>
<thead>
<tr>
<th>pH</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>NAG</th>
<th>BG</th>
<th>PHOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>0.24</td>
<td>0.25</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>F1</td>
<td>1</td>
<td>0.24</td>
<td>0.25</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>F2</td>
<td>1</td>
<td>0.24</td>
<td>0.25</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>F3</td>
<td>1</td>
<td>0.24</td>
<td>0.25</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>F4</td>
<td>1</td>
<td>0.24</td>
<td>0.25</td>
<td>0.22</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>NAG</td>
<td>1</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>PHOS</td>
<td>1</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
</tr>
</tbody>
</table>

F1–F4 represent the acid soluble, reducible, oxidizable and residue fractions of heavy metals, respectively. NAG, BG, PHOS represent the N-acetyl-glucosaminidase, β-glucosidase and phosphomonoesterase enzyme activity, respectively. Significant correlations were shown in Bold.

*Significant at p < 0.05.
**Significant at p < 0.01.

Table 4
Correlation coefficients between rhizosphere or bulk soil hotspot extent of enzyme activities and soil pH or acid soluble Cr based on Pearson correlation.

<table>
<thead>
<tr>
<th>NAG</th>
<th>BG</th>
<th>PHOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizosphere</td>
<td>Bulk soil</td>
<td>Rhizosphere</td>
</tr>
<tr>
<td>pH -0.09</td>
<td>0.064</td>
<td>-0.29</td>
</tr>
<tr>
<td>F1 -0.09</td>
<td>-0.15</td>
<td>-0.62**</td>
</tr>
</tbody>
</table>

F1 represents the acid soluble Cr. NAG, BG, PHOS represent the N-acetyl-glucosaminidase, β-glucosidase and phosphomonoesterase enzyme activity, respectively. “Rhizosphere” represents the rhizosphere extent of enzyme activities; “Bulk soil” represents the bulk soil hotspots extent of enzyme activities. Significant correlations were shown in Bold.

*Significant at p < 0.05.
**Significant at p < 0.01.

Cr concentration and speciation in soil

Acid soluble Cr content was negatively correlated with soil pH (p < 0.05, Table 3). Although acid soluble Cr increased with time, the application of manure and biochar slowed down the increasing rate by 47% and 55%, respectively, which supported our first hypothesis. Previous studies have indicated that soil pH played an important role in controlling the geochemical behavior of heavy metals in soil solid and liquid phases (Pietrzykowski et al., 2014). The geochemical behavior of Cr was greatly affected by soil pH and redox potential (Ashraf et al., 2017). According to the Eh-pH diagram of the chromium system (Cr, Cr = 10E-4 mol/L), when the soil is acidic and the redox potential is low, soil Cr mainly exists in the state of Cr(III) (Yuan et al., 2011). This was consistent with our results, showing that the oxidizable Cr was one of the main fractions in the acidified soil and was positively correlated with acid soluble Cr (p < 0.01). However, Cr(III) has low solubility only at pH < 5.5 (Choppala et al., 2018), indicating that Cr(III) was almost precipitated, very stable and thus less toxic in severely acidified soil.

Manure and its biochar application not only mitigated soil acidification but also altered the chemical speciation of Cr through adsorption and complexation (Agegnehu et al., 2017). Animal manure contains substantial biodegradable organic matter which has a large number of oxygen-containing functional groups (Yang et al., 2018a). These functional groups can immobilize Cr ions and change their chemical fraction (Dai et al., 2017; Zhu et al., 2017). For instance, organic amendments caused Cr detoxification by reducing Cr(VI) to Cr(III) and subsequent precipitation as chromic hydroxide (Park et al., 2011). After pyrolysis, the amount and species of oxygen-containing functional groups in biochar increased, which enhanced the capacity to absorb and immobilize inorganic and organic pollutants from contaminated soil (Zhou et al., 2019). In this study, compared with manure, the new peaks at 795 cm⁻¹ and 465 cm⁻¹ appeared in biochar corresponded to C-N and Fe-O (Fig. 5A) (Yang et al., 2018b). After incubation, manure and its biochar were separated from soil and their FT-IR spectra were recorded. The new peaks at 774 cm⁻¹ (Fig. 5B) were intrinsic vibrations of the Cr-O bonds, respectively (Bhuamik et al., 2011). This was indicative of the adsorption of Cr onto manure and its biochar. Furthermore, plant roots secrete organic acids during growth and degradation processes, which can also affect the chemical speciation of Cr (Hinsinger et al., 2003).

Impact of organic amendments on plant characteristics

A performance index (PI) equal to or lower than 1.0 indicates that the amendment has no impact on improving plant growth. Therefore, the dramatically increased PI induced by manure-derived biochar, instead of manure, demonstrated that biochar application prompts plant growth in Cr-contaminated soil. A control group without Cr contamination is necessary to confirm Cr toxicity on plant growth and the mitigation of biochar application for Cr toxicity, but it is not possible to find soil uncontaminated by Cr from or close to the sampling field. Nevertheless, previous studies have stated that Cr application in soil strongly depressed maize growth (e.g., decreased plant biomass, length, grain protein) (Maiti et al., 2012; Rizvi and Khan, 2018). According to FT-IR analysis results, the new peaks appearing in biochar also indicated the enhanced capacity of biochar to adsorb Cr and remediate hexavalent Cr toxicity (Fig. 5A). Some environmental factors have also been proposed to modify plant biomass allocation patterns, such as nutrient levels, warming, precipitation gradients, etc. (Sun and Wang, 2003).
2016). Manure allocated many nutrients and easily available organic matter to soil, but a strong competition for nutrients between plants and microbes may limit nutrient uptake and depress plant growth (Liu et al., 2017). The lowest shoot to root ratio (i.e., shoot/root ratio = 0.87 < 1.0) in the Manure group demonstrated that manure application caused a wasteful competition between plant and microbes (Biedrzycki et al., 2010). In contrast, biochar application induced larger average enzyme activities on soil profile than control soil, indicating that organic matter decomposition in the Biochar group was stronger than the Control group. This will result in more release of available nutrients and support plant growth (Flanagan and van Cleve, 1983; Muscolo et al., 2007). Our results also show that soil NO3-N, being more preferred by maize (Daryanto et al., 2019), and available P concentrations are higher in the Biochar group compared to the Control group (Table S2). With an abundant nutrient supply from soil, photosynthates will accumulate more in shoots instead of roots (Gan et al., 2001; Mašková and Herben, 2018). Our results also supported the “optimal partitioning” theory in biomass allocation of plants, i.e., that plants respond to variable environmental conditions by allocating biomass among various organs to capture nutrients and light to maximize their growth rate (McConnaughay and Coleman, 1999; Shipley and Meziane, 2002).

In contrast to the strongly increased shoot biomass, root biomass in the Biochar group had no significant difference between the Control and Manure groups. This may be attributed to a specific characteristic of Cr, i.e., that chromium retention inside the roots is a well-documented plant defense mechanism (Shahid et al., 2017). Soil pH in all treatments was less than 5, which is not favorable for maize root growth. Previous studies demonstrated that Cr application at a concentration of 50–204 mg kg⁻¹ seriously depressed root growth and development, with a decrease in root biomass by 45–61% (Mallick et al., 2010; Karthik et al., 2016; Rizvi and Khan, 2019). In this study, plants showed strong withering at day 30: leaves turned yellow and roots began apoptosis, which may be exacerbated by Cr in the soil (Fig. S9).

4.4. Impact of organic amendments on enzyme activities and their extent

The rhizosphere and bulk soil hotspots extent of β-glucosidase and phosphomonoesterase showed a strong decrease with time for three treatments (Fig. 4); the rate of such a decrement is reduced in the Biochar and Manure groups. The rhizosphere and bulk soil hotspots extent of enzyme activities generally indicates the capacity of roots and microorganisms to immobilize nutrients and utilize carbon (Razavi et al., 2016). Therefore, the decreased extent demonstrated weakening root growth and microbial activities. Soil pH could be responsible for this weakening effect as our results illustrated that its extent decreased in parallel with decreasing soil pH and increasing acid soluble Cr (Fig. 1, Table 4).
Soil enzyme activities were also strongly affected by pH, which is in accordance with a previous study (Turner, 2010). Both β-glucosidase and N-acetyl-glucosaminidase activities were inhibited with decreasing soil pH (Table 3). The exceptional non-significant relationship between soil pH and phosphomonoesterase activity may be induced by the co-effect of acid phosphatase and alkaline phosphatase because both enzymes coexist in soil and have varied optimum pH activities (Acosta-Martínez et al., 2011). Further, negative relationships between enzyme activities and acidic soluble Cr also indicated that the enhanced bioavailability of Cr under acidic conditions may constrain enzyme availability.

Fig. 4. A, rhizosphere extent of β-glucosidase activity; B, rhizosphere extent of phosphomonoesterase activity; C, bulk soil hotspot extent of β-glucosidase activity; D, bulk soil hotspots extent of phosphomonoesterase activity. All the data were derived from logistic regression curve of enzyme activity as a function of distance from root center or bulk soil hotspots. The values beside the red line show the decreasing percentage of the extent of enzyme activities with time in Control. Control: a control soil without any addition. Biochar: soil homogeneously mixed with manure-derived biochar. Manure: soil homogenously mixed with cow manure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. A, The FTIR spectrum of manure and biochar before and after their application into Cr-contaminated soil; B, magnified fragments spectra in the range of 1000 – 400 cm$^{-1}$ recorded before and after application. M: manure before the incubation. M*: manure after the incubation. BC: biochar before the incubation. BC*: biochar after the incubation. The green bars show the presence of Cr-O in manure and biochar after the incubation. The dashed vertical lines mark the positions of some functional groups such as –COOH, –CH, C-N and Fe-O. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
activities. One exception is that we found a positive relationship between N-acetyl-glucosaminidase and the reducible fraction of Cr. This Cr fraction is generally bound to Fe/Mn oxides. Fe oxides may act as an electron acceptor and enhance nitrification processes with a limited oxygen supply (Liptzin and Silver, 2009; Huang et al., 2016). This will cause decreased inorganic nitrogen (NH₄⁺), which subsequently accelerates the production of N-cycling related enzymes (i.e., N-acetyl-glucosaminidase). The enhanced nitrification process could also contribute to the decreased soil pH because H⁺ will be released to acidify soil (He et al., 2012).

The rhizosphere extent of β-glucosidase and phosphomonoesterase activities was wider than the bulk soil hotspots extent of both enzymes. This result supported our second hypothesis. Plants roots not only exude various organic compounds but also release enzymes to decompose organic matter within their rhizospheres. Further, microorganisms in this area also become more active due to the impact of rhizodeposits. Therefore, a wider rhizosphere extent was engendered. Among treatments, manure application resulted in the narrowest rhizosphere and bulk soil hotspots extent of β-glucosidase and phosphomonoesterase activities, followed by the Biochar and Control groups. This was in accordance with our third hypothesis. The narrowest extent of this observation can be explained by the addition of labile organic compounds and nutrients following the manure application (Ruzyakov and Razavi, 2019). With abundant resources for growth and maintenance, microbes and plant roots do not necessarily extend enzymes very far.

5. Conclusions

For the first time, we identified and compared the impact of manure and its biochar application on the spatiotemporal distribution of soil enzyme activities under the stress of Cr contamination. Soil pH dramatically decreased during 45 days of incubation, which strongly increased the acid soluble fraction of Cr, decreased the activities of β-glucosidase and N-acetyl-glucosaminidase (p < 0.05), and narrowed the rhizosphere extent of enzyme activities by 13–44% compared to day 5. This indicated that the increased Cr bioavailability decreased soil microbial activities. Biochar application caused a larger liming impact compared to manure application because of the larger initial pH, ash content and BET specific surface area in manure-derived biochar. Biochar group also had the highest soil NO₃⁻, N and available P concentration. In addition, the greatest shoot/root ratio was also found in the Biochar group also had the highest soil NO₃⁻. This study was supported by the National Science Foundation of China (Nos: 419Y10507; 18YYJC1745). We acknowledge the assistance from Ying Zhang and Lingling He during the sample sampling and analysis.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2019.105277.

References

