
u n i ve r s i t y  o f  co pe n h ag e n  

Københavns Universitet

Modelling financial high frequency data using point processes

Hautsch, Nikolaus; Bauwens, Luc

Publication date:
2006

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Hautsch, N., & Bauwens, L. (2006). Modelling financial high frequency data using point processes. Louvain-la-
Neuve: Université catholique de Louvain.

Download date: 24. Mar. 2019



CORE DISCUSSION PAPER

2006/80

MODELLING FINANCIAL HIGH FREQUENCY DATA USING POINT

PROCESSES

Luc Bauwens1 and Nikolaus Hautsch2

September 18, 2006

Abstract

In this chapter written for a forthcoming Handbook of Financial Time Series to be

published by Springer-Verlag, we review the econometric literature on dynamic duration

and intensity processes applied to high frequency financial data, which was boosted by

the work of Engle and Russell (1997) on autoregressive duration models.

Keywords: Duration, intensity, point process, high frequency data, ACD models.

JEL Classification: C41, C32.
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1 Introduction

Since the seminal papers by Hasbrouck (1991) and Engle and Russell (1998)
the modelling of financial data at the transaction level is an ongoing topic in
the area of financial econometrics. This has created a new body of literature
which is often referred to as ”the econometrics of (ultra-)high-frequency fi-
nance” or ”high-frequency econometrics”. The consideration of the peculiar
properties of financial transaction data, such as the irregular spacing in time,
the discreteness of price changes, the bid-ask bounce as well as the presence
of serial dependence, provoked the surge of new econometric approaches. One
important string of the literature deals with the irregular spacing of data in
time. Taking into account the latter is indispensable whenever the full amount
of information in financial transaction data has to be exploited and no loss of
information due to fixed-interval aggregation schemes can be accepted. More-
over, it has been realized that the timing of trading events, such as the arrival
of particular orders and trades, and the frequency in which the latter occur
have information value for the state of the market and play an important role
in market microstructure analysis, for the modelling of intraday volatility as
well as the measurement of liquidity and implied liquidity risks.

Taking into account the irregular occurrence of transaction data requires
to consider it as a point process, a so-called financial point process. Depending
on the type of the financial ”event” under consideration, we can distinguish
between different types of financial point processes or processes of so-called
financial durations. The most common types are trade durations and quote du-
rations as defined by the time between two consecutive trade or quote arrivals,
respectively. Price durations correspond to the time between absolute cumu-
lative price changes of given size and can be used as an alternative volatility
measure. Similarly, a volume duration is defined as the time until a cumula-
tive order volume of given size is traded and captures an important dimension
of market liquidity. For more details and illustrations, see Bauwens and Giot
(2001) or Hautsch (2004).

One important property of transaction data is that market events are
clustered over time implying that financial durations follow positively auto-
correlated processes with a strong persistence. Actually, it turns out that the
dynamic properties of financial durations are quite similar to those of daily
volatilities. Taking into account these properties leads to different types of
dynamic models on the basis of a duration representation, an intensity repre-
sentation or a counting representation of a point process.

In this chapter, we review duration-based and intensity-based models of
financial point processes. In Section 2, we introduce the fundamental concepts
of point process theory and discuss major statistical tools. In Section 3, we
review the class of dynamic duration models. Specifying a (dynamic) duration
model is presumably the most intuitive way to characterize a point process in
discrete time and has been suggested by Engle and Russell (1998), which was
the starting point for a huge body of literature. Nevertheless, Russell (1999)
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realized that a continuous-time setting on the basis of the intensity function
constitutes a more flexible framework which is particularly powerful for the
modelling of multivariate processes. Different types of dynamic intensity mod-
els are presented in Section 4.

2 Fundamental Concepts of Point Process Theory

In this section, we discuss important concepts and relations in point process
theory which are needed throughout this chapter. In Section 2.1, we introduce
the notation and basic definitions. The fundamental concepts of intensity func-
tions, compensators and hazard rates are defined in Section 2.2, whereas in
Section 2.3 different classes and representations of point processes are dis-
cussed. Finally, in Section 2.4, we present the random time change theorem
which yields a powerful result for the construction of diagnostics for point
process models. Most concepts discussed in this section are based upon Karr
(1991).

2.1 Notation and Definitions

Let {ti}i∈{1,...,n} denote a random sequence of increasing event times (0 <
t1 < . . . < tn) associated with an orderly (simple) point process. Then,
N(t) :=

∑
i≥1 1l {ti≤t} defines the right-continuous (càdlàg) counting func-

tion. Throughout this chapter, we consider only point processes which are
integrable, i.e. E[N(t)] < ∞ ∀ t ≥ 0. Furthermore, {Wi}i∈{1,...,n} denotes
a sequence of {1, . . . , K}-valued random variables representing K different
types of events. Then, we call the process {ti,Wi}i∈{1,...,n} an K-variate
marked point process on (0,∞) as represented by the K sequences of event-
specific arrival times {tki }i∈{1,...,nk}, k = 1, . . . , K, with counting functions
Nk(t) :=

∑
i≥1 1l {ti≤t}1l {Wi=k}.

The internal history of an K-dimensional point process N(t) is given
by the filtration FN

t with FN
t = σ(Nk(s) : 0 ≤ s ≤ t, k ∈ Ξ), Nk(s) =∑

i≥1 1l {ti≤s}1l {Wi∈Ξ}, where Ξ denotes the σ-field of all subsets of {1, . . . ,K}.
More general filtrations, including e.g. also processes of explanatory variables
(covariates) {zi}i∈{1,...,n} are denoted by Ft with FN

t ⊆ Ft.
Define xi := ti − ti−1 with i = 1, . . . , n and t0 := 0 as the inter-event

duration from ti−1 until ti. Furthermore, x(t) with x(t) := t − tN̆(t), with

N̆(t) :=
∑

i≥1 1l {ti<t} denoting the left-continuous counting function, is called
the backward recurrence time. It is a left-continuous function that grows lin-
early through time with discrete jumps back to zero after each arrival time
ti. Finally, let θ ∈ Θ denote model parameters.

2.2 Compensators, Intensities, and Hazard Rates

In martingale-based point process theory, the concept of compensators plays
an important role. Using the property that an Ft-adapted point process N(t)
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is a submartingale1, it can be decomposed into a zero mean martingale M(t)
and a (unique) Ft-predictable increasing process, Λ̃(t), which is called the
compensator of N(t) and can be interpreted as the local conditional mean
of N(t) given the past. This decomposition is typically referred to the Doob-
Meyer decomposition, see also Theorem 2.14 in Karr (1991).

Define λ(t) as a scalar, positive Ft-predictable process, i.e. λ(t) is adapted
to Ft, and left-continuous with right hand limits. Then, λ(t) is called the
(Ft-conditional) intensity of N(t) if

Λ̃(t) =
∫ t

0

λ(u)du, (1)

where Λ̃(t) is the (unique) compensator of N(t). This relationship emerges
from the interpretation of the compensator as integrated (conditional) hazard
function as established by Theorem 2.18 and Definition 2.28 in Karr (1991).
Consequently, λ(t) can be also defined by the relation

E[N(s)−N(t)|Ft] = E
[∫ s

t

λ(u)du
∣∣∣Ft

]
(2)

which has to hold (almost surely) for all t, s with 0 ≤ t ≤ s. Letting s ↓ t leads
to the heuristic representation which is more familiar in classical duration
analysis. Then, λ(t) is obtained by

λ(t+) := lim
∆↓0

1
∆

E [N(t + ∆)−N(t)| Ft] , (3)

where λ(t+) := lim∆↓0 λ(t + ∆). In case of a stationary point process, λ̄ :=
E[dN(t)]/dt = E[λ(t)] is constant.

Equation (3) manifests the close analogy between the intensity function
and the hazard function which is given by

h(x) := f(x)/S(x) = lim
∆→0

1
∆

Pr[x ≤ X < x + ∆|X ≥ x] (4)

with x denoting the (inter-event) duration as represented by the realization of
a random variable X with probability density function f(x), survivor function
S(x) = 1− F (x), and cumulative distribution function (cdf) F (x) = Pr[X ≤
x]. Whereas the intensity function is defined in (continuous) calendar time,
the hazard rate is typically defined in terms of the length of a duration x and
is a key concept in (cross-section) survival analysis. For more details regarding
the analogy between intensities and hazard rates, see Theorems 2.30 and 2.31
in Karr (1991).

1 An Ft-adpated càdlàg process N(t) is a submartingale if E[|N(t)|] < ∞ for each
t and if s < t implies that E[N(t)|Fs] ≥ N(s). See e.g. Karr (1991).
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2.3 Types and Representations of Point Processes

The simplest type of point process is the homogeneous Poisson process defined
by

Pr [(N(t + ∆)−N(t)) = 1 |Ft ] = λ∆ + o(∆), (5)
Pr [(N(t + ∆)−N(t)) > 1 |Ft ] = o(∆), (6)

with ∆ ↓ 0. Then, λ > 0 is called the Poisson rate corresponding to the
(constant) intensity. Accordingly, equations (5) and (6) define the intensity
representation of a Poisson process. A well-known property of homogenous
Poisson processes is that the inter-event waiting times xi = ti − ti−1 are
independently exponentially distributed, leading to the duration representa-
tion. In this context, λ is the hazard rate of the exponential distribution.
Furthermore, it can be shown (see e.g. Lancaster (1997)) that the number
of events in an interval (a, b], N(a, b) := N(b) − N(a) is Poisson distributed
with Pr[N(a, b) = k] = exp[−λ(b − a)][λ(b − a)]k/k!, yielding the counting
representation. All three representations of a Poisson process can be used as
the starting point for the specification of a point process model.

Throughout this chapter we associate the term duration models to a
model of the (discrete-time) duration process observable at the event-times
{ti}i=1,...,n. Then, researchers parameterize the conditional distribution func-
tion F (xi|Fti−1) or, alternatively, the conditional hazard rate h(xi|Fti−1).
Generally, such a model should aim, in particular, at fitting the dynamical
and distributional properties of durations. The latter is often characterized
by the excess dispersion, corresponding to the ratio between the standard de-
viation to the mean. In classical hazard rate models employed in traditional
survival analysis, the hazard rate is typically parameterized in terms of co-
variates, see e.g. Kalbfleisch and Prentice (1980), Kiefer (1988) or Lancaster
(1997). The most well-known hazard model is the proportional hazard model
introduced by Cox (1972) and is given by

h(x|z; θ) = h0(x|γ1)g(z, γ2), (7)

where θ = (γ1, γ2), h0(·) denotes the so-called baseline hazard rate and g(·)
is a function of the covariates z and parameters γ2. The baseline hazard rate
may be parameterized in accordance with a certain distribution, like e.g., a
Weibull distribution with parameters λ, p > 0 implying

h0(x|γ1) = λp(λx)p−1. (8)

For p = 1 we yield the exponential case h0(x|γ1) = λ, implying a constant
hazard rate. Alternatively, if p > 1, ∂h0(x|γ1)/∂x > 0, i.e. the hazard rate is
increasing with the length of the spell which is referred to as ”positive dura-
tion dependence”. In contrast, p < 1 implies negative duration dependence.
Non-monotonic hazard rates can be obtained with more flexible distributions,
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like the generalized F and particular cases thereof, including the generalized
gamma, Burr, Weibull and log-logistic distributions. We refer to the Appendix
to Chapter 3 of Bauwens and Giot (2001) and to the Appendix of Hautsch
(2004) for definitions and properties. Alternatively, the baseline hazard may
be left unspecified and can be estimated nonparametrically, see Cox (1975).

An alternative type of duration model is the class of accelerated failure
time (AFT) models given by

h(x|z; θ) = h0[xg(z, γ2)|γ1]g(z, γ2). (9)

Here, the effect of the exogenous variables is to accelerate or to decelerate the
time scale on which the baseline hazard h0 is defined. As illustrated in Section
3.1, AFT-type models are particularly attractive to allow for autocorrelated
duration processes.

Because of their discrete-time nature, duration models cannot be used
whenever the information set has to be updated within a duration spell,
e.g. caused by time-varying covariates or event arrivals in other point pro-
cesses. For this reason, (discrete-time) duration models are typically used in
an univariate framework.

Whenever a continuous-time modelling is advantageous (as e.g. to account
for the asynchronous event arrivals in a multivariate framework), it is more
natural to specify the intensity function directly. This class of models is re-
ferred to as intensity models. One important extension of a homogenous Pois-
son process it to allow the intensity to be directed by a real-valued, non-
negative (stationary) random process λ∗(t) with (internal) history F∗t lead-
ing to the class of doubly stochastic Poisson processes (or Cox process). In
particular, N(t) is called a Cox process directed by λ∗(t) if conditional on
λ∗(t), N(t) is a Poisson process with mean λ∗(t), i.e. Pr[N(a, b) = k|F∗t ] =
exp[−λ∗(t)] [λ∗(t)]k /k!. The doubly stochastic Poisson process yields a pow-
erful class of probabilistic models with applications in seismology, biology and
economics. For instance, specifying λ∗(t) in terms of an autoregressive process
yields a dynamic intensity model which is particularly useful to capture the
clustering in financial point processes. For a special type of doubly stochastic
Poisson process see Section 4.2.

A different generalization of the Poisson process is obtained by specifying
λ(t) as a (linear) self-exciting process given by

λ(t) = ω +
∫ t

0

w(t− u)dN(u) = ω +
∑
ti<t

w(t− ti), (10)

where ω is a constant, w(s) denotes a non-negative weight function, and∫ t

0
w(s)dN(s) is the stochastic Stieltjes integral of the process w with re-

spect to the counting process N(t). The process (10) was proposed by Hawkes
(1971) and is therefore named a Hawkes process. If w(s) declines with s, then,
the process is self-exciting in the sense that Cov[N(a, b), N(b, c)] > 0, where
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0 < a ≤ b < c. Different types of Hawkes processes and their applications
to financial point processes are presented in Section 4.1. A further type of
intensity models which is relevant in the literature of financial point processes
is given by a specification where the intensity itself is driven by an autore-
gressive process which is updated at each point of the process. This leads to
a special type of point process models which does not originate from the clas-
sical point process literature but originates from the ACD literature reviewed
in Section 2 and brings time series analysis into play. Such a process is called
an autoregressive conditional intensity model and is considered in Section 4.2.

Finally, starting from the counting representation of a Poisson process
leads to the class of count data models. Dynamic extensions of Poisson pro-
cesses in terms of counting representations are not surveyed in this chapter.
Some references reflecting the diversity of approaches are Rydberg and Shep-
hard (2003), Heinen and Rengifo (2003), Liesenfeld et al. (2006), and Quoreshi
(2006).

2.4 The Random Time Change Theorem

One fundamental result of martingale-based point process theory is the (mul-
tivariate) random time change theorem by Meyer (1971) which allows to trans-
form a wide class of point processes to a homogeneous Poisson process:

Theorem (Meyer, 1971, Brown and Nair, 1988): Assume a multivariate
point process (N1(t), . . . , NK(t)) is formed from the event times {tki }i∈{1,...,nk},
k = 1, . . . ,K, and has continuous compensators (Λ̃(t)1, . . ., Λ̃(t)K) with
Λ̃k(∞) = ∞ for each k = 1, . . . ,K, then the point processes formed from
{Λk(tki )}{i=1,...,nk}, k = 1, . . . , K, are independent Poisson processes with unit
intensity.

Proof: See Meyer (1971) or Brown and Nair (1988) for a more accessible
and elegant proof.

Define τk(t) as the (Ft-)stopping time obtained by the solution of∫ τk(t)

0
λk(s)ds = t. Applying the random time change theorem to (1) implies

that the point processes Ñk(t) with Ñk(t) := Nk(τk(t)) are independent
Poisson processes with unit intensity and event times {Λ̃k(tki )}{i=1,...,nk} for
k = 1, . . . ,K. Then, the so-called integrated intensities

Λk(tki−1, t
k
i ) :=

∫ tk
i

tk
i−1

λk(s)ds = Λ̃k(tki )− Λ̃k(tki−1) (11)

correspond to the increments of independent Poisson processes for k =
1, . . . , K. Consequently, they are independently standard exponentially dis-
tributed across i and k. For more details, see also Bowsher (2002). The random
time change theorem plays an important role in order to construct diagnostic
tests for point process models (see Section 4.3) or to simulate point processes
(see e.g. Giesecke and Tomecek (2005)).
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3 Dynamic Duration Models

In this section, we discuss univariate dynamic models for the durations be-
tween consecutive (financial) events. In Section 3.1, we review in detail the
class of autoregressive conditional duration (ACD) models, which is by far
the most used class in the literature on financial point processes. In Section
3.2, we briefly discuss statistical inference for ACD models. In Section 3.3, we
present other dynamic duration models, where in the last section we review
some applications.

3.1 ACD Models

The class of ACD models has been introduced by Engle and Russell (1997,
1998) and Engle (2000). In order to keep the notation simple, define xi in the
following as the inter-event duration which is standardized by a seasonality
function s(ti), i.e. xi := (ti−ti−1)/s(ti). The function s(ti) is typically param-
eterized according to a spline function capturing time-of-day or day-of-week
effects. Time-of-day effects arise because of systematic changes of the market
activity throughout the day and due to opening of other related markets. In
most approaches s(ti) is specified according to a linear or cubic spline func-
tion and is estimated separately in a first step yielding seasonality adjusted
durations xi. Alternatively, a non-parametric approach has been proposed by
Veredas et al. (2002). For more details and examples regarding seasonality
effects in financial duration processes, we refer the reader to Chapter 2 of
Bauwens and Giot (2001) or to Chapter 3 of Hautsch (2004).

The key idea of the ACD model is to model the (seasonally adjusted)
durations {xi}i=1,...,n in terms of a multiplicative error term model in the
spirit of Engle (2002), i.e.

xi = Ψi εi, (12)

where Ψi denotes a function of the past durations (and possible covariates),
and εi defines an i.i.d. random variable for which it is assumed that

E(εi) = 1, (13)

so that Ψi corresponds to the conditional duration mean (the so-called ”con-
ditional duration”) with Ψi := E(xi|Fti−1). The ACD model can be rewritten
in terms of the intensity function as

λ(t|Ft) = λε

(
x(t)

ΨÑ(t)+1

)
1

ΨÑ(t)+1

, (14)

where λε(s) denotes the hazard function of the ACD error term. This for-
mulation clearly demonstrates that the ACD model belongs to the class of
AFT models. Assuming εi to be standard exponentially distributed yields the
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so-called Exponential ACD model. More flexible specifications arise by assum-
ing εi to follow a more general distribution, see the discusssion after eqn (8).
It is evident that the ACD model is the counter-part to the GARCH model
(Bollerslev (1986)) for duration processes. Not surprisingly, many results and
specifications from the GARCH literature have been carried over to the ACD
literature.

The conditional duration, Ψi, is defined as a function Ψ of the information
set Fti−1 and provides therefore the vehicle for incorporating the dynamics of
the duration process. In this respect it is convenient to use an ARMA-type
structure of order (p, q), whereby

Ψi = Ψ(Ψi−1, . . . , Ψi−p, xi−1, . . . , xi−q). (15)

For simplicity, we limit the exposition in the sequel to the case p = q = 1.

First Generation ACD Models

We group under this label the linear ACD model of Engle and Russell (1998),
the logarithmic ACD models of Bauwens and Giot (2000), the augmented
ACD classes of Fernandes and Grammig (2006) and Hautsch (2006), and the
semiparametric ACD model suggested by Hautsch (2006). All these models
have their GARCH counterparts. Analytical results are available for some of
these models about stationarity conditions, conditions for existence of mo-
ments, and formulas of the moments.

The first model put forward in the literature is the linear ACD model,
which specializes (15) as

Ψi = ω + βΨi−1 + αxi−1. (16)

Since Ψi must be positive, the restrictions ω > 0, α ≥ 0 and β ≥ 0 are
usually imposed. It is also assumed that β = 0 if α = 0, otherwise β is a
redundant parameter. The process defined by (12), (13) and (16) is known to
be covariance-stationary if

(α + β)2 − α2σ2 < 1, (17)

where σ2 = Var(εi) < ∞, and to have the following moments and autocorre-
lations:

(1) E(xi) = µx = ω/(1− α− β),
(2) Var(xi) = σ2

x = µ2
x σ2 1−β2−2αβ

1−(α+β)2−α2σ2 ,

(3) ρ1 = α (1−β2−α β)
1−β2−2 α β and ρn = (α + β)ρn−1 (n ≥ 2).

The condition (17) ensures the existence of the variance. These results are
akin to those for the GARCH(1,1) zero-mean process. They can be generalized
to ACD(p,q) processes when p, q > 1. It is usually found empirically that the
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estimates of the parameters are such that α+β is in the interval (0.85,1) while
α is in the interval (0.01,0.15). Since the ACD(1,1) model can be written as

xi = ω + (α + β)xi−1 + ui − βui−1, (18)

where ui = xi − Ψi is a martingale difference innovation, the resulting auto-
correlation function (ACF) is that of an ARMA(1,1) process that has AR and
MA roots close to each other. This type of parameter configuration generates
the typical ACF shape of clustered data. Nevertheless, the ACF decreases at
a geometric rate, though it is not uncommon to find duration series with an
ACF that decreases at a hyperbolic rate. This tends to happen for long series
and may be due to parameter changes that give the illusion of long memory
in the process. In order to allow for long range dependence in financial dura-
tion processes, the ACD model has been extended to a fractionally integrated
ACD model by Jasiak (1998) and has been applied to IBM and Alcatel trade
durations.

A drawback of the linear ACD model is that it is difficult to allow Ψi to
depend on functions of covariates without violating the non-negativity restric-
tion. For this reason, Bauwens and Giot (2000) propose a class of logarithmic
ACD models, where no parametric restrictions are needed to ensure positive-
ness of the process:

ln Ψi = ω + β ln Ψi−1 + αg(εi−1), (19)

where g(εi−1) is either ln εi−1 (log-ACD of type I) or εi−1 (type II). Using
this setting, it is convenient to augment Ψi by functions of covariates, see
e.g. Bauwens and Giot (2001). The stochastic process defined by (12), (13)
and (19) is covariance-stationary if

β < 1, E{εi exp[αg(εi)]}, E{exp[2αg(εi)]} < ∞, (20)

and has the following moments and autocorrelations, see Fernandes and Gram-
mig (2006) or Section 3.2 in Bauwens and Giot (2001):

(1) E(xi) = µx = exp
(

ω
1−β

) ∏∞
j=1 Eexp[αβj−1g(εi)],

(2) Var(xi) = σ2
x = (1 + σ2) exp

(
2ω

1−β

) ∏∞
j=1 E exp[2αβj−1g(εi)]− µ2

x,
(3) For n ≥ 1,

ρn =
E[εie

αβn−1g(εi)]
∏n−1

j=1 E[eαβj−1g(εi)]
∏∞

j=1 E[eα(1+βn)βj−1g(εi)]

(1 + σ2)
∏∞

j=1 Eexp[2αβj−1g(εi)]− [E(εi)]2
∏∞

j=1[Eeαβj−1g(εi)]2
− µ2

x

σ2
x

.

An even more flexible type of ACD model is the augmented ACD (AACD)
model introduced by Fernandes and Grammig (2006). Here, Ψi is specified in
terms of a Box-Cox transformation yielding

Ψ δ1
i = ω + βΨ δ1

i−1 + αΨ δ1
i−1[|εi−1 − ξ| − ρ(εi−1 − ξ)]δ2 , (21)
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where δ1 > 0, δ2 > 0, ξ, and ρ are parameters. The so-called news impact
function [|εi−1 − ξ| − ρ(εi−1 − ξ)]δ2 allows for a wide variety of shapes of
the curve tracing the impact of εi−1 on Ψi for a given value of Ψi−1 and the
remaining parameters. The parameter ξ is a shift parameter and the parameter
ρ is a rotation parameter. If ξ = 0, the impact curve is increasing (concave if
δ2 ≤ 1, convex if δ2 ≥ 1). If ξ and ρ are both positive, the impact can decrease
if εi−1 < ξ and increase if εi−1 > ξ. If ξ = ρ = 0, the linear ACD model is
obtained by setting δ1 = δ2 = 1, the type I logarithmic ACD model by letting
δ1 and δ2 tend to 0, and the type II version by letting δ1 tend to 0 and setting
δ2 = 1. Using results of Carrasco and Chen (2002), Fernandes and Grammig
(2006) provide sufficient conditions for the strict stationarity and β-mixing
with exponential decay of the process defined by (12), (13) and (21). These
conditions include |β| < 1 and some moment conditions. There is no analytical
formula for moments of xi in the case of the general AACD equation, although
some recursion formulas are available for moments of xδ1

i (but not for xi itself).
As pointed above, analytical formulas are available for particular cases like
the linear and logarithmic versions. Fernandes and Grammig (2006) compare
different versions of the AACD model using IBM price durations arising from
trading at the New York Stock Exchange. Their main finding is that ”letting
δ1 free to vary and accounting for asymmetric effects (by letting ξ and ρ
free) seem to operate as substitute sources of flexibility”. However, empirical
studies with other data series are needed to validate this conclusion.

While the basic ACD model, the type II Log-ACD model, and the AACD
model is based on multiplicative stochastic components (in the sense that the
process is updated by some multiplicative function of εi and Ψi), Hautsch
(2006) proposes an even more general class of ACD models including multi-
plicative stochastic components as well as additive stochastic components. It
nests a wide range of special cases including the specifications outlined above
and is given by replacing the news impact function in (21) by

αΨ δ1
i−1[|εi−1 − ξ| − ρ(εi−1 − ξ)]δ2 + ν[|εi−1 − ξ| − ρ(εi−1 − ξ)],

where ν is an additional parameter capturing the impact of the additive
stochastic component. Clearly, ν is only defined if δ1 6= 0. For ν = 0, we
obtain the AACD model. For α = 0, ξ = 0 and ρ = 0, it nests the Box-Cox
ACD model introduced by Hautsch (2003). For α = 0, δ1 → 0, and ρ = 1,
it corresponds to the so-called EXponential ACD model proposed by Dufour
and Engle (2000) implying a kinked news impact function.

Finally, Hautsch (2006) suggests a semiparametric ACD model correspond-
ing to the counterpart to the semiparametric GARCH model proposed by
Engle and Ng (1993). Here, the news impact function is specified in terms of
a linear spline function based on the support of εi. Hautsch (2006) illustrates
that the high flexibility of the latter two models is needed in order to appropri-
ately capture the dynamic properties of financial durations. Since both types
of ACD models also belong to the class of models defined by Carrasco and
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Chen (2002) their results regarding stationarity and unconditional moments
can be applied in this framework as well.

Second Generation ACD Models

The class of second generation ACD models consists of regime-shifting ACD
models and mixture ACD models. The mixture can be only on the error
distribution, but it can also involve the dynamic component.

Zhang et al. (2001) propose a threshold ACD model (TACD), wherein the
ACD equation and the error distribution change according to a threshold
variable such as the previous duration. For J regimes indexed by j = 1, . . . , J ,
the model is defined as

xi = Ψi ε
(j)
i , (22)

Ψi = ωj + βjΨi−1 + αjxi−1 (23)

when xi−1 ∈ [rj−1, rj), and 0 = r0 < r1 < . . . < rJ = ∞ are the threshold
parameters. The superscript (j) on the error εi indicates that the distribution
or its parameters can vary with the regime operating at observation i. This
model can be viewed as a mixture of J ACD models, where the probability
to be in regime j at i is equal to 1 and the probabilities to be in each of the
other regimes is equal to 0. The estimation of TACD models for given values
of the threshold parameters is easily performed by ML. This is combined with
a grid search over the threshold parameters to obtain the ML estimates of all
the parameters.

While the TACD model implies discrete transitions between the individual
regimes, Meitz and Teräsvirta (2006) propose a class of smooth transition ACD
(STACD) models which are not encompassed by the augmented ACD class
but generalize the linear and logarithmic ACD models in a specific way. For
example, a STACD model is specified as

Ψi = ω + βΨi−1 + αxi−1 + (ω∗ + α∗xi−1)G(ln xi−1) (24)

where ω∗ and α∗ are additional parameters and G(lnxi−1; γ, c) is a bounded
and positive ‘transition’ function. For example, this can be the logistic function

G(lnxi−1; ζ, τ1, . . . , τK) =

[
1 + exp

(
−ζ

K∏

k=1

(lnxi−1 − τk)

)]−1

(25)

where ζ > 0, τ1 ≤ . . . ≤ τK are parameters, and the integer K determines the
flexibility of the transition function. For example, with K = 2, the transition
function can be close to 1 when xi−1 is small, decrease more or less fastly to
be close to 0 over a range of intermediate values, and finally increase and stay
close to 1 for large durations. Notice that the logarithm of xi−1 is used as
argument rather than xi−1 since the logistic function is defined on the whole
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real axis. The two regime TACD model with the restriction ε
(1)
i = ε

(2)
i is a

STACD model wherein K = 1, τ1 = ln r1, and ζ tends to ∞ in the transition
function (25), which then becomes the indicator function for xi−1 > r1. The
three regime TACD model can likewise be obtained as the limit of a STACD
model with K = 2 in the transition function and a unique error distribution.
Conditions for strict stationarity, ergodicity, and existence of moments for
the STACD (and other ACD) models are provided in Meitz and Saikkonen
(2004) using the theory of Markov chains. It is clear that a motivation for
the STACD model is, like for the AACD, to allow for a nonlinear impact
of the past duration on the next expected duration. The variable driving the
transition function can also be replaced by a measure of time (e.g. the calendar
time) and the transition can also be applied to the lagged expected duration
term, yielding a time-varying ACD model. This requires to shift the value of
the transition function (25), see Meitz and Teräsvirta (2006) for details.

Another category of dynamic mixture models is the Markov-switching
ACD class (MS-ACD). Like in TACD models, each regime has its own ACD-
type equation–see (23)–, but the transitions between regimes are governed by
a Markov chain. Thus, with two regimes, there are two probabilities: π11, the
probability that xi is governed by regime 1 when xi−1 is in regime 1, and π22

likewise for regime 2. These probabilities are fixed parameters in Hujer et al.
(2002). More generally, they could be functions of observable predetermined
variables. In a different but related regime-switching ACD model (RS-ACD),
Bauwens et al. (2006a) specify the time-varying probability πi,j of observa-
tion xi to be in regime j as a logistic transformation of the previous duration.
They show that if the first regime is stable (in the sense that α1 + β1 < 1),
the ACD parameters are positive in all regimes, and πi,1 tends to 1 when xi−1

tends to infinity, the process is geometrically ergodic, strictly stationary and
β-mixing with exponential decay. The TACD model is obtained as a partic-
ular case of the RS-ACD model, when one probability is equal to 1 and the
other probabilities are equal to 0.

Drost and Werker (2004) propose to combine one of the previous ACD
equations for the conditional duration with an unspecified distribution for
εi, yielding a class of semi-parametric ACD models. De Luca and Zuccolotto
(2003) and De Luca and Gallo (2004) propose to use a fixed parameter ACD
equation together with a mixture of two distributions for εi, i.e.

f(εi) = πfI(εi) + (1− π)fU (εi). (26)

where π is a parameter in (0, 1). They use in practice a mixture of exponential
distributions with expected values cI and cU . Imposing (13) links the param-
eters by the relation πcI + (1− π)cU = 1. This model can be named a static
mixture ACD model (SM-ACD). Using a mixture of Fisher distributions, Hujer
and Vuletic (2005b) report that the unconditional distribution of some trade
durations is well fitted by such a model whereas it is not by an ACD model
with a single Fisher distribution, see also Hujer and Vuletic (2005a). De Luca
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and Gallo (2006) extend the SM-ACD idea by using a time-varying probabil-
ity in the mixture, i.e. they let π vary with i through a logistic function that
depends on variables known at the time point (ti−1) where the duration xi

starts. Assuming furthermore that cI varies with i and cU allows to impose
a unit mean for the mixture distribution and implies that the variance is a
function of the predetermined variables. In an application of their model to
IBM mid-quote price durations from the TAQ data base, De Luca and Gallo
(2006) use the trading intensity (i.e. the number of trades divided by the du-
ration over which they occur) and the average volume (i.e. the ratio of trade
volume and the number of trades recorded between ti−1 and ti), with one
lag, as predetermined variables in the probability function and in the ACD
equation.

3.2 Statistical Inference

The estimation of ACD models can be easily performed by maximum like-
lihood (ML). Engle (2000) demonstrates that the results by Bollerslev and
Wooldridge (1992) on the quasi-maximum likelihood (QML) property of
the Gaussian GARCH(1,1) model can be carried over to the Exponential-
ACD(1,1) model. Then, QML estimates are obtained by maximizing the quasi
log likelihood function given by

lnL (
θ; {xi}{i=1,...,n}

)
= −

n∑

i=1

[
ln Ψi +

xi

Ψi

]
. (27)

For more details we refer to Chapter 3 of Bauwens and Giot (2001), Chapter
5 of Hautsch (2004), and to the survey of Engle and Russell (2005).

Residual diagnostics and goodness-of-fit tests are straightforwardly per-
formed by evaluating the stochastic properties of the ACD residuals ε̂i =
xi/Ψ̂i. The dynamic properties are easily analyzed based on Portmanteau
statistics or tests against independence such as proposed by Brock et al.
(1996). The distributional properties can be evaluated based on Engle and
Russell’s (1998) test for no excess dispersion using the asymptotically stan-
dard normal test statistic

√
n/8 σ̂2, where σ̂2 denotes the empirical variance

of the residual series. Dufour and Engle (2000) and Bauwens et al. (2004)
evaluate the model’s goodness-of-fit based on the evaluation of density fore-
casts using the probability integral transform as proposed by Diebold et al.
(1998). A nonparametric test against distributional misspecification is pro-
posed by Fernandes and Grammig (2005) based on the work of Aı̈t-Sahalia
(1996). Statistics that exclusively test for misspecifications of the conditional
mean function Ψi have been worked out by Meitz and Teräsvirta (2006) using
the Lagrange Multiplier principle and by Hautsch (2006) using (integrated)
conditional moment tests. A common result is that too simple ACD spec-
ifications, such as the ACD or Log-ACD model are not flexible enough to
adequately capture the properties of observed financial durations.
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While the class of first generation ACD models can be estimated by
(Q)ML, several second generation models require computationally more de-
manding methods. The dynamic mixture ACD models are impossible to es-
timate by ML due to the path dependence problem of conditional durations.
A similar issue arises in MS-GARCH models, see Gray (1996). The estima-
tion can be tackled by Bayesian inference, by enlarging the parameter space
with latent discrete random variables (one per observation, each taking value
j with probability πi,j) and using a Gibbs sampling algorithm to simulate the
parameters given the latent variables and the data, and the latent variables
given the parameters and the data. We refer to Bauwens et al. (2006a) for
RS-ACD models, to Bauwens et al. (2006b) for RS-GARCH models, and to
Henneke et al. (2006) for MS-GARCH models. These dynamic mixture models
are at the frontier of current research.

3.3 Other Models

Hamilton and Jordà (2002) propose an extension of the ACD model by al-
lowing to account for covariates which might change during a duration spell
(time-varying covariates). The key idea of their so-called autoregressive con-
ditional hazard (ACH) model is to rely on the fact that in the ACD model
with exponential error distribution the intensity corresponds to the inverse of
the conditional duration, i.e. λ(t) = Ψ−1

N̆(t)+1
. They extend this expression by

a function of variables which are known at time t− 1,

λ(t) =
1

ΨN̆(t)+1 + z′t−1γ
, (28)

where zt are time-varying covariates which are updated during a duration
spell. In this sense, the ACH model can be seen as a combination of a duration
model and an intensity model. In Hamilton and Jordà (2002), the ACH model
is applied to study changes of the level of the federal funds rate target in the
U.S.

An alternative intensity-based model is introduced by Gerhard and Hautsch
(2005). They propose a dynamic extension of a Cox (1972) proportional in-
tensity model, where the baseline intensity λ0(t) is non-specified. Their key
idea is to exploit the stochastic properties of the integrated intensity and to
re-formulate the model in terms of a regression model with unknown left-
hand variable and Gumbel distributed error terms – see Kiefer (1988) for a
nice illustration of this relation. To identify the unknown baseline intensity
at discrete points, Gerhard and Hautsch follow the idea of Han and Hausman
(1990) and formulate the model in terms of an ordered response model based
on categorized durations. In order to allow for serial dependence in the dura-
tion process, the model is extended by an observation-driven ARMA dynamic
based on generalized errors. As a result, the resulting semiparametric autore-
gressive conditional proportional intensity (ACPI) model allows to capture
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serial dependence in duration processes and to estimate conditional failure
probabilities without requiring explicit distributional assumptions.

Bauwens and Veredas (2004) propose the stochastic conditional duration
model (SCD) as an alternative to ACD-type models. The SCD model relates
to the logarithmic ACD model in the same way as the stochastic volatility
model relates to the exponential GARCH model of Nelson (1991). Thus the
model is defined by equations (12), (13), and

ln Ψi = ω + β ln Ψi−1 + γεi−1 + ui, (29)

where ui is belongs to an iid process and is N(0, σ2) distributed. The processes
{ui} is assumed to be independent of the process {εi}. The set of possible
distributions for the duration innovations εi is the same as for ACD models.
This model allows for a rich class of hazard functions for xi through the
interplay of two distributions. The latent variable Ψi may be interpreted as
being inversely related to the information arrival process which triggers bursts
of activity on financial markets. The ‘leverage’ term γεi−1 in (29) is added
by Feng et al. (2004) to allow for an intertemporal correlation between the
observable duration and the conditional duration, and the correlation is found
to be positive. Bauwens and Veredas (2004) use a logarithmic transformation
of (12) and employ QML estimation with the Kalman filter. Knight and Ning
(2005) use the empirical characteristic function and the method of generalized
moments. Strickland et al. (2003) use Bayesian estimation with a Markov
chain Monte Carlo algorithm. For the model with the leverage term, Feng
et al. (2004) use the Monte Carlo ML method of Durbin and Koopman (2004).

The ACD and SCD models reviewed above share the property that the
dynamics of higher moments of the duration process are governed by the
dynamics of the conditional mean. Ghysels et al. (2004) argue that this feature
is restrictive and introduce a nonlinear two factor model that disentangles the
movements of the mean and of the variance of durations. Since the second
factor is responsible for the variance heterogeneity, the model is named the
stochastic volatility duration (SVD) model. The departure point for this model
is a standard static duration model in which the durations are independently
and exponentially distributed with a gamma heterogeneity, i.e.

xi =
Ui

aVi
=

H(1, F1i)
aH(b, F2i)

, (30)

where Ui and Vi are two independent variables with distributions gamma(1,1)
(i.e. exponential) and gamma(b, b), respectively. The last ratio in (30) uses
two independent Gaussian factors F1i and F2i, and H(b, F ) = G(b, ϕ(F )),
where G(b, .) is the quantile function of the gamma(b, b) distribution and ϕ(.)
the cdf of the standard normal. Ghysels et al. (2004) extend this model to a
dynamic setup through a VAR model for the two underlying Gaussian factors.
Estimation is relatively difficult and requires simulation methods.
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3.4 Applications

ACD models can be used to estimate and predict the intra-day volatility of
returns from the intensity of price durations. As shown by Engle and Russell
(1998), a price intensity is closely linked to the instantaneous price change
volatility. The latter is given by

σ̃2(t|Ft) := lim
∆↓0

1
∆

E

[(
p(t + ∆)− p(t)

p(t)

)2
∣∣∣∣∣Ft

]
, (31)

where p(t) denotes the price (or midquote) at t. By denoting the counting
process associated with the event times of cumulated absolute price changes
of size dp by Ndp(t), we can formulate (31) in terms of the intensity function
of the process of dp-price changes. Then, the dp-price change instantaneous
volatility can be computed as

σ̃2
(dp)(t|Ft) = lim

∆↓0
1
∆

Pr [|p(t + ∆)− p(t)| ≥ dp |Ft ] ·
[

dp

p(t)

]2

= lim
∆↓0

1
∆

Pr
[
(Ndp(t + ∆)−Ndp(t)) > 0 |Ft

] ·
[

dp

p(t)

]2

:= λdp(t|Ft) ·
[

dp

p(t)

]2

, (32)

where λdp(t;Ft) denotes the corresponding dp-price change intensity. Hence,
using (14), given an estimate of the parameters of an ACD model, one can
estimate or predict the instantaneous volatility of the price process p(t) at any
time point. Giot (2005) compares these estimates with usual GARCH based
estimates obtained by interpolating the prices on a grid of regularly spaced
time points. He finds that GARCH based predictions are better measures of
risk than ACD based ones in a Value-at-Risk (VaR) evaluation study.

ACD and related models have been typically used to test implications of
asymmetric information models of price formation. For example, the model of
Easley and O‘Hara (1992) implies that the number of transactions influences
the price process through information based clustering of transactions. Then,
including lags as well as expectations of the trading intensity as explanatory
variables in a model for the price process allows to test such theoretical predic-
tions. For a variety of different applications in market microstructure research,
see Engle and Russell (1998), Engle (2000), Bauwens and Giot (2000), En-
gle and Lunde (2003), and Hafner (2005) among others. Several authors have
combined an ACD model with a model for the marks of a financial point pro-
cess. The idea is generally to model the duration process by an ACD model,
and conditionally on the durations, to model the process of marks. Bauwens
and Giot (2003) model the direction of the price change between two consec-
utive trades by formulating a competing risks model, where the direction of
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the price movement is triggered by a Bernoulli process. Then, the parameters
of the ACD process depend on the direction of the previous price change,
leading to an asymmetric ACD model. A related type of competing risks
model is specified by Bisière and Kamionka (2000). Prigent et al. (2001) use
a similar model for option pricing. Russell and Engle (2005) develop an au-
toregressive conditional multinomial model to simultaneously model the time
between trades and the dynamic evolution of (discrete) price changes.

A related string of the literature studies the interaction between the trad-
ing intensity and the trade-to-trade return volatility. Engle (2000) augments
a GARCH equation for returns per time by the impact of the inverse of the
observed and expected durations (xi and Ψi), and of the surprise xi/Ψi. A
decrease in xi or Ψi has a positive impact on volatility while the surprise has
the reverse impact. Dionne et al. (2005) use a related model to compute an
intraday VaR. Ghysels and Jasiak (1998) and Grammig and Wellner (2002)
study a GARCH process for trade-to-trade returns with time-varying parame-
ters which are triggered by the trading intensity. Meddahi et al. (2006) derive
a discrete time GARCH model for irregularly spaced data from a continuous
time volatility process and compare it to the ACD-GARCH models by Engle
(2000) and Ghysels and Jasiak (1998).

4 Dynamic Intensity Models

In this section, we review the most important types of dynamic intensity mod-
els which are applied to model financial point processes. The class of Hawkes
models and extensions thereof are discussed in Section 4.1. In Section 4.2, we
survey autoregressive conditional intensity models and stochastic conditional
intensity models. Statistical inference for intensity models is illustrated in Sec-
tion 4.3, whereas the most important applications in the recent literature are
briefly discussed in Section 4.4.

4.1 Hawkes Processes

Hawkes processes originate from the statistical literature in seismology and are
used to model the occurrence of earthquakes, see e.g. Vere-Jones (1970), Vere-
Jones and Ozaki (1982), and Ogata (1988) among others. Bowsher (2002) was
the first applying Hawkes models to financial point processes. As explained
in Section 3.2, Hawkes processes belong to the class of self-exciting processes,
where the intensity is driven by a weighted function of the time distance to
previous points of the process. A general class of univariate Hawkes processes
is given by

λ(t) = ϕ
(
µ(t) +

∑
ti<t w(t− ti)

)
, (33)

where ϕ denotes a possibly nonlinear function, µ(t) is a deterministic function
of time, and w(s) denotes a weight function. If ϕ : R→ R+, we obtain the class
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of nonlinear Hawkes processes considered by Brémaud and Massoulié (1996).
In this case, µ(t) and w(t) can take negative values since the transformation
ϕ(·) preserves the non-negativity of the process. Such a specification is useful
whenever the intensity may be negatively affected by the process history or
covariates. For instance, in the context of financial duration processes, µ(t) can
be parameterized as a function of covariates. Stability conditions for nonlinear
Hawkes processes are derived by Brémaud and Massoulié (1996). For the
special case where ϕ is a linear function, we obtain the class of linear Hawkes
processes originally considered by Hawkes (1971). They are analytically and
computationally more tractable than their nonlinear counterparts, however,
they require µ(t) > 0 and w(t) > 0 in order to ensure non-negativity.

As pointed out by Hawkes and Oakes (1974), linear self-exciting processes
can be viewed as clusters of Poisson processes. Then, each event is one of two
types: an immigrant process or an offspring process. The immigrants follow
a Poisson process and define the centers of so-called Poisson clusters. If we
condition on the arrival time, say ti, of an immigrant, then independently of
the previous history, ti is the center of a Poisson process, Υ (ti), of offspring
on (ti,∞) with intensity function λi(t) = λ(t− ti), where λ is a non-negative
function. The process Υ (ti) defines the first generation offspring process with
respect to ti. Furthermore, if we condition on the process Υ (ti), then each of
the events in Υ (ti), say tj , generates a Poisson process with intensity λj(t) =
λ(t − tj). These independent Poisson processes build the second generation
of offspring with respect to ti. Similarly, further generations arise. The set of
all offspring points arising from one immigrant are called a Poisson cluster.
Exploiting the branching and conditional independence structure of a (linear)
Hawkes process, Møller and Rasmussen (2004) develop a simulation algorithm
as an alternative to the Shedler-Lewis thinning algorithm or the modified
thinning algorithm by Ogata (1981) (see e.g. Daley and Vere-Jones (2003)).
The immigrants and offsprings can be referred to as ”main shocks” and ”after
shocks” respectively. This admits an interesting interpretation which is useful
not only in seismology but also in high-frequency finance. Bowsher (2002),
Hautsch (2004) and Large (2005) illustrate that Hawkes processes capture the
dynamics in financial point processes remarkably well. This indicates that the
cluster structure implied by the self-exciting nature of Hawkes processes seem
to be a reasonable description of the timing structure of events on financial
markets.

The most common parameterization of w(t) has been suggested by Hawkes
(1971) and is given by

w(t) =
P∑

j=1

αje
−βjt, (34)

where αj ≥ 0, βj > 0 for j = 1, . . . , P are model parameters, and P denotes
the order of the process and is selected exogenously (or by means of informa-
tion criteria). The parameters αj are scale parameters, whereas βj drive the
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strength of the time decay. For P > 1, the intensity is driven by the super-
position of differently parameterized exponentially decaying weighted sums of
the backward times to all previous points. In order to ensure identification
we impose the constraint β1 > . . . > βP . It can be shown that the station-
arity of the process requires 0 <

∫∞
0

w(s)ds < 1, which is ensured only for∑P
j=1 αj/βj < 1, see Hawkes (1971).
While (34) implies an exponential decay, the alternative parameterization

w(t) =
H

(t + κ)p
, (35)

with parameters H, κ, and p > 1 allows for a hyperbolic decay. Such weight
functions are typically applied in seismology (see e.g. Vere-Jones and Ozaki
(1982) and Ogata (1988)) and allow to capture long range dependence. Since
financial duration processes also tend to reveal long memory behavior (see
Jasiak (1998)), specification (35) might be an interesting specification in fi-
nancial applications.

Multivariate Hawkes models are obtained by a generalization of (33). Then,
λ(t) is given by the (K × 1)-vector λ(t) = (λ1(t), . . . , λK(t))′ with

λk(t) = ϕ
(
µk(t) +

∑K
r=1

∑
tr
i
<t wk

r (t− tri )
)

, (36)

where wk
r (s) is a k-type weight function of the backward time to all r-type

events. Using an exponential decay function, Hawkes (1971) suggests to pa-
rameterize wk

r (s) as

wk
r (t) =

P∑

j=1

αk
r,je

−βk
r,jt, (37)

where αk
r,j ≥ 0 and βk

r,1 > . . . > βk
r,P > 0 drive the influence of the time

distance to past r-type events on the k-type intensity. Thus, in the multivariate
case, λk(t) depends not only on the distance to all k-type points, but also on
the distance to all other points of the pooled process. Hawkes (1971) provides
a set of linear parameter restrictions ensuring the stationarity of the process.

Bowsher (2002) proposes a generalization of the Hawkes model which al-
lows to model point processes which are interrupted by time periods where
no activity takes place. In high-frequency financial time series these effects
occur because of trading breaks due to trading halts, nights, weekends or
holidays. In order to account for such effects, Bowsher proposes to remove
all non-activity periods and to concatenate consecutive activity periods by a
spill-over function. Then, the univariate so-called generalized Hawkes model
is given by

λ(t) = µ(t) +
P∑

j=1

λ̃j(t), (38)
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where λ̃j(0) = 0 and

λ̃j(t) = πj λ̃j(τd−1)e−ρj(t−τd−1) +
∑

τd−1<ti≤t

αje
−βj(t−ti) (39)

for τd−1 < t ≤ τd, where αj ≥ 0, β1 > . . . > βP > 0, πj ≥ 0, ρj > 0 are
model parameters and τd with d = 0, 1, 2, . . . represents the end of the d-th
trading period in the concatenated process. The first term in (39) captures
the intensity spillover between the individual trading periods driven by the
parameters πj and ρj . Similarly, a multivariate version of the generalized
Hawkes process is given by λ(t) = (λ1(t), . . . , λK(t))′, with

λk(t) = µk(t) +
∑K

r=1

∑P
j=1 λ̃k

r,j(t), (40)

λ̃k
r,j(t) = πk

r,j λ̃
k
r,j(τd−1)e−ρk

r,j(t−τd−1) +
∑

τd−1<ti≤t αk
r,je

−βk
r,j(t−tr

i ) (41)

for k = 1, . . . , K with αk
r,j ≥ 0, βk

r,1 > . . . βk
r,P > 0, πk

r,j ≥ 0 and ρk
r,j > 0.

Bowsher shows that the generalized Hawkes process nests the linear Hawkes
model if πk

r,j = 1 and ρk
r,j = βk

r,j .

4.2 Autoregressive Conditional Intensity Processes

Autoregressive conditional intensity (ACI) models constitute an alterna-
tive class of intensity models which allow to capture serial dependencies
in point processes. The key idea of the ACI model introduced by Russell
(1999) is to model the intensity function in terms of an autoregressive pro-
cess which is updated by past realizations of the integrated intensity. Let
λ(t) = (λ1(t), . . . , λK(t))′. Then, Russell proposes to specify λk(t) in terms of
a proportional intensity structure given by

λk(t) = Φk
N̆(t)+1

λk
0(t)sk(t), k = 1, . . .K, (42)

where ΦN̆(t)+1 captures the dynamic structure, λk
0(t) is a baseline intensity

component capturing the (deterministic) evolution of the intensity between
two consecutive points and sk(t) denotes a deterministic function of t captur-
ing, for instance, possible seasonality effects. The function ΦN̆(t) is indexed
by the left-continuous counting function and is updated instantaneously after
the arrival of a new point. Hence, Φi is constant for ti−1 < t ≤ ti. Then, the
evolution of the intensity function between two consecutive arrival times is
triggered by λk

0(t) and sk(t).
In order to ensure the non-negativity of the process, the dynamic compo-

nent Φk
i is specified in log-linear form, i.e.

Φk
i = exp

(
Φ̃k

i + z′i−1γ
k
)

, (43)

where zi denotes a vector of explanatory variables observed at arrival time ti
and γk the corresponding parameter vector. Define εi as a (scalar) innovation
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term which is computed from the integrated intensity function associated with
the most recently observed process, i.e.

εi =
K∑

k=1


1−

∫ tk

Nk(ti)

tk

Nk(ti)−1

λk(s;Fs)ds


 yk

i , (44)

where yk
i defines an indicator variable that takes the value 1 if the i-th point

of the pooled process is of type k. Using the random time change argument
presented in Section 2.4, εi corresponds to a random mixture of i.i.d. centered
standard exponential variates and thus is itself an i.i.d. zero mean random

variable. Then, the (K × 1) vector Φ̃i =
(
Φ̃1

i , . . . , Φ̃
K
i

)′
is parameterized as

Φ̃i =
K∑

k=1

(
Akεi−1 + BkΦ̃i−1

)
yk

i−1, (45)

where Ak = {ak
j } denotes a (K × 1) innovation parameter vector and

Bk = {bk
ij} is a (K × K) matrix of persistence parameters. Hence, the fun-

damental principle of the ACI model is that at each event ti all K processes
are updated by the realization of the integrated intensity with respect to the
most recent process, where the impact of the innovation on the K processes
can be different and also varies with the type of the most recent point. As
suggested by Bowsher (2002), an alternative specification of the ACI innova-
tion term might be ε̃i = 1−Λ(ti−1, ti), where Λ(ti−1, ti) :=

∑K
k=1 Λk(ti−1, ti)

denotes the integrated intensity of the pooled process computed between the
two most recent points. Following the arguments above, ε̃i is also a zero mean
i.i.d. innovation term. Because of the regime-switching nature of the persis-
tence matrix, the derivation of stationarity conditions is difficult. However, a
sufficient (but not necessary) condition is that the eigenvalues of the matrices
Bk for all k = 1, . . . , K lie inside the unit circle.

As suggested by Hautsch (2004), the baseline intensity function λk
0(t) can

be specified as the product of K different Burr hazard rates, i.e.

λk
0(t) = exp(ωk)

K∏
r=1

xr(t)ps
r−1

1 + ηs
rx

r(t)ps
r
, (ps

r > 0, ηs
r ≥ 0). (46)

According to this specification λk(t) is driven not only by the k-type backward
recurrence time but also by the time distance to the most recent point in all
other processes r = 1, . . . , K with r 6= k. A special case occurs when ps

r = 1
and ηs

r = 0, ∀ r 6= s. Then, the k-th process is affected only by its own
backward recurrence time.

Finally, sk(t) is typically specified as a spline function in order to capture
intraday seasonalities. A simple parameterization which is used in most studies
is given by a linear spline function of the form sk(t) = 1 +

∑S
j=1 νk

j (t − τj) ·
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1l {t>τj}, where τj , j = 1 . . . , S, denote S nodes within a trading period and νj

the corresponding parameters. A more flexible parameterization is e.g. given
by a flexible Fourier form (Gallant (1981)) as used by Andersen and Bollerslev
(1998) or Gerhard and Hautsch (2002) among others.

A generalization of the ACI model has been proposed by Bauwens and
Hautsch (2006). The key idea is that the multivariate intensity function λ(t) =
(λ1(t), . . . , λK(t))′ is driven not only by the observable history of the process
but also by a common component. The latter may be considered as a way
to capture the unobservable general information flow in a financial market.
Such a setting turns out to be useful for the modelling of high-dimensional
point processes which are driven by an unobservable common random process.
By assuming the existence of a common unobservable factor λ∗(t) following
a pre-assigned structure in the spirit of a doubly stochastic Poisson process
(see Section 2.3), we define the internal (unobservable) history of λ∗(t) as F∗t .
Then, we assume that λ(t) is adapted to the filtration Ft := σ(Fo

t ∪ F∗t ),
where Fo

t denotes some observable filtration. Then, the so-called stochastic
conditional intensity (SCI) model is given by

λk(t) = λo,k(t)
(
λ∗

N̆(t)+1

)σ∗k
, (47)

where λ∗
N̆(t)+1

:= λ∗(tN̆(t)+1) denotes the common latent component which
is updated at each point of the (pooled) process {ti}i∈{1,...,n}. The direction
and magnitude of the process-specific impact of λ∗ is driven by the parameters
σ∗k. The process-specific function λo,k(t) := λo,k(t|Fo

t ) denotes a conditionally
deterministic idiosyncratic k-type intensity component given the observable
history, Fo

t .
Bauwens and Hautsch assume that λ∗i has left-continuous sample paths

with right-hand limits and in logarithm is the zero mean AR(1) process given
by

ln λ∗i = a∗ ln λ∗i−1 + u∗i , u∗i ∼ i.i.d. N(0, 1). (48)

Because of the symmetry of the distribution of ln λ∗i , Bauwens and Hautsch
impose an identification assumption which restricts the sign of one of the
scaling parameters σ∗k. The observation-driven component λo,k(t) is specified
in terms of an ACI parameterization as described above. However, in contrast
to the basic ACI model, in the SCI model, the innovation term is computed
based on the observable history of the process, i.e.

εi =
K∑

k=1

{
−$ − ln Λo,k

(
tkNk(ti)−1, t

k
Nk(ti)

)}
yk

i , (49)

where $ denotes Euler’s constant, $ = 0.5772, and Λo,k
(
tki−1, t

k
i

)
is given by

Λo,k
(
tki−1, t

k
i

)
:=

N(tk
i )−1∑

j=N(tk
i−1)

∫ tj+1

tj

λo,k(u)du
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=
N(tk

i )−1∑

j=N(tk
i−1)

(
λ∗j

)−σ∗k Λk (tj , tj+1) (50)

corresponding to the sum of (piecewise) integrated k-type intensities which are
observed through the duration spell and are standardized by the corresponding
(scaled) realizations of the latent component. This specification ensures that
εi can be computed exclusively based on past observables implying a distinct
separation between the observation-driven and the parameter-driven compo-
nents of the model. Bauwens and Hautsch (2006) analyze the probabilistic
properties of the model and illustrate that the SCI model allows for a wide
range of (cross-)autocorrelation structures in multivariate point processes. In
an application to a multivariate process of price intensities, they find that
the latent component captures a substantial part of the cross-dependences
between the individual processes resulting in a quite parsimonious model. An
extension of the SCI model to the case of multiple states is proposed by Koop-
man et al. (2005) and is applied to the modelling of credit rating transitions.

4.3 Statistical Inference

Karr (1991) shows that valid statistical inference can be performed based
on the intensity function solely, see Theorem 5.2. in Karr (1991) or Bowsher
(2002). Assume a K-variate point process N(t) = {Nk(t)}K

k=1 on (0, T ] with
0 < T < ∞, and the existence of a K-variate Ft-predictable process λ(t)
that depends on the parameters θ. Then, it can be shown that a genuine log
likelihood function is given by

lnL (
θ; {N(t)}t∈(0,T ]

)
=

K∑

k=1

[∫ T

0

(1− λk(s))ds +
∫

(0,T ]

ln λk(s)dNk(s)

]
,

which can be alternatively computed by

lnL (
θ; {N(t)}t∈(0,T ]

)
=

n∑

i=1

K∑

k=1

(−Λk(ti−1, ti)) + yk
i ln

[
λk(ti)

]
+ TK. (51)

Note that (51) differs from the standard log likelihood function of duration
models by the additive (integrating) constant TK which can be ignored for
ML estimation. By applying the so-called exponential formula (Yashin and
Arjas (1988)), the relation between the integrated intensity function and the
conditional survivor function is given by

S(xi|Fti−1+xi) = exp (−Λ(ti−1, ti)) , (52)

which is the continuous counterpart to the well-known relation between the
survivor function and the hazard rate, S(xi) = exp(− ∫ xi

0
h(u)du). Hence, by
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ignoring the term TK, (51) corresponds to the sum of the conditional survivor
function and the conditional intensity function. However, according to Yashin
and Arjas (1988), the exponential formula (52) is only valid if S(xi|Fti−1+xi) is
absolutely continuous in xi, which excludes jumps of the conditional survivor
function induced by changes of the information set during a spell. Therefore,
in a continuous, dynamic setting, the interpretation of exp (−Λ(ti−1, ti)) as a
survivor function should be done with caution.

The evaluation of (51) for a Hawkes model is straightforward. In the case
of an exponential decay function, the resulting log likelihood function can be
even computed in a recursive way (see e.g. Bowsher (2002)). An important
advantage of Hawkes processes is that the individual intensities λk(t) do not
have parameters in common and the parameter vector can be expressed as
θ =

(
θ1, . . . , θK

)
, where θk denotes the parameters associated with the k-type

intensity component. Given that the parameters are variation free, the log
likelihood function can be computed as lnL (

θ; {N(t)}t∈(0,T ]

)
=

∑K
k=1 lk(θk)

and can be maximized by maximizing the individual k-type components lk(θk)
separately. This facilitates the estimation particularly when K is large. In con-
trast, ACI models require to maximize the log likelihood function with respect
to all the parameters jointly. This is due to the fact that the ACI innovations
are based on the integrated intensities which depend on all individual param-
eters. The estimation of SCI models is computationally even more demanding
since the latent factor has to be integrated out resulting in a n-dimensional
integral. Bauwens and Hautsch (2006) suggest to evaluate the likelihood func-
tion numerically using the efficient importance sampling procedure introduced
by Richard (1998). Regularity conditions for the maximum likelihood estima-
tion of stationary simple point processes are established by Ogata (1981). For
more details, see Bowsher (2002).

Diagnostics for intensity based point process models can be performed
by exploiting the stochastic properties of compensators (see Bowsher (2002))
and integrated intensities given in Section 2.4. The model goodness-of-fit can
be straightforwardly evaluated through the estimated integrated intensities of
the K individual processes, ek

i,1 := Λ̂k(tki−1, t
k
i ), the integrated intensity of the

pooled process ei,2 := Λ̂(ti−1, ti) =
∑K

k=1 Λ̂k(ti−1, ti), or of the (non-centered)

ACI residuals ei,3 :=
∑K

k=1

(
Λ̂k(tki−1, t

k
i )

)
yk

i . Under correct model specifica-
tion, all three types of residuals must be i.i.d. standard exponential. Then,
model evaluation is done by testing the dynamic and distributional properties.
The dynamic properties are easily evaluated with Portmanteau statistics or
tests against independence such as proposed by Brock et al. (1996). The distri-
butional properties can be evaluated by using Engle and Russell’s (1998) test
against excess dispersion (see Section 3.2). Other alternatives are goodness-
of-fit tests based on the probability integral transform (PIT) as employed for
diagnostics of ACD models by Bauwens et al. (2004).
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4.4 Applications

For financial point processes, dynamic intensity models are primarily applied
in multivariate frameworks or whenever a continuous-time setting is particu-
larly required, like, for instance, in order to allow for time-varying covariates,
i.e. covariates that vary between two consecutive points of the pooled pro-
cess. For sake of brevity, the case of time-varying covariates was not explicitly
considered in the previous presentation. Basically, all event times associated
with (discrete) changes of time-varying covariates can be treated as another
point process that is not explicitly modelled. However, at each event time of
the covariate process, the intensities associated with all other processes have
to be updated. This requires a piecewise computation of the corresponding
integrated intensities. For an extension of the ACI model to the case of time-
varying covariates, see Hall and Hautsch (2006b).

One string of applications focusses on the modelling of trading intensities
of different types of orders in limit order books. Hall and Hautsch (2006b) ap-
ply a bivariate ACI model to study the intensities of buy and sell transactions
in the electronic limit order book market of the Australian Stock Exchange
(ASX). The buy and sell intensities are specified to depend on time-varying
covariates capturing the state of the market. On the basis of the buy and sell
intensities, denoted by λB(t) and λS(t), Hall and Hautsch propose a measure
of the continuous net buy pressure defined by ∆B(t) := ln λB(t) − ln λS(t).
Because of the log-linear structure of the ACI model, the marginal change of
∆B(t) induced by a change of the covariates is computed as γB − γS , where
γB and γS denote the coefficients associated with covariates affecting the buy
and sell intensity, respectively (see eq. (43)). Hall and Hautsch (2006a) study
the determinants of order aggressiveness and traders’ order submission strat-
egy at the ASX by applying a six-dimensional ACI model to study the arrival
rates of aggressive market orders, limit orders as well as cancellations on both
sides of the market. In a related paper, Large (2005) studies the resiliency
of an electronic limit order book by modelling the processes of orders and
cancellations on the London Stock Exchange using a ten-dimensional Hawkes
process. Finally, Russell (1999) analyzes the dynamic interdependences be-
tween the supply and demand for liquidity by modelling transaction and limit
order arrival times at the NYSE using a bivariate ACI model.

Another branch of the literature focusses on the modelling of the instanta-
neous price change volatility which is estimated on the basis of price durations,
see (32) in Section 3.4. This relation is used by Bauwens and Hautsch (2006)
to study the interdependence between instantaneous price change volatilities
of several blue chip stocks traded at the New York Stock Exchange (NYSE)
using a SCI model. In this setting, they find a strong evidence for the existence
of a common latent component as a major driving force of the instantaneous
volatilities on the market. In a different framework, Bowsher (2002) analyzes
the two-way interaction of trades and quote changes using a two-dimensional
generalized Hawkes process.
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