Low sensitivity of the formol-ethyl acetate sedimentation concentration technique in low-intensity Schistosoma japonicum infections

Lier, Tore; Simonsen, Gunnar S.; Wang, Tianping; Lu, Dabing; Haukland, Hanne H.; Vennervald, Birgitte J; Johansen, Mariå Vang

Published in:
PLoS Neglected Tropical Diseases

DOI:
10.1371/journal.pntd.0000386

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Low Sensitivity of the Formol-Ethyl Acetate Sedimentation Concentration Technique in Low-Intensity *Schistosoma japonicum* Infections

Tore Lier¹,², Gunnar S. Simonsen¹,²,³, Tianping Wang⁴, Dabing Lu⁵, Hanne H. Haukland¹, Birgitte J. Vennervald⁶, Maria V. Johansen⁶

1 Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway, 2 Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, Tromsø, Norway, 3 Norwegian Institute of Public Health, Oslo, Norway, 4 Anhui Institute of Parasitic Diseases, Wuhu, People's Republic of China, 5 Department of Infectious Diseases, Faculty of Medicine, Imperial College, London, United Kingdom, 6 DBL- Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Background: The endemic countries are in a diagnostic dilemma concerning *Schistosoma japonicum* with increasing difficulties in diagnosing the infected individuals. The formol-ethyl acetate sedimentation concentration technique is preferred by many clinical microbiology laboratories for the detection of parasites in stool samples. It is potentially more sensitive than the diagnostic methods traditionally used.

Methodology/Principal Findings: We evaluated the technique for detection of low-intensity *S. japonicum* infections in 106 stool samples from China and used a commercial kit, Parasep Midi Faecal Parasite Concentrator. One stool sample and one serum sample were collected from each person. As reference standard we used persons positive by indirect hemagglutination in serum and positive by Kato-Katz thick smear microscopy (three slides from a single stool), and/or the hatching test. We found the sedimentation technique to have a sensitivity of only 28.6% and specificity of 97.4%.

Conclusion/Significance: This study indicates that the sedimentation technique has little to offer in the diagnosis of low-intensity *S. japonicum* infections, at least when only a single stool sample is examined.

Editor: Juerg Utzinger, Swiss Tropical Institute, Switzerland

Received September 30, 2008; **Accepted** January 29, 2009; **Published** February 24, 2009

Copyright: © 2009 Lier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was funded by the University Hospital of North Norway. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tore.lier@unn.no

Introduction

Schistosomiasis japonica is still a major public health problem, especially in China, despite great achievements during the past 50 years in controlling this parasitic disease. Diagnosis is a key for decision-making, both on individual and community levels. The current epidemiologic situation in the *Schistosoma japonicum*-endemic countries (China, the Philippines and Indonesia) has made the use of many common diagnostic assays problematic [1]. Low-intensity infections reduce the sensitivity of tests which demonstrate eggs in stool such as the Kato-Katz thick smear [2] and the hatching test [3], especially when only a single stool sample is available for examination. Antibody detection tests suffer from low specificity, often due to persistent antibodies from previously treated infections [4–6].

Stool concentration techniques, especially formal (formalin)-ether or formol-ethyl acetate sedimentation concentration is the preferred method for detection of helminth eggs and protozoa cysts in many clinical parasitology laboratories [7–9], although to a lesser extent in Africa and Asia. The formol-ethyl acetate sedimentation concentration technique (subsequently termed ‘sedimentation technique’) is one of the methods recommended in the Clinical and Laboratory Standards Institute (formerly NCCLS) guidelines [10] and the Cumitech guidelines [11] for recovery of parasites from the intestinal tract. The sedimentation technique processes a relatively large stool sample and is thus theoretically more sensitive than alternative techniques in low-intensity helminth infections. To our knowledge there are no published data evaluating this method for the detection of *S. japonicum*. As the sedimentation technique is more resource-demanding than the Kato-Katz technique in terms of equipment and workload, the method should substantially improve the diagnostic yield in order to be cost-effective. The primary aim of this study was to assess whether the sedimentation technique could be a sensitive alternative to the tests traditionally used in the endemic areas, and hence potentially play a role in a diagnostic algorithm of the control programs. Additionally, as diagnosing light infections is a challenge in the individual patient too, information from this study might find interest in travel medicine (where the sedimentation technique is traditionally used) and at clinics in endemic areas.

Materials and Methods

Study area, population and ethical considerations

Stool samples and sera were collected in the villages Guanghui and Heping in Laozhou township, located on an island in the
Field and laboratory procedures

One stool sample and one serum sample were collected from all participants. The sedimentation technique, Kato-Katz thick smear and hatching test were performed on the same stool sample. Parasep Midi Faecal Parasite Concentrators are closed, single use tubes with built-in filter. They were pre-filled with 6 ml 10% buffered formalin, one drop Triton-X and 2 ml ethyl acetate and used for the sedimentation technique in accordance with the manufacturer’s instruction sheet (DiaSys Europe Ltd., Berkshire, United Kingdom). A teaspoon was used to measure an amount of stool equivalent to 1 g. A single slide was examined per sample, using a large coverslip (24x30 mm), going through the whole slide at 100 x magnification. Previous test results were not known to the microscopist.

The hatching test was done by adding approximately 30 g stool into a container with a coarse metal mesh, flushing the fine material into a fine-meshed nylon bag and then washing until the water was clear. The content of the bag was transferred to a triangular flask containing 300 ml non-chlorinated water. The flasks were examined in strong light by two members of the staff for the presence of swimming miracidia after 4, 6, 8 and 24 hours [5].

Kato-Katz thick smear was performed as previously described [5,14], using nylon screens and plastic templates. Three slides (41.7 mg each) were prepared from a single stool from each person and examined within two weeks. Positive slides were confirmed by a second microscopist.

Sera were collected in capillary tubes. Antibody detection was done by IHA, using a kit commercially manufactured at Anhui Provincial Institute of Parasitic Diseases as described by Zhou et al. [6]. The test was considered positive if a positive reaction appeared at a titre ≥1:10.

Table 1. Results of S. japonicum microscopy of stool samples by the formol-ethyl acetate sedimentation concentration technique.

<table>
<thead>
<tr>
<th>Sedimentation technique</th>
<th>Reference standard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>28</td>
<td>78</td>
</tr>
</tbody>
</table>

Reference standard refers to individuals positive by indirect hemagglutination (IHA) and positive by Kato-Katz microscopy and/or the hatching test. doi:10.1371/journal.pntd.0000386.t001
There were 8 samples positive for other helminth eggs with Kato-Katz (*Trichuris trichiura* = 7, *Ascaris lumbricoides* = 1) and 7 samples positive with the sedimentation technique (*T. trichiura* = 3, *A. lumbricoides* = 1, hookworm = 2, *Hymenolepis diminuta* = 1).

Discussion

In this study we found that the sedimentation technique, when a commercial kit (Parasep Midi Faecal Parasite Concentrator) and a single stool sample was used, had a disappointingly low sensitivity in diagnosing low-intensity *S. japonicum* infections. However, the number of samples tested is low and further studies are needed to confirm the results.

The hatching test, Kato-Katz thick smear and serum antibody detection methods such as IHA are all commonly used in China, but to our knowledge there are no published data evaluating the detection methods such as IHA are all commonly used in China, and thus the highest sensitivity. The two largest comparative studies conclude that the sensitivity of 2 or 3 Kato-Katz slides from a single stool is superior to the sedimentation technique [15,16]. However, in detecting light infections, several authors found the sedimentation technique to be more successful [8,16].

In our opinion the performance of the sedimentation technique for *S. mansoni* or other helminths cannot automatically be extrapolated to *S. japonicum* mainly because *S. japonicum* eggs are round and lack conspicuous characteristics. They are often surrounded by stool material. Hence a particularly watchful eye is needed to detect low-intensity infections.

The sedimentation technique had a low sensitivity in this study. Even if we used a positive Kato-Katz or a positive hatching test as the only positive reference standard criterion, regardless of IHA, the test properties of the sedimentation technique remained almost the same with a sensitivity of 23.7% and specificity 98.8%. There may be several explanations for the low sensitivity. When the egg output is very low, it will be a matter of chance whether there is an egg on the slide or not. This may also explain why only in the reference standard group were positive for both Kato-Katz and hatching. Knight et al. [8] and Ebrahim et al. [16] both calculated that half of all *S. mansoni* eggs were lost in the sedimentation technique procedure compared to Kato-Katz. Examination of more than one sedimentation technique slide from each sample would most likely increase the sensitivity, but also be very time-consuming compared to Kato-Katz. We used approximately 15 min to examine each sedimentation technique slide, while an experienced technician uses approximately 3 min on each Kato-Katz slide. It has been shown that the number of *S. japonicum* eggs may vary between consecutive stool samples from the same person, favouring examination of repeated samples [17]. Collecting repeated stool samples in large control programs is often not feasible [18,19]. However, in handling individual patients, such as in travel medicine and in clinics in endemic areas, examining repeated stool samples is easier to accomplish, and are indeed often recommended. In the present study we examined a single stool sample, and hence could not determine the value, especially in terms of sensitivity, of repeated sampling. The sedimentation technique gives the opportunity to examine for intestinal protozoa as well. Hookworm eggs clear rapidly in the Kato-Katz procedure and will usually not be visible unless the smears are examined soon after preparation [14,20,21]. We found 2 hookworm-positive samples by the sedimentation technique and none by Kato-Katz. The ability to detect a broad range of intestinal parasites is usually important when taking care of individual patients, while both intestinal protozoa and hookworm are in most cases of secondary interest in *S. japonicum* control programs. The sedimentation technique had high specificity in this study, and even the two ‘false positive’ sedimentation technique samples might possibly be the result of a false negative reference standard when interpreted in light of the aforementioned low sensitivity of Kato-Katz and hatching tests, especially when only a single stool sample is examined [5,6,17,18].

We found the Parasep Midi Faecal Parasite Concentrator kit to be very practical for field sampling and preparation with limited hands-on time required. The material costs may be higher than with the conventional open sedimentation technique. Unfortunately there are, to our knowledge, no peer-reviewed papers published that directly compare the Concentrator kit with a conventional open sedimentation technique. An unpublished evaluation has been performed by Kettelhut et al. at the Hospital for Tropical Diseases, London (personal communication, available through the manufacturer and provided here as Text S1), where the Concentrator kit shows similar results as a standard open sedimentation technique. However, generalizing the results using this kit to other variations of the sedimentation techniques should be avoided.

Based on the findings in this study we conclude that the formol-ethanol sedimentation concentration technique, using Parasep Midi Faecal Parasite Concentrators, offers no advantages compared to Kato-Katz and hatching in low-intensity *S. japonicum* infections. The sedimentation technique had low sensitivity and is relatively time-consuming. Clinical laboratories using the sedimentation technique might also consider using additional tests to diagnose imported *S. japonicum* infections. However, if examining repeated samples is feasible, it will likely increase the sensitivity.

Supporting Information

Alternative Language Abstract S1 Translation of the Abstract into Chinese by Dabing Lu. Found at: doi:10.1371/journal.pntd.0000386.s001 (0.06 MB PDF)

Text S1 Evaluation of Parasep Faecal Parasite Concentrator. Found at: doi:10.1371/journal.pntd.0000386.s002 (3.50 MB PDF)

Acknowledgments

Thanks to Girum Tadesse for sedimentation technique microscopy. We are grateful to Wu Weiduo, Chao Zhagu, Xiao Xiang, Wang Qizhi, Zhang Gonghua, Liu Xiaoming, Chen Dalin, Pan Xingping and the rest of the staff at Anhui Provincial Institute of Parasitic Diseases and Tongling Station of Schistosomiasis Control for collecting and processing samples.

Author Contributions

Conceived and designed the experiments: TL GSS TW DL HHH MVJ. Performed the experiments: TL DL. Analyzed the data: TL GSS TW BJ MVJ. Contributed reagents/materials/analysis tools: TL TW. Wrote the paper: TL. Substantially revised the paper: GSS HHH BJV MVJ.

References

