Cuotas y poder de voto en el FMI: teoría y evidencia
Gonzalez-Eiras, Martin

Published in:
Ensayos Economicos

Publication date:
2009

Citation for published version (APA):
Cuotas y poder de voto en el FMI: teoría y evidencia

Martín Gonzalez-Eiras
Universidad de San Andrés

Resumen

Los países miembros del Fondo Monetario Internacional (FMI) aportan recursos a un fondo común con el fin de proveer créditos. La cuota de un miembro, su participación en el capital del FMI, no sólo determina su contribución financiera sino también la ponderación de sus votos y, por ende, su influencia en el organismo. Recientes debates sobre los métodos para la determinación de las cuotas condujeron a la aprobación en abril de 2008 de una reforma parcial del sistema vigente. Con el objetivo de contribuir a este debate, estudiamos la regla óptima de votación en el FMI. Para ello adaptamos el modelo de Barberà y Jackson (2006) de reglas de votación óptimas en federaciones heterogéneas. El modelo predice que los votos de cada país deben ser ponderados de acuerdo con su participación en el comercio internacional, el ingreso per capita y el nivel de reservas internacionales.

Códigos de clasificación de JEL: D72, F32, F33, F41

Palabras clave: organizaciones internacionales; ajuste de cuenta corriente; reglas óptimas de votación.

*Deseo agradecer a Andrés Drenik por su ayuda en la investigación y a Lawrence Broz, John Hassler, Enrique Kawamura, Dirk Niepelt, Torsten Persson, Martín Rossi, James Vreeland y los participantes de la conferencia IIES de la Universidad de Estocolmo, Banco Nacional de Suiza, Universidad de San Andrés, Universidad de Bern, Reunión de PEIO (Monte Veritá 2008), Taller sobre Interdependencia Global (Barcelona 2008) y LAMES (Río de Janeiro 2008) todos sus comentarios. Las opiniones expresadas en este trabajo son del autor y no reflejan necesariamente la visión del BCRA o de sus autoridades. Correo electrónico: mge@alum.mit.edu.
Quotas and Voting Shares in the IMF: Theory and Evidence

Martin Gonzalez-Eiras
University of San Andrés

Summary

The International Monetary Fund (IMF) is a financial institution founded in 1944 with the main purpose of assisting members facing temporary balance of payments problems. From an initial membership of 44 states, today almost all the countries in the world participate in it. Members of the IMF do not have equal power. They contribute a quota subscription of financial resources, and this quota is the basis for determining voting power.

Historically, quota allocations have been based mainly on economic size and external trade volume. Heterogeneity among members in terms of population, wealth, and integration to international markets has recently produced a debate about the methods used for quota determination. In response to this, and also in the face of mounting criticism from academics and policymakers, the IMF embarked in September 2005 on a large-scale program of modernization. Salient among its objectives was governance reform, including adjusting quota shares to reflect better the relative weight of members in the world economy”. In April 2008, a reform proposal representing a step in this direction was approved.

In the past decade there have been many reform proposals that focused on different aspects of IMF governance, but none of these, and other, reform proposals has been founded on a model of expected utility maximization. With the aim of contributing to this debate, we adapt the model of Barberà and Jackson (2006) of optimal voting rules in a heterogeneous union.

In the model, votes at the IMF take place over two alternatives: whether or not to bailout a member country in crisis. An optimal voting rule seeks to maximize a
welfare function that takes into account the utilities of all citizens represented in the IMF. When making a decision for a particular vote, members of the IMF weight the benefits and costs that a bailout would have on their citizens. Benefits are assumed to relate to trade linkages, and costs are assumed to originate from moral hazard inefficiencies affecting net factor income from abroad. When benefits outweigh costs a country will vote in favor of a bailout, and when the costs are larger than the benefits, the country will oppose a bailout. Votes are weighted by the ex-ante average intensity of preferences of citizens with respect to the choice they make. If the tally of weighted votes in favor of the bailout is larger than the one against it, the bailout is approved. Thus, votes are determined by the “externalities” that a given bailout have on the welfare of other members, and financial aid is approved only if the average positive effects dominate the negative ones.

To determine how a crisis abroad affects the welfare of a member country’s citizens, we use a static model of aggregate demand and have the foreign crisis triggering a real exchange rate shock to each member’s current account due to trade linkages with the crisis country. The direct effect are proportional to the size of trade with the crisis country as exports to it would decrease, and imports from it increase. Since a country can dampen the effect that a crisis abroad has on its real exchange rate through the use of international reserves, the welfare impact would be decreasing in the stock of foreign reserves held. Under the assumption that the marginal utility of income is decreasing, welfare effects are larger for poorer countries. In this context, optimal weights are proportional to a country’s volume of trade. Given participation in world trade, quotas decrease with per-capita income and with holdings of foreign reserves.

The model further predicts that the IMF would be more likely to provide assistance to bigger, more open countries. We test this prediction using the dataset that Barro and Lee (2005) use to study the effect of IMF programs on economic performance. While they find that size measured by GDP is a strong predictor of the probability of being bailed out by the IMF, adding trade flows makes the influence of GDP to be statistically insignificant. Another prediction of the model is that voting thresholds should be increasing in the importance of capital flows relative to trade flows.

The model has implication for the reform proposals that have been presented to improve the legitimacy of the IMF (See for example Cottarelli (2005) and Rapkin and Strand (2006)). In particular under the assumptions of the model, there is no
rationale for a double majority system as the “count and account” proposal of O’Neill and Peleg (2000). Further research will be aimed at developing a more sophisticated model of income and consumption determination, incorporating moral hazard, and a more detailed formulation of bailout costs, relating them to capital injections in the Fund.

JEL Classification Codes: D72, F32, F33, F41.

Keywords: International organizations; current account adjustment; optimal voting rules.
I. Introducción

El Fondo Monetario Internacional (FMI) es una institución financiera fundada en 1944 con el propósito principal de asistir a los miembros que enfrentan problemas transitorios de balanza de pagos. Comenzó con un número inicial de 44 países miembro, y hoy casi todos los países del mundo participan en él. Pero no todos tienen el mismo poder. Aportan una suscripción de cuota de recursos financieros que es la base para determinar su poder de voto. Históricamente, las asignaciones de las cuotas han dependido sobre todo del tamaño de la economía y el volumen de comercio exterior. Sin embargo, la heterogeneidad de los miembros en cuanto al tamaño de su población, riqueza e integración a los mercados internacionales ha generado en los últimos tiempos un debate sobre los métodos utilizados para determinar la cuota. En respuesta a esto, y ante las crecientes críticas de académicos y hacedores de política, el FMI se embarcó en septiembre de 2005 en un programa de modernización a gran escala. Entre sus objetivos salientes estaba la reforma de la estructura de gobierno, que incluye ajustar la participación de las cuotas para “reflejar mejor la ponderación relativa de los miembros en la economía mundial”. En abril de 2008, se aprobó una propuesta de reforma que representa un paso en esta dirección.

Durante la última década, hubo muchas propuestas de reforma focalizadas en distintos aspectos de la estructura de gobierno del FMI. Buira (2005), entre otros autores, reclama el uso de indicadores del PIB basados en la paridad del poder adquisitivo (PPA) para las actuales fórmulas de las cuotas con el objetivo de aumentar la participación de los países en desarrollo y, de esta manera, mejorar la “legitimidad” del Fondo. Esta sugerencia fue objeto de un intenso debate y finalmente fue incorporada a la propuesta de reforma aprobada en el 2008. Valubel (2006) identifica que uno de los problemas es la separación entre los países miembro y los directores ejecutivos del FMI, mientras que Woods (2005) reclama una mayor responsabilidad. Bird y Rowlands (2006) reclaman reformar el sistema de cuotas con el argumento de que la evolución del sistema financiero internacional, luego de la flexibilización de los tipos de cambio de los países industriales en los setenta, ha hecho insostenible el uso de las cuotas para la determinación simultánea de las contribuciones, el acceso y el derecho a voto. Según nuestro leal saber y entender, ninguna de estas, u otras, propuestas de reforma se ha basado en un modelo de maximización de la utilidad esperada.
Derivamos un modelo micro-fundado para estudiar la optimalidad del sistema de cuotas. Esto se relaciona con varias cuestiones. Primero, determinar bajo qué supuestos un sistema de cuotas es, de hecho, óptimo. Éste es un punto relevante si tenemos en cuenta que algunas propuestas de reforma (O’Neill y Peleg (2000) y Rapkin y Strand (2006) por ejemplo) reclaman un sistema de doble mayoría para los votos dentro del FMI. Para responder a esta pregunta, primero caracterizaremos la regla óptima de votación y luego veremos cuándo es posible representarla mediante una regla de votación ponderada como la utilizada por el FMI. La segunda cuestión se relaciona con la determinación de los ponderadores de voto de los miembros. La tercera es la determinación óptima de las cuotas totales y, por consiguiente, cómo se debería relacionar el volumen de recursos financieros del FMI con las condiciones de la economía mundial.

Considerando que el FMI es una institución en la que cada miembro tiene un representante que vota en nombre de los ciudadanos de su país, adaptamos el modelo de regla óptima de votación de Barberà y Jackson (2006). Los votos en el FMI se realizan a partir de dos alternativas: rescatar o no rescatar a un país miembro en crisis.1 Una regla óptima de votación busca maximizar la función de bienestar que tiene en cuenta las utilidades de todos los ciudadanos representados en el FMI. Demostramos que, bajo ciertos supuestos, una regla óptima de votación consta de un ponderador para el voto de cada país y un umbral que indica el tamaño que debe tener el ponderador total de votos emitidos a favor de un rescate para poder implementar la política.

Al tomar una decisión sobre un voto en particular, los miembros del FMI ponderan los beneficios y costos que tendría el rescate para sus ciudadanos. Se supone que los beneficios están relacionados con los vínculos comerciales y que los costos se originan en las ineficiencias de riesgo moral que afectan los ingresos netos de los factores del exterior. Cuando los beneficios superan a los costos, el país votará a favor del rescate y cuando los costos son más altos que los beneficios, se opondrá a él. Los votos son ponderados por la intensidad promedio ex ante de las preferencias de los ciudadanos con respecto a la elección que hacen. Si la suma de los votos ponderados a favor del rescate supera a la de los votos en contra, entonces se aprueba el salvataje. Por lo tanto, los votos están

1 La formalización se generaliza para los casos en los que una serie de miembros enfrentan simultáneamente una crisis y se decide asistirlos a todos, a un conjunto de ellos o a ninguno.
determinados por las “externalidades” que tiene un rescate sobre el bienestar de otros miembros y la ayuda financiera sólo se aprueba si los efectos positivos promedio dominan a los negativos.

Para determinar cómo una crisis en el exterior afecta el bienestar de los ciudadanos de un país miembro, utilizamos un modelo estático de demanda agregada y consideramos que la crisis externa desencadena un shock de tipo de cambio real en la cuenta corriente de cada miembro debido a los vínculos comerciales con el país en crisis. Los efectos directos son proporcionales al volumen comercial con el país en dificultades, dado que caerán las exportaciones a dicho país y aumentarán las importaciones. Como un país puede morigerar el efecto que tiene una crisis externa sobre su tipo de cambio real utilizando las reservas internacionales, el impacto en términos de bienestar es decreciente con respecto al stock de reservas. Suponiendo que la utilidad marginal del ingreso es decreciente, los efectos en el bienestar son más grandes para los países más pobres. Entonces, utilizamos regresiones con datos de panel con observaciones promedio de cinco años entre 1960 y 2000 para probar las predicciones de este modelo.

El modelo predice que habría más posibilidades de que el FMI brinde ayuda a los países más grandes y más abiertos. Probamos esta predicción utilizando el conjunto de datos que Barro y Lee (2005) emplean para estudiar el efecto de los programas del FMI en el desempeño económico. Mientras que los autores descubren que el tamaño medido por el PIB es un predictor sólido de la probabilidad de ser rescatado por el FMI, agregar los flujos de comercio hace que la influencia del PIB no tenga significancia estadística. Otra predicción del modelo es que deberían aumentar los umbrales de votación de acuerdo con la importancia de los flujos de capital en relación con los flujos de comercio.

El resto de este documento posee la siguiente estructura. La Sección II resume los antecedentes y las características salientes de la estructura de gobierno del FMI, incluyendo una revisión (II.1) de la reforma de cuotas aprobada en abril de 2008. La Sección III analiza las características de la regla óptima de votación y la Sección IV describe los datos utilizados y los resultados de las regresiones. La Sección V analiza los resultados y las distribuciones potenciales de las cuotas según el modelo teórico. La Sección VI incluye las conclusiones.
II. Estructura de gobierno del FMI y reformas recientes

Desde su fundación, el FMI se ha esforzado por "fomentar la cooperación monetaria global, garantizar la estabilidad financiera, facilitar el comercio internacional, alentar altos niveles de empleo y un crecimiento económico sustentable, y reducir la pobreza". Pero los roles que ha desempeñado cambiaron desde la caída del sistema que dio vida a esta institución: el Acuerdo de Bretton Woods. Antes de 1973, el FMI se focalizaba básicamente en los países desarrollados: entre 1947 y 1967, estos países representaban casi el 70% del monto total de recursos extraídos. En 1973, después de la liberación del régimen cambiario a nivel mundial, los principales usuarios de los recursos del FMI pasaron a ser las economías emergentes de África y América Latina con crisis de balanza de pagos. Esto amplió la divergencia entre países desarrollados y emergentes en cuestiones de política, y sobre cómo agregar sus preferencias en decisiones colectivas.

En el FMI, las decisiones se toman por mayoría ponderada de votos. La estructura de poder está organizada de la siguiente manera: la Junta de Gobernadores, que detenta todos los poderes del Fondo, está compuesta por los representantes de todos los países miembro. Cada país inicialmente recibía 250 votos básicos más un voto adicional por cada cien mil Derechos Especiales de Giro (DEG) en su poder. Los votos básicos fueron una solución de compromiso destinada a conciliar el principio de igualdad soberana con las grandes asimetrías de poder entre los miembros. La relación votos básicos/total de votos aumentó en primera instancia al sumarse nuevos países a la organización, alcanzando un récord histórico de 15,6% en 1958. Los aumentos del total de cuotas hicieron descender este ratio a alrededor del 2%, mientras que la reforma de cuotas aprobada en abril de 2008 triplicó los votos básicos e introdujo un mecanismo para estabilizar su cifra en el 5,5% de los votos totales. Aunque inicialmente había una fórmula única para calcular las cuotas, a principios de la década de 1960 se creó un método complejo de varias fórmulas para determinar las cuotas sobre la base del PIB, las exportaciones e importaciones, la variabilidad de los flujos de Exportaciones y las reservas. Aunque esto dio lugar a diferentes ponderadores para calcular las cuotas de los países desarrollados y en desarrollo, se produjo una pérdida significativa de transparencia. Durante algún tiempo se utilizaron 10 fórmulas que luego fueron reemplazadas por cinco, un sistema que estuvo en fun-

2 En la Subsección II.1 analizaremos en detalle la reforma de cuotas aprobada en abril de 2008.
cionamiento hasta la reforma de 2008 a partir de la cual se retornó a una fórmula única. No existe ninguna razón explícita para utilizar estas variables y no otras ni para los ponderadores ligados a ellas en las fórmulas antes mencionadas. En realidad, en apariencia, las fórmulas, al igual que las cuotas reales, que en algunos casos difieren mucho de las calculadas, están sesgadas para producir un resultado político que se asemeje al deseado por los miembros más poderosos del FMI.3

Uno de los objetivos de la reforma del 2008 fue mejorar la credibilidad del FMI aumentando la transparencia del proceso de determinación de cuotas y realineando las cuotas reales con las calculadas.

La Junta de Gobernadores puede delegar ciertas decisiones en el Directorio Ejecutivo, compuesto por un representante de cada uno de los cinco miembros del FMI que poseen las cuotas más altas más otros 19 integrantes, algunos de los cuales representan a un determinado subgrupo de países. Por consiguiente, los Directores Ejecutivos tienen una cantidad de votos igual a la suma de los votos de los países a los que representan. De esta manera, cuando el Directorio Ejecutivo vota, primero hay una reunión en la que cada subgrupo determina cómo votará su representante. Luego, el Directorio Ejecutivo se reúne y emite su voto. Hay dos reglas de supermayoría diferentes y su uso depende del tema en discusión en ese momento. La primera, que requiere una mayoría del 70%, se utiliza para cuestiones de procedimiento (decisiones que involucran asuntos de política y operaciones) y la segunda, que requiere una mayoría del 85%, se utiliza para cuestiones de fondo (por ejemplo, revisiones del estatuto o cambios en las cuotas). Una observación importante sobre estas reglas de mayoría y el sistema de votación es que Estados Unidos es el único país que tiene poder de veto dado que posee más del 15% de las cuotas totales.

El sistema de cuotas cumple distintas funciones, lo que genera la posibilidad de conflicto, tal como señalaron Bird y Rowlands (2006). La cuota de un miembro define cuatro aspectos de la relación entre el país miembro y el FMI: primero, la cantidad de recursos financieros que los miembros aportan al Fondo; segundo, la cantidad de recursos que pueden retirar del FMI; tercero, su poder de voto en las decisiones institucionales y cuarto, la participación de cada miembro en las asignaciones de DEG. Con respecto a cómo se determinan las cuotas, el FMI reconoció desde su fundación que, dado que realizaría grandes desembolsos

3 Mikesell (1994) reconoce que la fórmula original de Bretton Woods utilizada para asignar cuotas entre los primeros 44 miembros del FMI se desarrolló con el objetivo de que fuera compatible con el resultado deseado.
de recursos financieros escasos, sus decisiones serían legalmente obligatorias en lugar de un mero asesoramiento. Los métodos más igualitarios (por ejemplo, la regla de un país-un voto) no serían aceptables para las principales potencias que aportan el grueso de los recursos del FMI. Por lo tanto, se diseñó un esquema por el cual cada nación miembro del Fondo tiene una cuota que equipara aproximadamente su poder de voto con su aporte financiero a la organización.

Es común que se realicen Revisiones Generales de las Cuotas cada cinco años para incorporar los cambios ocurridos en la posición relativa de los miembros en la economía mundial y también para dar cabida a nuevos miembros. Cada aumento de cuota se divide a discreción del Directorio Ejecutivo en un componente equiproporcional y un componente selectivo. El primero es similar a un aumento de capital, consistente en ampliar de manera proporcional las cuotas existentes, mientras que el segundo tiende a llevar las cuotas nuevas hacia las calculadas. Dado que históricamente el componente equiproporcional representa en promedio el 70% del aumento de la cuota, hay un status quo significativo en la distribución de poder dentro del FMI.

II.1. El retorno a una fórmula única para calcular la cuota

En marzo de 2008, el Directorio Ejecutivo presentó una propuesta de reforma de su sistema de cuotas que fue aprobada al mes siguiente por la Junta de Gobernadores. La propuesta fue producto de un intenso debate en el seno del Directorio Ejecutivo según las pautas establecidas en la Asamblea Anual del Fondo Monetario Internacional celebrada en Singapur en septiembre de 2006 y destinada a realinear la participación de las cuotas de los miembros con su posición económica. Se mejoró la participación y la voz de los países de ingresos bajos por medio de un aumento sustancial en la cantidad de votos básicos y de un mecanismo que mantendrá constante la relación de votos básicos a votos totales en el futuro. Es más, el FMI buscará la forma de que las cuotas y el poder de voto respondan mejor a los cambios en las realidades económicas en las futuras Revisiones Generales de las Cuotas.

Una característica saliente de la reforma es que las cuotas se calculan de nuevo utilizando una sola fórmula. Esto mejora la transparencia de la estructura de gobierno del FMI y ayuda a reflejar mejor la posición relativa de los países miembro

4 La presencia de votos básicos introduce una cuña entre la suscripción financiera y el poder de voto, que es significativa para los países menos desarrollados.
en la economía global. Para llegar a esta fórmula, el Directorio tuvo en cuenta una serie de restricciones, como la multiplicidad de roles que tienen las cuotas, que se basen en los datos disponibles y que sean políticamente factibles. La nueva fórmula propuesta incluye cuatro variables económicas: PIB, apertura, variabilidad y reservas, expresadas como participación en los totales globales. Luego se comprime el promedio ponderado para reducir la dispersión en las participaciones de cuotas calculadas:

$$ICQ = (0.5Y + 0.3CC + 0.15V + 0.05R)^k$$

Donde ICQ es la participación de la cuota calculada intermedia, Y es un promedio ponderado del PIB convertido a los tipos de cambio de mercado y los tipos de cambio de PPA promedio durante un período de tres años. El ponderador sobre el PIB basado en el mercado es 60%. CC es el promedio anual de la suma de los pagos actuales y los flujos actuales durante un período de cinco años. V es la variabilidad de los flujos actuales y los flujos de capital netos, medidos como desviación estándar de la tendencia centralizada de tres años durante un período de 13 años. R es el promedio anual de las reservas oficiales y $k = 0.95$ es un factor de compresión. Se obtienen las cuotas calculadas después de reescalar la suma de ICQ a 100.

El cálculo del PIB tanto a los tipos de cambio de mercado como de PPA refleja una solución de compromiso entre la posición de los países en desarrollo, que respaldaban a estos últimos como mejor estimación del volumen relativo de los bienes y servicios producidos por sus economías, y la posición de los países desarrollados, que ven al PIB al tipo de cambio de mercado como el indicador relevante, en especial como indicador de la capacidad contributiva de los miembros. El factor de compresión es un instrumento para moderar la dispersión de las cuotas calculadas. Dada la limitación de la nueva fórmula de cuotas para mejorar la voz de las economías emergentes, se decidió triplicar los votos básicos, medida que aumenta el poder de voto más allá de la participación de la cuota para las naciones menos desarrolladas. La inclusión del PIB de PPA y el factor de compresión fue uno de los aspectos más controvertidos de la propuesta de reforma y el Directorio Ejecutivo decidió incluirlos en los cálculos de las cuotas durante un período de prueba de 20 años. Al final de ese lapso, se revisaría el fundamento para retener estos componentes. La fórmula de la cuota sólo calcula cuotas relativas de los miembros del FMI. La determinación de las cuotas totales sigue siendo discrecionalmente decidida durante las Revisiones Generales de las Cuotas.
Como respuesta a los desarrollos de la economía mundial, en marzo de 2009 el G-20 decidió aumentar el capital del FMI, prometiéndole 500.000 millones de dólares adicionales, y el permiso para emitir 250.000 millones en su cuasi moneda, los DEG, y de este modo brindar liquidez inmediata a los países en desarrollo. Las grandes economías emergentes del G-20 dejaron en claro que quieren ver propuestas más detalladas de los cambios en el poder de voto dentro del FMI y que quieren que el proceso de reforma se acelere. Un modelo micro-fundado del sistema de cuotas aportaría una cierta disciplina para orientar la discusión política. Ahora, presentaremos el modelo.

III. El modelo

Hay n países en el FMI, que son heterogéneos en términos de población, riqueza e integración a la economía mundial. El país \(i\) tiene una población de ciudadanos \(p_i\), todos los cuales generan la misma utilidad \(u(c_i)\) a partir del consumo per capita \(c_i\). Se sabe que, con un cierto grado de probabilidad, un subconjunto de los países miembro sufrirán un shock negativo de balanza de pagos, en cuyo caso se deberá tomar la decisión de asistir financieramente o no al(los) país(es) afectado(s). Para facilitar la exposición, supondremos que sólo un país, el país \(j\), podría experimentar un shock de balanza de pagos y luego demostraremos que el análisis es extensible a una crisis en varios países. Entonces, un estado que traduce las preferencias de los ciudadanos en votos es una descripción de las preferencias de los miembros sobre si asistir o no al país \(j\). Sin perder la generalidad, es posible normalizar la utilidad a cero si prevalece el status quo y no se brinda asistencia; las preferencias están representadas por un vector \(\bar{u}(j) \in R^n\), en el que el elemento \(u(j)_i \equiv u_{ij}\) es la utilidad de un agente representativo del país \(i\) si se rescata al país \(j\).5

Después de producido un shock, el representante de cada país decidirá si votará a favor o en contra del rescate según que la utilidad del salvataje sea positiva o negativa para los ciudadanos de ese país. Por lo tanto, la conducta de votación del representante puede ser descripta por una función \(R \rightarrow \{b, nb\}\) que representa las preferencias de los ciudadanos en un voto. La notación \(h_i(u_{ij}) = b\) indica que el representante del país \(i\) vota a favor de un rescate. Esto indica que la utilidad de ayudar al país \(j\) es mayor en el país \(i\) en comparación con el status

5 Por lo tanto, \(u_{ij} \equiv u(c_i^{j,h}) - u(c_i^{j, nh})\), donde los superíndices diferencian el consumo dependiendo de que al país \(j\) se lo rescate o no.
quó, es decir $u_{ij} > 0$. En cambio, un voto en contra de la asistencia, $h_i(u_{ij}) = nb$, indica que los ciudadanos del país i prefieren el status quo, es decir, $u_{ij} < 0$.

En una segunda etapa, se suman los votos de los representantes de acuerdo con una regla de votación. Supongamos que $v: \mathcal{R}^n \rightarrow \{0, \frac{1}{2}, 1\}$ indica el resultado de este procedimiento de votación de dos etapas como una función de las preferencias de los ciudadanos en votos, $\bar{u}(j)$. Aquí, $v(\bar{u}(j)) = 1$ indica que se aprueba el rescate, $v(\bar{u}(j)) = 0$ significa que el país j no será asistido, y $v(\bar{u}(j)) = \frac{1}{2}$ indica un empate que se resolverá tirando una moneda.

Supongamos que una regla de votación eficiente es aquella que maximiza la función de bienestar social esperada dentro de la clase de reglas de votación factibles. La función de bienestar social está dada por la utilidad total esperada, que otorga igual peso a todos los ciudadanos del FMI, independientemente del país de residencia. Por lo tanto, consideraremos reglas de votación que maximicen la siguiente función de bienestar:

$$E \left[\sum_i v(\bar{u}(j)) p_i u_{ij} \right]$$

Donde la expectativa se toma sobre la distribución de los shocks de balanza de pagos, indicados por $\mu(\cdot)$ que afectan a cualquier subgrupo de países miembro del FMI. Supondremos que la probabilidad y severidad de una crisis en el país j es independiente de las políticas que aplica ese país. En particular, esto implica que $\nu(\cdot)$ no tiene ningún efecto sobre $\mu(\cdot)$.

Se considerarán tres alternativas para el contenido informativo de los votos y la contingencia de la regla de votación $\nu(\cdot)$ sobre ellos. En el primero de los casos, las preferencias subyacentes, u_{ij}, se observan a nivel público (o es posible inferirlas correctamente del estado de la naturaleza). En este caso, es sencillo ver que la regla óptima de votación es determinada por:

6 Éstas son reglas de votación que dependen sólo de la información obtenida de los votos de los representantes.

7 En un trabajo futuro, eliminaremos este supuesto y estudiaremos cómo se determina la regla óptima cuando la expectativa de un rescate afecta las políticas de un país y, lo tanto, la distribución de probabilidades de shocks de balanza de pagos.
Más interesante resulta el caso en el que el voto de un país no indica de manera perfecta la intensidad de las preferencias por una elección determinada. Para este caso, consideremos la siguiente regla de votación, propuesta por Barberà y Jackson (2006). Para cada país y para cada estado posible se asignan dos ponderadores, uno cuando el país vota a favor del rescate del país j y otro para los votos en contra. Para el primero de los casos, tenemos:

$$v^E(u) = \begin{cases}
1 & \text{si } \sum_i u_{ij} > 0, \\
0 & \text{si } \sum_i u_{ij} < 0, \\
\frac{1}{2} & \text{si } \sum_i u_{ij} = 0.
\end{cases}$$

Por lo tanto, el ponderador asignado al país i es proporcional al bienestar total esperado de sus ciudadanos cuando el rescate del país j es, en realidad, su política preferida. Del mismo modo, el ponderador asignado al país i cuando vota en contra del rescate es determinado por:

$$w^n_{ij} = p_i E[u_{ij} | u_{ij} < 0, j]$$

Entonces, la regla de votación eficiente $v^E(u)$ es definida por:

$$v(\bar{u}(j)) = \begin{cases}
1 & \text{si } \sum_{i: h_i(\bar{u}(j)) = b} w^b_{ij} > \sum_{i: h_i(\bar{u}(j)) = nb} w^n_{ij}, \\
0 & \text{si } \sum_{i: h_i(\bar{u}(j)) = b} w^b_{ij} < \sum_{i: h_i(\bar{u}(j)) = nb} w^n_{ij}, \\
\frac{1}{2} & \text{si } \sum_{i: h_i(\bar{u}(j)) = b} w^b_{ij} = \sum_{i: h_i(\bar{u}(j)) = nb} w^n_{ij}.
\end{cases}$$

Proposición 1. Si las preferencias son independientes entre los países (es decir que la utilidad de un país para una alternativa dada no depende del perfil total de votos del resto de los países), entonces una regla de votación es eficiente si, y sólo si, es equivalente hasta el caso de empate a v^E.

Este resultado es el Teorema 1 de Barberà y Jackson (2006). Podría ser posible que, por razones políticas, la regla de votación no pueda depender de la identidad del país en crisis. Ex-ante, algunos miembros potenciales del FMI podrían sentirse injustamente tratados por esta estructura de gobierno hecha a medida y decidir no unirse a la organización. En ese caso, tiene sentido considerar cuál es la regla óptima de votación cuando ésta debe satisfacer una restricción adicional, a saber, que no puede estar sujeta al estado que traduce las preferencias de los
ciudadanos en votos. Si redefinimos la regla de votación anterior en consecuencia, concluimos que a cada país se le asignan los siguientes ponderadores cuando votan a favor o en contra de un rescate, independientemente de cuál sea el país que necesita asistencia financiera:

\[w_i^b = p_i E[u_{ij} | u_{ij} > 0] \]
\[w_i^{nb} = p_i E[u_{ij} | u_{ij} < 0] \]

Donde, ahora, las expectativas se toman ex-ante sobre la distribución de probabilidad conjunta de la verosimilitud y severidad de una crisis en el país \(j \) y sobre el efecto que esto tiene en las preferencias de los ciudadanos del país \(i \). La regla de votación eficiente se define como antes, reemplazando los ponderadores correspondientes en las sumas. Dado que ahora estamos considerando una regla de votación no contingente, podemos suponer, sin pérdida de generalidad, que ex-post la intensidad de las preferencias, \(u_{ij} \), está dada por una función bien definida de la magnitud de la crisis en el país \(j \). Esto simplifica el cálculo de los ponderadores \(w_i^b \) y \(w_i^{nb} \).

Según esta regla, los ponderadores se ven afectados por la intensidad de las preferencias dentro de un país por las alternativas, tal como las capturan los valores de \(u_{ij} \). Por lo tanto, a los países que, en promedio, les interesa de manera más intensa una decisión de rescate debería dárseloles un peso mayor que a los países menos afectados por el resultado. En su trabajo, Barberà y Jackson consideran una decisión abstracta entre dos alternativas y, por consiguiente, no hay razón para la heterogeneidad en la intensidad de las preferencias de los miembros. Por ende, los autores le asignan a cada ciudadano de la federación las mismas utilidades posibles, de +1 a -1. Dada la naturaleza del problema estudiado aquí, introducimos más estructura acerca de las preferencias de los países y la dimensión en la que un shock en el país \(j \) afecta al ciudadano representativo del país \(i \).

Para relacionar la intensidad de las preferencias, \(u_{ij} \), con los fundamentales suponemos las preferencias CRRA (preferencias de aversión al riesgo relativas constantes con coeficiente de aversión al riesgo \(\theta \)) sobre el consumo per capita.

\[u(c_i) = \frac{1}{1 - \theta} c_i^{1 - \theta}. \]

Suponemos un modelo estático de demanda agregada en una economía abierta en la que el ingreso agregado está dado por la demanda agregada, \(Y_i \), más el
ingreso neto de factores del exterior, \(Z_i \). La demanda agregada está dada por el consumo, la inversión y las exportaciones netas. Las siguientes relaciones conductuales caracterizan a los componentes del ingreso agregado, del que se ha eliminado por simplicidad el subíndice \(i \):

\[
C = C_0 + C_1(Y + Z(\varepsilon)) \quad I = I_0
\]

\[
NX(\varepsilon) = X(\varepsilon) - \varepsilon M(\varepsilon), \quad X'(\varepsilon) > 0, \quad M'(\varepsilon) < 0
\]

\[
Z(\varepsilon) = rF - r^*F^* = (rF)(\varepsilon) - (r^*F^*)(\varepsilon).
\]

Donde \(C \) es el consumo, \(I \) es la inversión, \(NX \) son las exportaciones netas de bienes y servicios (\(X \) son las exportaciones y \(M \) las importaciones), \(F \) y \(F^* \) son los activos y pasivos externos, \(r \) y \(r^* \) son las tasas de interés (probablemente diferentes) cobradas y pagadas sobre esas posiciones externas, y \(\varepsilon \) es el tipo de cambio real. Las relaciones de equilibrio para la demanda agregada y el consumo son:

\[
Y = \frac{1}{1 - C_1} (C_0 + I_0 + C_1Z(\varepsilon) + NX(\varepsilon))
\]

\[
Y = m(Y_0 + C_1Z(\varepsilon) + NX(\varepsilon))
\]

\[
C = mC_1 \left(\dot{C}_0 + Z(\varepsilon) + NX(\varepsilon), \right)
\]

Donde \(m \equiv \frac{1}{1 - C_1} \) es el multiplicador de la demanda agregada a los shocks externos. Tal como señala Fischer (1999), un rescate impide la sobre-reacción de la depreciación del tipo de cambio real del país \(j \). Por lo tanto, el salvataje produce una apreciación relativa del tipo de cambio real del país \(j \), \(\alpha_j = -\frac{\Delta \varepsilon_j}{\varepsilon_j} > 0 \). Suponiendo que se mantiene la condición de Marshall-Lerner, la depreciación de una moneda, \(\Delta \varepsilon \), tiene un efecto positivo en las exportaciones netas de:

\[
(\varepsilon X, \varepsilon + \varepsilon M, \varepsilon - 1) \frac{(X + \varepsilon M)}{2} \frac{\Delta \varepsilon}{\varepsilon} \equiv a(X + \varepsilon M) \frac{\Delta \varepsilon}{\varepsilon}
\]

Donde se supone que el comercio está en equilibrio (es decir, \(X = \varepsilon M = \frac{X + \varepsilon M}{2} \)) y supondremos que las elasticidades que caracterizan a la respuesta de las expor-

8 Por lo tanto, \(\alpha \) es un indicador de la magnitud del shock de balanza de pagos en el país \(j \), dado que una crisis más profunda provocaría una mayor desviación en el tipo de cambio real si prevalece el status quo.
taciones netas, representadas por el parámetro \(a \), son las mismas para todos los países. Por lo tanto, el efecto de un rescate al país \(j \) en las exportaciones netas del país \(i \) está dado por:

\[
\Delta N X_i = a(X_i + \varepsilon_i M_i)\frac{-\varepsilon_j d\varepsilon_i}{\varepsilon_i} d\varepsilon_j - \frac{X_{ij} + \varepsilon_i M_{ij}}{\sum_k X_{ik} + \varepsilon_i M_{ik}} \alpha_j \frac{\Delta \varepsilon_i}{\varepsilon_i} \frac{\Delta \varepsilon_j}{\varepsilon_j} = \frac{-\varepsilon_j d\varepsilon_i}{\varepsilon_i} d\varepsilon_j \alpha_j, \quad \text{y} \quad \frac{-\varepsilon_j d\varepsilon_i}{\varepsilon_i} d\varepsilon_j \alpha_j
\]

Donde, en la primera expresión, \(\frac{\Delta \varepsilon_i}{\varepsilon_i} \frac{\Delta \varepsilon_j}{\varepsilon_j} \) es el impacto de una apreciación del tipo de cambio real del país \(j \) en el tipo de cambio real del país \(i \). Se supone que este efecto es proporcional a la fracción de comercio bilateral entre ambos países, tal como se refleja en la segunda expresión.

El rescate del país \(j \) también tiene efectos negativos en el país \(i \). Aumentan los problemas de riesgo moral esperados en todas las relaciones financieras entre el país \(i \) y el resto del mundo y, por lo tanto, hay un impacto negativo en los ingresos netos de los factores del exterior, \(Z_i \).\(^9\) El ingreso recibido de los activos externos en manos de los ciudadanos del país \(i \), \(r_i F_i \), sufre una reducción de la recuperación esperada del capital, y el ingreso pagado a los extranjeros que poseen activos domésticos, \(r_i^* F_i^* \), aumenta debido a las primas de riesgo. Este efecto se modela para que adopte la siguiente forma:

\[
\Delta Z_i = -\delta m_i \sum_k (F_{ik} + F_{ik}^*) = -\delta m_i (F_i + F_i^*) \tag{3}
\]

Por lo tanto, \(\delta m_i \) mide el impacto porcentual que tiene un rescate sobre el ingreso proveniente de las posiciones financieras. Con la notación \(|F| \equiv F + F^* \) y con el consumo per capita dado por \(c \equiv \frac{C}{p} \), tenemos:

\[
\begin{align*}
\Delta u(c_i) &= c_i^{-\theta} \Delta c_i = c_i^{-\theta} m_i C_{1i} \frac{\Delta N X_i + \Delta Z_i}{p_i} \\
\Delta u(c_i) &= c_i^{-\theta} m_i C_{1i} \left(\alpha_j a(X_{ij} + \varepsilon_i M_{ij}) - \delta |F_i| \right) \tag{4}
\end{align*}
\]

\(^9\) En realidad, este efecto negativo debería afectar los ingresos netos futuros de los factores del exterior pero, por razones de simplicidad, nos abstraemos de consideraciones intertemporales en el modelo.
Donde $c_i\theta$ es la utilidad marginal del consumo para el país i, un término que refleja que los países más pobres son, ceteris paribus, los más afectados por una crisis en el exterior. Por lo tanto, el modelo supone que los efectos positivos para el país i cuando se rescata al país j surgen de los vínculos comerciales entre ambos países. Como resultado de (3), los efectos negativos son proporcionales a las relaciones financieras entre el país i y el resto del mundo. De acuerdo con esta representación de las preferencias, un país sería más proclive a respaldar el rescate de otro país en crisis cuando tiene sólidas relaciones comerciales con él. Y es menos probable que vote a favor del salvataje cuanto más financieramente integrado esté al resto del mundo.\(^{10}\)

A continuación, consideraremos algunos supuestos sobre la estructura de los flujos comerciales entre los países i y j y sobre el tamaño de las relaciones financieras que un país tiene con el resto del mundo. Éstas adoptan la forma de:

$$
X_{ij} + \varepsilon_i M_{ij} = \left(X_i + \varepsilon_i M_i\right) \frac{X_j + \varepsilon_j M_j}{d_{ij} \left(\sum_k X_k + \varepsilon_k M_k\right)} \quad (5)
$$

Donde d_{ij} es proporcional a la distancia entre los países i y j e intenta capturar los efectos de la “gravedad”. Por lo tanto, suponemos que el comercio entre ambos países es proporcional a su volumen comercial e inversamente proporcional a su distancia, y que las posiciones financieras son proporcionales a los flujos comerciales. El primer supuesto se realiza porque se ha demostrado empíricamente que el comercio bilateral baja cuando aumenta la distancia entre los países. Con respecto al segundo supuesto, puede verificarse que hay una fuerte correlación entre ambas variables en los datos en cualquier punto dado del tiempo.\(^{11}\)

\(^{10}\) Esto es una simplificación. Es probable que los vínculos financieros directos entre los países i y j estén asociados a un efecto positivo dado que el rescate aumentaría los ingresos netos de los factores en el país i provenientes de sus inversiones en el país j. Tal como quedará claro después del próximo conjunto de supuestos, esta distinción se torna irrelevante.

\(^{11}\) Del conjunto de datos EWN II capturado por Lane y Milesi-Ferretti (2006). Su Figura 4 demuestra que para los números agregados, el comercio en activos aumentó a un ritmo más rápido en los países industrializados que en los mercados emergentes desde fines de los años ’80. Las regresiones de corte transversal a nivel de países, con promedios de cinco años, revelan una fuerte correlación entre activos y pasivos externos y comercio de productos durante todo el período de su muestra, 1974-2004. El supuesto de proporcionalidad es crucial para reducir los ponderadores a una única variable y obtener una fórmula ponderada única, tal como se muestra más adelante.
Una advertencia importante es que la formulación (3) implicaría que cualquier país \(j \) que sufriera un shock tendría los mismos efectos en los ingresos netos mutuos de los factores del exterior de otros países (por ejemplo, entre \(i \) y \(k \)). Aunque podría parecer más razonable suponer que los efectos de un shock aumentan según el tamaño de la economía del país en crisis, o la magnitud de su shock de balanza de pagos, lo que importa para el resultado es que los efectos positivos relacionados con el comercio sean más sensibles con la escala que los efectos negativos relacionados con los ingresos netos de los factores. Es por razones de simplicidad que suponemos que estos últimos son independientes de las características de un paquete de rescate determinado.\(^{12}\)

Con esta formulación, todos los países \(i \) con \(u_{ij} > 0 \) votarían a favor del rescate del país \(j \) ante una crisis. La observación de las preferencias del país (4) revela que \(i \) rescataría a todos los países \(j \) en los que:

\[
\alpha_j a \frac{X_j + \varepsilon_j M_j}{d_{ij}(\sum_k X_k + \varepsilon_k M_k)} > \delta b
\]

Donde partimos del supuesto de que los parámetros \(a, b \) y \(\delta \) del modelo son los mismos en todos los países. Por lo tanto, los países que sufren un desequilibrio importante (un alto \(\alpha_j \)) serán más proclives a recibir asistencia y un rescate tendrá mayor apoyo entre los vecinos del país que atraviesa el shock (esto podría explicar por qué México tiene más posibilidades de ser rescatado, o el reciente salvataje de Letonia, aprobado por presión de los miembros de la UE a pesar de la oposición del personal ejecutivo del FMI).\(^{13}\) Existen más posibilidades de que sean rescatados los países grandes y abiertos que los pequeños y cerrados. Por supuesto debemos reconocer que, durante una crisis, el país \(j \) votaría a favor de su propio salvataje. Pero este voto sencillo que rompe la simetría pasa a ser insignificante en el límite de un número infinito de países, todos de tamaño atomístico, supuesto que plantearemos a continuación (se llegaría a resultados similares si la regla de votación excluyera el voto del país que solicita la asistencia financiera).\(^{14}\)

\(^{12}\) Recuérdese también que el efecto negativo se relaciona con el ingreso futuro y no con los efectos contemporáneos sobre los precios de los activos directamente resultantes del rescate.

\(^{13}\) Agradezco a un comentarista estos ejemplos.

\(^{14}\) Las reglas para la toma de decisiones cuando el FMI tiene que pedir prestados fondos impiden el voto del país que solicita la asistencia financiera. Vea Fondo Monetario Internacional (2007).
Con un continuo de países, las relaciones para los ponderadores de votación (1) y (2) pueden expresarse como integrales sobre el dominio de la distribución de probabilidad \(\mu(\cdot) \). Suponemos que la probabilidad de que un país sufra un shock de balanza de pagos adopta la forma \(\mu(\alpha, q, y, \tilde{t}) \), es decir que es una función de la participación del país en el comercio mundial, medida con respecto al volumen comercial promedio, \(q \equiv \frac{(X_i + M_i)}{P(X + \epsilon M)} \), su ingreso per capita, y, y su ubicación en el mundo, dada \(\tilde{t} \). Con la distancia entre los países \(i \) y \(j \) indicada por \(d_{ij} = |\tilde{t}_i - \tilde{t}_j| = \rho_i(\tilde{t}_j) \), y con \(\psi^* = \frac{\delta b}{a} \) tenemos que las relaciones para los ponderadores de votación (1) y (2) ahora estarán dadas por:

\[
w_i^b = c_i^{-\theta} m_i C_{1i}(X_i + \varepsilon_i M_i) \int_{\tilde{t}_j}^{\tilde{t}_i} \int_0^\infty \int_0^{\infty} \frac{\rho_i(\tilde{t}_j) \alpha q}{\alpha} \int_0^g \left(\frac{\alpha a q}{\rho_i(\tilde{t}_j)} - \delta b \right) d\mu(\alpha, q, y, \tilde{t}_j) \ dy \ dq \ d\alpha \ d\tilde{t}_j
\]

\[
w_i^{nb} = c_i^{-\theta} m_i C_{1i}(X_i + \varepsilon_i M_i) \int_{\tilde{t}_j}^{\tilde{t}_i} \int_0^\infty \int_0^\infty \frac{\rho_i(\tilde{t}_j) \alpha q}{\alpha} \int_0^g \left(\delta b - \frac{\alpha a q}{\rho_i(\tilde{t}_j)} \right) d\mu(\alpha, q, y, \tilde{t}_j) \ dy \ dq \ d\alpha \ d\tilde{t}_j
\]

Donde \(\tilde{t} \) es el shock máximo de balanza de pagos que un país puede experimentar e \(\tilde{y} \) es el máximo ingreso per capita posible. Ahora imponemos una distribución homogénea de países en todo el mundo e independencia de la estructura de los shocks respecto de la distribución geográfica de los países, es decir \(\mu(\alpha, q, y, \tilde{t}) = \mu(\alpha, q, y) \). Bajo estos supuestos, las integrales de las expresiones anteriores son independientes del país \(i \), y tenemos que \(\frac{w_i^{nb}}{w_i^b} \equiv \gamma \) es constante para todos los países. Aquí \(\gamma \) mide un sesgo hacia el status quo (hay más intensidad en las preferencias por el status quo si \(\gamma > 1 \)). Es la misma formulación con un factor de sesgo que suponen Barberà y Jackson (2006) para derivar el resultado de que una regla óptima de votación es eficiente si y sólo si es equivalente a una regla de votación ponderada (su Corolario 1). Por lo tanto, sobre la base de estos supuestos, no sería óptimo tener un sistema de doble mayoría para los votos dentro del FMI tal como defendían algunas propuestas de reforma. En este caso, los ponderadores óptimos son:

\[w_i^* = w_i^b \]

Y el umbral para aprobar el rescate es:

\[\frac{\gamma \sum_i w_i^*}{1 + \gamma} \] (8)

El umbral de votos (8) aumenta en el sesgo \(\gamma \), y, por lo tanto, ahora podemos ver cómo se ve afectado por los parámetros estructurales, como la importancia de las inversiones financieras internacionales en relación con los flujos comerciales, \(b \), o la distribución de las probabilidades de una crisis entre los países, \(\mu(\cdot) \), que afecta a las integrales (6) y (7) de \(w_i^k \) y \(w_i^{nb} \). En particular, dijimos en la Sección II que antes de la caída del sistema de Bretton Woods, el FMI funcionaba como una asociación de crédito que asistía principalmente a los países desarrollados, y se transformó luego en un arreglo asimétrico de países desarrollados como acreedores netos y países emergentes como deudores netos. Esto significa que el mundo post Bretton Woods cambió la distribución de densidad \(\mu(\cdot) \), aumentando la probabilidad relativa de una crisis para los países pobres con menos volumen comercial, reduciéndose de este modo \(w_i^k \) y aumentando \(w_i^{nb} \), y, por lo tanto, aumentando \(\gamma \), y, por consiguiente, el umbral de voto óptimo. Un aumento de \(b \), el tamaño de las posiciones financieras en relación con los flujos comerciales, también derivaría en un aumento de \(\gamma \). Esto puede observarse en los datos que utilizan posiciones externas brutas (de Lane y Milesi-Ferretti (2006)) y los datos del comercio. Esta predicción es consistente con la evolución de la toma de decisiones en el FMI. Se ha producido un aumento tanto en la super mayoría requerida más grande (del 80% al 85%, en 1969) como en la cantidad de decisiones que requieren super mayorías (de 9 originalmente a más de 50 en la actualidad).16

Los parámetros estructurales también afectan la suscripción total de cuotas bajo la regla óptima de votación. Esto está dado por \(\sum_i w_i^k \); y debería aumentar en proporción al comercio cuando los parámetros estructurales no se ven afectados. Pero si, tal como describimos antes, cambia la distribución de la densidad \(\mu(\cdot) \), reduciéndose \(w_i^k \), el ratio suscripción total de cuotas/ comercio mundial bajaría. Esta conducta ha sido observada en los datos correspondientes al período post Bretton Woods.

16 Debería observarse que la mayoría para la decisión de un rescate sigue estando en el 70% de los votos ponderados. Pero otras decisiones de procedimiento que se relacionan de manera indirecta con los programas nacionales de los países vieron aumentar sus requisitos de mayoría.
Con respecto a la posibilidad de una crisis en varios países, debemos recordar de acuerdo con (3) que se supone que los efectos negativos de un rescate son independientes del tamaño del país rescatado. Por consiguiente, los efectos negativos serían los mismos más allá de cuántos sean los países a los que asiste el FMI. En consecuencia, el criterio para decidir si ayudar o no a los países que sufren un shock de balanza de pagos es el mismo como si todos ellos se agruparan en un solo país más grande.

III.1. Reservas internacionales

Es posible agregarle al modelo básico el papel que desempeñan las reservas internacionales. La principal razón para hacerlo es que el modelo subraya los vínculos entre el comercio y las finanzas entre los países como determinantes de la intensidad de las preferencias respecto de la decisión de salvataje de los países en crisis. Y, dado que un país que tiene un nivel más alto de reservas está mejor preparado para amortiguar los efectos de un shock externo, esto debería reflejarse en su poder de voto.\(^{17}\) Con respecto a los efectos positivos de un rescate, un mayor nivel de reservas en el país \(i\) reduce el impacto de la volatilidad del tipo de cambio real del país \(j\) en el tipo de cambio real del país \(i\). Por lo tanto, el efecto positivo para el país \(i\) de rescatar al país \(j\) se reduce a:

\[
a \alpha_j (X_{ij} + \varepsilon_i M_{ij}) f(R_i)
\]

Donde \(f(\cdot)\) es una función decreciente del nivel de reservas internacionales \(R\), y \(f(0) = 1\). Con respecto a los efectos negativos de un salvataje, un nivel más alto de reservas internacionales reduce la pérdida de ingresos netos de los factores del exterior dado que no hay pérdida de ingresos percibidos de las reservas internacionales. Esto no debería confundirse con el hecho de que tener un mayor porcentaje de activos externos como reservas deriva en la reducción de los ingresos percibidos de estos activos.\(^{18}\) Lo que importa para la decisión del rescate es el cambio en este ingreso debido a los efectos negativos de un salvataje sobre las posiciones financieras. Por lo tanto, el efecto negativo para el país \(i\) de rescatar a cualquier país se reduce a:

\(^{17}\) Vea, por ejemplo, Hviding y Nowak y Ricci (2004). Los autores estiman que la reducción de las reservas a la mitad aumenta la volatilidad del tipo de cambio real un 20%.

\(^{18}\) El nivel "óptimo" de reservas internacionales podría verse afectado por el costo de tenerlas, en comparación con los beneficios de tener una posición grande de reservas que representa un amortiguador contra los shocks externos.
Donde $g(\cdot)$ es una función decreciente de su argumento y $g(0) = 1$. Con esta modificación, resulta directo derivar los ponderadores w_i^a y w_i^b que un país debería recibir cuando vota a favor o en contra de un rescate. Para garantizar que las integrales de esas expresiones sigan siendo independientes del país i y, por lo tanto, tengan un factor de sesgo común γ, necesitamos imponer que $g(\cdot) = f(\cdot)$. Con este supuesto, el resultado de que una regla de votación ponderada es óptima sigue siendo válido. Ahora los ponderadores están dados por:

$$w_i^* = c_i^{-\theta} m_i C_{\lambda i}(X_i + \varepsilon_i M_i) f(R_i) \int_0^\infty \int_0^y \left(\frac{\alpha a q}{\rho} - \delta b \right)$$

(9)

Debería observarse que el modelo predice que, controlando otros determinantes, los países con posiciones más grandes de reservas internacionales deberían tener menos poder en la toma de decisiones del FMI. Esto se opone al hecho de que todas las fórmulas pasadas y presentes para la determinación de la cuota en el FMI dan un peso positivo a las reservas.

IV. Evidencia empírica

Dado que los ponderadores se determinan independientemente del umbral (porque son independientes de γ), podemos utilizar la distribución real de las cuotas en el FMI del período de posguerra para probar si es “óptima” en el sentido de si responde a la orientación dada por las consideraciones desarrolladas en el modelo de la Sección III. Ahora procederemos con esta estimación.

IV.1. Especificación econométrica

Resulta casi directo derivar una ecuación de regresión para estimar el modelo anterior. Esta estimación nos serviría para ver si hubo una motivación subyacente de asignación óptima de los derechos de voto en el diseño de las fórmulas de cuotas actuales, a pesar del hecho de que no se proporcionó justificación alguna. Este enfoque econométrico estructural se contrapone al análisis usual de la distribución de cuotas en el FMI que utiliza un enfoque reducido.
Bajo los supuestos utilizados para derivar los ponderadores óptimos, es decir, que consideramos el límite de un gran número de países, la independencia de los shocks de la distribución geográfica de los países, la igualdad de los multiplicadores, m, y los parámetros estructurales (a, b y δ), derivamos la ecuación de regresión a estimar tomando los logaritmos de la ecuación (9). Esto da:

$$QUOTA_{i,t} = \beta_0 + \beta_1 TRADE_{i,t-1} + \beta_2 GDP_{PC_{i,t-1}}$$

$$+ \beta_3 RESERVES_{i,t-1} + \epsilon_{i,t}$$

Aunque el modelo predice que $\beta_1 = 1$, es probable que el multiplicador se relacione con la apertura comercial. Un país más abierto tendría un multiplicador más pequeño y, por lo tanto, una cuota más baja. Por ende, se espera que el coeficiente de $TRADE$ sea positivo pero inferior a uno. Esperamos además que β_3 sea negativo. Si la función de bienestar social da el mismo peso a cada individuo independientemente de su país de ciudadanía, β_2 sería negativo, de lo contrario su signo sería indeterminado.\footnote{Otra razón por la cual β_2 podría ser positivo es que las cuotas cumplen el doble propósito de determinar la representación de un país y los aportes de capital al FMI. Es razonable suponer que estos últimos deberían ser proporcionales al PIB. Si incorporamos esto a una función objetivo que equilibre la representación y la capacidad de contribución, los ponderadores serían $w^*_i = w^*_i GDP^*_i$, donde $\nu > 0$ mide la importancia relativa de la capacidad de contribución en la función de bienestar.} Se agregarán controles adicionales para testear la validez del modelo. Se analizarán estos casos a medida que aparezcan.

IV.2. Datos

El conjunto de datos fue obtenido de las Estadísticas Financieras Internacionales (IFS, por sus siglas en inglés) y los Indicadores de Desarrollo Mundial (WDI, por sus siglas en inglés). La muestra es un panel desbalanceado de promedios de observaciones de cinco años (por ejemplo, la observación de 1975 corresponde al promedio de la variable correspondiente de 1975 a 1979) para 184 países durante el período 1960-2004. La principal razón para utilizar estos promedios de cinco años es que las revisiones de las cuotas son poco frecuentes y se han producido aproximadamente con intervalos de cinco años (el período más largo sin una revisión fue de junio de 1990 a enero de 1998). La Tabla 1 del Anexo describe las variables utilizadas para determinar la cuota relativa de los países miembros del FMI.
La variable dependiente es el logaritmo de la participación relativa de las cuota, neta de los votos básicos, que un país tiene en el FMI, \textit{QUOTA}. Con respecto a las variables independientes, el logaritmo del volumen comercial total, \textit{TRADE}, proviene de los datos IFS sobre exportaciones e importaciones, medidos en US$ corrientes. El logaritmo del PIB \textit{per capita}, \textit{GDPPC}, se construye utilizando el PIB tomado de IFS, medido en US$ corrientes, y los datos poblacionales provienen de WDI. Para esta última variable, sería más exacto utilizar las mediciones PPA del PIB. Debido a la falta de datos, utilizamos en cambio el PIB medido en US$ corrientes. El logaritmo de las reservas internacionales, \textit{RESERVES}, utiliza los datos IFS, medidos en US$ corrientes. Dado que las decisiones sobre las cuotas se basan en el desempeño pasado, utilizamos un rezago de un período de estos regresores.

Se utilizaron controles adicionales para probar la validez del modelo. A tal fin, se introdujeron una serie de variables \textit{dummies} (variables binarias): las variables \textit{dummies} continentales para la OCDE, América Latina, Asia, África y los ex países comunistas. Otras variables \textit{dummies} diferencian a los países sobre la base de si eran miembros antiguos o más recientes del FMI. Tal como vimos en la Sección II, hay una cierta inercia en el ajuste de las cuotas, que daría mayor poder a los miembros antiguos. Utilizamos una variable \textit{dummy}, \textit{EARLY}, para los países que eran miembros del FMI antes de 1969. Otra diferencia que deseamos controlar es si el acuerdo de Bretton Woods está vigente o no. Dado que el rol del FMI cambió después del colapso del sistema de tipos de cambio fijos en 1973, utilizamos la variable \textit{dummy} \textit{AFTER} para los períodos posteriores a esa fecha.

\textbf{IV.3. Resultados}

Primero probaremos la predicción del modelo de que el volumen comercial es un determinante importante de la probabilidad de que un país sea rescatado por el FMI. A este fin, recurriremos a la regresión \textit{probit} utilizada por Barro y Lee (2005) para estimar la importancia de variables de economía política en la determinación de la probabilidad de que el FMI apruebe un programa de préstamo. En su trabajo, los autores utilizan los patrones de votación de la ONU y el comercio bilateral para medir la proximidad política y económica de un país a los Estados Unidos y a los tres países europeos más grandes (Francia, Alemania y el Reino

\footnote{Además de que no hay una fundamentación en el modelo para los votos básicos, lo que el modelo explica es la representación más allá de los votos básicos. Por otro lado, tal como vimos en la Sección II, la importancia relativa de los votos básicos bajó a cerca del dos por ciento de los votos totales antes de la reforma del 2008.}
Unido), junto con las participaciones de las cuotas y el número de ciudadanos que trabajan en el FMI. Los autores encuentran que las variables de la economía política ayudan a explicar la probabilidad y el tamaño de los programas de préstamos del FMI. En sus regresiones, utilizan una serie de controles, en particular el logaritmo del PIB. Entre otros resultados, concluyen que los países más grandes tienen más posibilidades de conseguir la aprobación de un préstamo.

La Tabla 2 del Anexo incluye los resultados. En la primera columna, reproducimos la regresión probit de Barro y Lee y, en la segunda, se introduce TRADE para reemplazar a GDP. Los resultados demuestran que los países con mayor volumen comercial tienen más posibilidades de ser asistidos por el Fondo. Y si combinamos los resultados de TRADE y GDP, GDP pierde su valor explicativo mientras que el coeficiente sobre TRADE sigue siendo positivo y estadísticamente significativo, como puede verse en la tercera columna.21 Por lo tanto, la evidencia respalda el resultado hallado en la Sección III, en el sentido de que es más probable que los miembros del FMI aprueben un rescate cuanto mayor es el volumen comercial del país que sufre una crisis de balanza de pagos.

A continuación, probamos las predicciones del modelo con respecto a la distribución de cuotas. En la Tabla 3 del Anexo, presentamos el resultado de tres estimaciones MCO (Mínimos Cuadrados Ordinarios) para la cuota relativa del FMI, QUOTA, medida en logaritmos. Todas las regresiones se controlaron por efectos temporales. La columna 1 incluye GDPPC, TRADE y RESERVES rezagados; la columna 2 incluye las variables dummies continentales y la columna 3 incluye una variable dummy para los países que ingresaron al FMI antes de 1960. El objetivo de estas regresiones es encontrar evidencia de desviaciones sistemáticas con respecto al modelo teórico.

El coeficiente para TRADE es significativamente positivo en todas las especificaciones, lo que implica que un aumento del comercio del 1% redundaría en un aumento de la cuota relativa del 0,86%. El coeficiente de GDPPC es negativo y significativo en todas las especificaciones. El coeficiente estimado implica que una suba del 1% en el PIB per capita en los últimos cinco años reduciría la cuota relativa un 0,24%. Por último, el coeficiente estimado para RESERVES indica una relación positiva e insignificante.

21 Esta tercera regresión omite los controles de economía política mencionados antes. Si se los incluye, ni GDP ni TRADE son significativos para explicar la probabilidad de aprobación de un programa del FMI.
Los controles geográficos indican que hay algunas características regionales que afectan la cuota relativa, lo que implica que es mejor utilizar otro mecanismo de estimación que incorpore efectos fijos por país. Descubrimos que los países asiáticos están subrepresentados en el FMI en relación con las predicciones teóricas del modelo. Este hecho ha sido señalado por varios autores, por ejemplo Rapkin y Strand (2003), y demuestra que hay factores no observables que explican la distribución de poder en el FMI, más allá de los que resultan del modelo de la Sección III. Los países que ingresaron antes al Fondo tienen una mayor participación de la cuota que los de ingreso más reciente. Esto representa una evidencia adicional de la violación al supuesto de exogeneidad de nuestra regresión principal y no resulta sorprendente dado que, tal como mencionamos en la Sección II, los aumentos equiproporcionales de las cuotas son muy importantes en las Revisiones Generales de las Cuotas.

Para resolver el problema de las variables explicativas no observadas, incluimos variables dummies de países para controlar los efectos fijos. Los resultados aparecen en la Tabla 4 del Anexo. La columna 1 muestra la regresión básica, con TRADE, GDPPC y RESERVES rezagados. La columna 2 presenta las mismas variables en su interacción con las variables binarias EARLY y AFTER utilizadas para discriminar el ajuste del modelo entre miembros antiguos y más recientes del FMI, y si la caída del acuerdo de Bretton Woods cambió la asignación de las cuotas entre los miembros.

En la columna 1, TRADE ingresa con signo positivo y es fuertemente significativo, lo que sugiere que un aumento del 1% aumentaría la cuota relativa un 0,14%, si las restantes variables se mantienen constantes. El coeficiente estimado para GDPPC es positivo y significativo. Un aumento del 1% aumentaría la cuota relativa un 0,13%. Por último, el coeficiente de RESERVES es negativo y significativo pero la reducción de la cuota relativa resultante de un aumento del 1% en las reservas es de sólo 0,026%. La razón por la que obtenemos un coeficiente negativo para RESERVES se debe probablemente a que si bien todas las fórmulas de cuotas tienen una relación positiva entre reservas y cuotas, hubo durante el período de la muestra entre cinco y diez fórmulas diferentes para la determinación de las cuotas. Por lo tanto, la selección por parte de los países de su fórmula preferida (es decir, la fórmula que les otorgó la cuota más alta según sus indicadores económicos) podría haber llevado a los países con niveles más altos de reservas a elegir una fórmula en la que las reservas recibieran un menor peso relativo.
Tal como se indicó, el objetivo principal de la especificación presentada en la columna 2 es investigar si la relación que encontramos en el párrafo precedente es constante a lo largo del tiempo y entre los grupos de países. Encontramos evidencia de que hay diferencias sistemáticas entre los primeros miembros del FMI y los más recientes durante el período anterior a la caída del acuerdo de Bretton Woods. Por ejemplo, el coeficiente para $TRADE$ correspondiente a los miembros más antiguos del FMI era mayor en 0,09 puntos porcentuales al de los miembros más nuevos (para los cuales el coeficiente era 0,077). Después de 1975, no se observan diferencias estadísticas en los coeficientes de los regresores entre miembros antiguos y más recientes del FMI.

V. Propuesta de reforma

Habiendo derivado una fórmula teórica para la distribución del poder de voto entre los miembros del FMI, parece natural preguntarse cómo sería la distribución de acuerdo a ella, y compararla con las participaciones de cuotas actuales. Para ello, utilizamos la siguiente relación:

$$w_i = (X_i + M_i)y_i^{-\theta}RES^{-\kappa}$$

Donde RES son las reservas internacionales. Imponiendo un coeficiente de 1 al comercio, definimos $\kappa = 0.18$ para mantener la misma importancia relativa de las reservas con respecto al comercio que la de las regresiones antes descritas ($0.018 \approx \frac{0.026}{0.14}$). Para el coeficiente sobre el PIB per capita, consideramos dos casos, $\theta = \frac{1}{3}$ y $\theta = \frac{1}{2}$. Esto demostrará el nivel de sensibilidad de la distribución de votos con respecto al PIB per capita. Los resultados para los miembros más grandes del FMI se informan en la Tabla 5 del Anexo para el período 1995-2000, para el cual se cuentan con más datos disponibles. La primera columna describe las cuotas relativas actuales, mientras que en la segunda utilizamos una especificación ad hoc que depende sólo del comercio. Para los países de ingresos altos y bajos, los resultados son muy sensibles a la especificación sobre el PIB per capita, tal como puede verse a partir de la comparación de las columnas 3 y 4. Considerando que el poder de los países desarrollados ricos se diluye a medida que aumentamos θ, las reformas políticamente viables requerirían un θ bajo, capaz de mantener, por ejemplo, el poder de veto de EE.UU.
Los valores extremos significativos entre los miembros con participaciones de cuota por encima de un punto porcentual corresponden a: Argentina, Arabia Saudita, Suiza y Venezuela, entre los países sobrerepresentados en el FMI, y China y México entre los subrepresentados. Vale la pena señalar que, de acuerdo con esta regla, la cuota total de estos miembros grandes sólo se reduciría ligeramente, de 73,3% a 72,6%. Por lo tanto, no hay un beneficio significativo en la representación para los países pequeños y menos desarrollados.

VI. Conclusiones

Derivamos un modelo teórico para el cálculo óptimo de las cuotas entre los miembros del FMI. Bajo ciertos supuestos, una regla simple de votación ponderada es la regla de votación eficiente. Los ponderadores óptimos son proporcionales al volumen comercial de un país. Dada la participación en el comercio mundial, las cuotas bajan con el ingreso per capita y con las tenencias de reservas internacionales. Además, el modelo ayuda a estimar la cuota total para el FMI, decisión que siempre ha sido discrecionalmente determinada en las Revisiones Generales de las Cuotas.

El modelo tiene implicancias para las propuestas de reforma presentadas para mejorar la legitimidad del FMI (vea, por ejemplo, Cottarelli (2005) y Rapkin y Strand (2006)). En particular, bajo los supuestos del modelo, no hay justificativo para un sistema de doble mayoría como la propuesta "count and account" de O’Neill y Peleg (2000). La investigación posterior estará destinada a desarrollar un modelo más sofisticado para la determinación del ingreso y el consumo, la incorporación del riesgo moral y una formulación más detallada de los costos del rescate, relacionándolos con las inyecciones de capital del Fondo.

Al probar las predicciones del modelo descubrimos que tiene un poder explicativo importante. Por un lado, esto no debería ser una sorpresa dado que las fórmulas \textit{ad hoc} que el FMI viene utilizando desde su creación dependen de las variables explicativas del modelo: exportaciones, importaciones, PIB y reservas. No obstante, es significativo que los resultados de la regresión revelen una relación ligeramente negativa entre las reservas internacionales y las cuotas actuales del FMI, mientras que todas las fórmulas pasadas y presentes asignan un peso positivo a las reservas. Tal como se mencionó, una de las razones podría ser la autoselección por parte de los países de su fórmula preferida entre las cinco o diez utilizadas durante este período.
Referencias

International Monetary Fund (2007), “Selected Decisions and Selected Documents of the International Monetary Fund”, Servicios de Publicaciones del FMI.

Anexo

Tabla 1 / Definiciones de las variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definición</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUOTA</td>
<td>Log de cuota relativa</td>
<td>% de cuotas totales</td>
</tr>
<tr>
<td>GDP</td>
<td>Log de PIB</td>
<td>US$ miles de millones</td>
</tr>
<tr>
<td>GROWTHRATE</td>
<td>Tasa de crecimiento del PIB</td>
<td>%</td>
</tr>
<tr>
<td>GDPPC</td>
<td>Log de PIB per capita rezagado</td>
<td>US$</td>
</tr>
<tr>
<td>TRADE</td>
<td>Log de exportaciones más importaciones rezagadas</td>
<td>US$ miles de millones</td>
</tr>
<tr>
<td>RESERVES</td>
<td>Log de reservas internacionales rezagadas</td>
<td>US$ miles de millones</td>
</tr>
<tr>
<td>AFRICA</td>
<td>Indicador de país africano</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>ASIA</td>
<td>Indicador de país asiático</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>LAAM</td>
<td>Indicador de país latinoamericano</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>OECD</td>
<td>Indicador de país de la OCDE</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>COMUNIST</td>
<td>Indicador de país comunista o ex comunista</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>EARLY</td>
<td>Indicadores de miembros del FMI entre 1944-1960</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>AFTER</td>
<td>Indicador del periodo 1975-2000</td>
<td>Variable binaria</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>Programa aprobado por el FMI</td>
<td>Variable binaria</td>
</tr>
</tbody>
</table>
Tabla 2 / Regresiones probit

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Programa (1)</th>
<th>Programa (2)</th>
<th>Programa (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROWTHRATE</td>
<td>-2.539</td>
<td>-2.545</td>
<td>-2.313</td>
</tr>
<tr>
<td></td>
<td>-1.99</td>
<td>-1.991</td>
<td>-1.955</td>
</tr>
<tr>
<td>RESERVES</td>
<td>-0.116***</td>
<td>-0.109***</td>
<td>-0.144***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>GDPPC</td>
<td>0.203***</td>
<td>0.214***</td>
<td>0.267***</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.081)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>GDPPSCQR</td>
<td>-0.022***</td>
<td>-0.020***</td>
<td>-0.023***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.831**</td>
<td></td>
<td>0.232</td>
</tr>
<tr>
<td></td>
<td>(0.370)</td>
<td></td>
<td>(0.573)</td>
</tr>
<tr>
<td>GDPSQR</td>
<td>-0.045**</td>
<td>-0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td></td>
<td>(0.029)</td>
</tr>
<tr>
<td>TRADE</td>
<td></td>
<td>2.765***</td>
<td>2.415*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.912)</td>
<td>-1.379</td>
</tr>
<tr>
<td>TRADESQR</td>
<td>-0.067***</td>
<td>-0.062**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.032)</td>
<td></td>
</tr>
<tr>
<td>Observaciones</td>
<td>613</td>
<td>604</td>
<td>604</td>
</tr>
<tr>
<td>Cant. de países</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Método de estimación</td>
<td>RE Probit</td>
<td>RE Probit</td>
<td>RE Probit</td>
</tr>
</tbody>
</table>

Errores estándar robustos entre paréntesis.

*** p>0.01, ** p>0.05, * p>0.1
Tabla 3 / Regresiones MCO

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Quota (1)</th>
<th>Quota (2)</th>
<th>Quota (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADE</td>
<td>0,868***</td>
<td>0,889***</td>
<td>0,842***</td>
</tr>
<tr>
<td></td>
<td>(0,041)</td>
<td>(0,039)</td>
<td>(0,043)</td>
</tr>
<tr>
<td>RESERVES</td>
<td>0,009</td>
<td>0,015</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>(0,035)</td>
<td>(0,033)</td>
<td>(0,0036)</td>
</tr>
<tr>
<td>GDPPC</td>
<td>-0,331***</td>
<td>-0,459***</td>
<td>-0,296***</td>
</tr>
<tr>
<td></td>
<td>(0,044)</td>
<td>(0,065)</td>
<td>(0,046)</td>
</tr>
<tr>
<td>OECD</td>
<td>0,135</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIA</td>
<td>-0,570***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,197)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFRICA</td>
<td>-0,127</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,127)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAAM</td>
<td>0,093</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,117)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMUNIST</td>
<td>0,008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,117)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARLY</td>
<td></td>
<td>0,250*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,135)</td>
<td></td>
</tr>
</tbody>
</table>

Efectos temporales | Sí | Sí | Sí
Efectos fijos | No | No | No
Cant. de países | 144| 144| 144
Observaciones | 851| 851| 851
R² | 0,923| 0,933| 0,926

Errores estándar robustos entre paréntesis.

*** p>0,01, ** p>0,05, * p>0,1
<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>Quota (1)</th>
<th>Quota (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADE</td>
<td>0.141***</td>
<td>0.078***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>RESERVES</td>
<td>-0.024***</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>GDPPC</td>
<td>0.153***</td>
<td>0.182***</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>AFTER*TRADE</td>
<td>0.060***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td></td>
</tr>
<tr>
<td>AFTER*RESERVES</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td></td>
</tr>
<tr>
<td>AFTER*GDPPC</td>
<td>-0.036*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td></td>
</tr>
<tr>
<td>EARLY*TRADE</td>
<td>0.090**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td></td>
</tr>
<tr>
<td>EARLY*RESERVES</td>
<td>0.015**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td></td>
</tr>
<tr>
<td>EARLY*GDPPC</td>
<td>-0.123**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td></td>
</tr>
<tr>
<td>AFTEREARLYTRADE</td>
<td>-0.059**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td></td>
</tr>
<tr>
<td>AFTEREARLYRESERVES</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td></td>
</tr>
<tr>
<td>AFTEREARLYGDPPC</td>
<td>0.063**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td></td>
</tr>
</tbody>
</table>

Efectos temporales: Sí Sí
Efectos fijos: Sí Sí
Observaciones: 851 851
Cant. de países: 144 144
R²: 0.491 0.540

Errores estándar robustos entre paréntesis.
*** p<0.01, ** p<0.05, * p<0.1
<table>
<thead>
<tr>
<th>País</th>
<th>Cuota relativa</th>
<th>Ponderador comercio</th>
<th>$\theta = \frac{1}{3}$</th>
<th>$\theta = \frac{1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0,0105</td>
<td>0,0049</td>
<td>0,0052</td>
<td>0,0050</td>
</tr>
<tr>
<td>Australia</td>
<td>0,0159</td>
<td>0,0118</td>
<td>0,0081</td>
<td>0,0102</td>
</tr>
<tr>
<td>Bélgica</td>
<td>0,0215</td>
<td>0,0325</td>
<td>0,0208</td>
<td>0,0253</td>
</tr>
<tr>
<td>Brasil</td>
<td>0,0148</td>
<td>0,0103</td>
<td>0,0157</td>
<td>0,0130</td>
</tr>
<tr>
<td>Canadá</td>
<td>0,0298</td>
<td>0,0391</td>
<td>0,0278</td>
<td>0,0349</td>
</tr>
<tr>
<td>China</td>
<td>0,0231</td>
<td>0,0304</td>
<td>0,0825</td>
<td>0,0524</td>
</tr>
<tr>
<td>Francia</td>
<td>0,0510</td>
<td>0,0556</td>
<td>0,0431</td>
<td>0,0516</td>
</tr>
<tr>
<td>Alemania</td>
<td>0,0577</td>
<td>0,0955</td>
<td>0,0673</td>
<td>0,0815</td>
</tr>
<tr>
<td>India</td>
<td>0,0280</td>
<td>0,0072</td>
<td>0,0293</td>
<td>0,0166</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0,0102</td>
<td>0,0081</td>
<td>0,0202</td>
<td>0,0137</td>
</tr>
<tr>
<td>Italia</td>
<td>0,0320</td>
<td>0,0437</td>
<td>0,0331</td>
<td>0,0397</td>
</tr>
<tr>
<td>Japón</td>
<td>0,0580</td>
<td>0,0712</td>
<td>0,0428</td>
<td>0,0537</td>
</tr>
<tr>
<td>México</td>
<td>0,0121</td>
<td>0,0212</td>
<td>0,0311</td>
<td>0,0267</td>
</tr>
<tr>
<td>Países Bajos</td>
<td>0,0239</td>
<td>0,0366</td>
<td>0,0233</td>
<td>0,0285</td>
</tr>
<tr>
<td>Rusia</td>
<td>0,0294</td>
<td>0,0143</td>
<td>0,0270</td>
<td>0,0228</td>
</tr>
<tr>
<td>Arabia Saudita</td>
<td>0,0349</td>
<td>0,0078</td>
<td>0,0077</td>
<td>0,0077</td>
</tr>
<tr>
<td>España</td>
<td>0,0136</td>
<td>0,0222</td>
<td>0,0170</td>
<td>0,0188</td>
</tr>
<tr>
<td>Suecia</td>
<td>0,0112</td>
<td>0,0145</td>
<td>0,0091</td>
<td>0,0110</td>
</tr>
<tr>
<td>Suiza</td>
<td>0,0169</td>
<td>0,0144</td>
<td>0,0068</td>
<td>0,0087</td>
</tr>
<tr>
<td>Reino Unido</td>
<td>0,0510</td>
<td>0,0542</td>
<td>0,0420</td>
<td>0,0504</td>
</tr>
<tr>
<td>Estados Unidos</td>
<td>0,1814</td>
<td>0,1497</td>
<td>0,1111</td>
<td>0,1509</td>
</tr>
<tr>
<td>Venezuela</td>
<td>0,0133</td>
<td>0,0032</td>
<td>0,0046</td>
<td>0,0037</td>
</tr>
</tbody>
</table>