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Abstract

The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing
antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-b-carboline) increases the
lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933
and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-
expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also
found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane
treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its
lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway;
however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This
indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a
useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of
evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans
model could prove to be useful for selection and development of such drugs.
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Introduction

For more than a decade now, the nematode Caenorhabditis elegans

has been used as a simple infection model for several important

human pathogens [1]. In recent years the nematode has also been

used as an in vivo model to screen for compounds that combat

these microbial infections [2,3]. The nematode constitutes an

attractive model since it allows identification of classic antibiotic

compounds, as well as compounds that inhibit bacterial virulence

or stimulate the nematode’s immune response. An example of such

a compound, targeting the innate immune system of C. elegans, has

recently been reported by Pukkila-Worley et al. [4]. They showed

that the small molecule drug, named RPW-24, up-regulated

several antimicrobial immune effector genes; resulting in increased

lifespan of the worms, when infected with the pathogen

Pseudomonas aeruginosa.

There are at least four pathways regulating immunity of C.

elegans. These are the transforming growth factor-ß-like pathway,

the p38 mitogen-activated protein kinase pathway (p38 MAPK

pathway), the insulin-like receptor pathway, and the programmed

cell death pathway [5]. Two of these are of particular interest,

since they are known to promote longevity in C. elegans during

infections of the intestine: the p38 MAPK pathway and the

insulin-like receptor pathway. The p38 MAPK pathway has been

shown to be induced in response to infection by specific human

pathogens such as P. aeruginosa [6] and Yersinia pestis [7]. In

contrast, the insulin-like receptor pathway is believed to provide

the nematode with a continuous low-level protection against a

broad range of pathogens [6,8]. Apart from antimicrobial factors,

these pathways also control the expression of proteins involved in

protection against environmental stress.

Here we report that the alkaloid compound Harmane (2-

methyl-b-carboline) increases the lifespan of C. elegans during

infection by several pathogenic bacteria. Harmane was initially

found as a hit in a compound library screen, using a bacterial two

hybrid assay. In the screen we were trying to identify inhibitors of

the interaction between the enterohemorrhagic E. coli virulence

factors, Tir (translocated intimin receptor) and Intimin [9]

(Method S1). We wanted to use the nematode model to verify
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the importance of the virulence factor and to show any in vivo

efficacy of Harmane. We found that the virulence factor did not

contribute to the pathogenicity of the bacteria against the

nematode. However, we observed a marked increase in the

lifespan of nematodes feeding on bacteria grown in the presence of

Harmane (Figure S1). This led us to suspect that Harmane

targeted an unknown virulence factor in the bacteria. Further

studies, however, revealed that the target of Harmane was not in

the bacteria, but in C. elegans. Based on our results we suggest that

Harmane stimulates the immune/stress response in the nematode.

Results and Discussion

Harmane promotes longevity in C. elegans, infected with
E. coli EDL933, in a dose dependent manner - unrelated
to its antibiotic effect

After discovering that Harmane had the ability to promote

survival of C. elegans, infected with E. coli EDL933; we decided to

investigate this effect more closely. We tested the effect of

Harmane concentration on survival. This was performed in a

standard agar-based infection assay, with an immuno-compro-

mised mutant of C. elegans. This strain carries a mutation in the

sek-1 gene of the p38 MAPK pathway, making it more susceptible

to several pathogens [3,10]. We found that the median survival of

the nematodes changed from 7 days on the solvent DMSO or

5 mM Harmane, to 9 days on 50 mM Harmane and 13 days on

150 mM Harmane (Figure 1A). The lifespan of C. elegans did not

change significantly at higher concentrations of Harmane (see

Figure S1).We speculated whether this effect could be explained by

a mere antimicrobial effect of Harmane. Harmane has previously

been reported to have a minor antimicrobial effect against E. coli

[11]. Reza et al. reported a minimum inhibitory concentration

(MIC) of 0.6 mg/ml (3.29 mM). We found the MIC to be 0.5 mg/

ml (2.74 mM) in nematode growth medium (NGM) (see Table S1

and Method S2). This was much higher than the highest

concentration used in our assays, however, we decided to compare

the antimicrobial effect of Harmane, to a comparable concentra-

tion of the traditional antibiotic tetracycline, in the survival assay.

We grew E. coli EDL933 in triplicate in NGM medium, with

different concentrations of Harmane or a low concentration of

tetracycline, and plotted the number of colony forming units

(CFU) against time (Figure 1B). Both Harmane and tetracycline

had an inhibitory effect, on the growth of the bacteria. However,

the inhibitory effect of 0.1 mg/ml tetracycline was stronger than

that of both 50 and 150 mM of Harmane. We decided to compare

the lifespan of C. elegans on plates with 0.1 mg/ml tetracycline and

150 mM of Harmane. We found that tetracycline had only a minor

effect on the lifespan of the nematode, compared to Harmane

(Figure 1C). This is similar to an earlier report, which found that

tetracycline only rescued C. elegans from the pathogen Entero-

coccus faecalis, at concentrations several fold higher than the MIC

[3]. We concluded that the lifespan extension from Harmane was

not caused by its antimicrobial effect.

Harmane extends the lifespan of sek-1 worms on several
pathogenic bacteria as well as heat-killed E. coli EDL933

At this point we still believed that the effect of Harmane was

exerted on the bacteria, possibly by targeting an unknown

virulence factor. In order to confirm this suspicion, we decided

to test the ability of Harmane to rescue nematodes infected with

other bacterial pathogens. We reasoned that if the target of

Harmane was in the bacteria, it would be possible to find strains

that lacked this target. We chose three pathogens known to be

lethal to C. elegans: Salmonella serovar Typhimurium strain C17

[12,13], Pseudomonas aeruginosa strain PA14 [14], and Entero-

coccus faecalis strain OG1RF [3,15]. We also reasoned that if the

target was indeed a virulence factor, we would see no life

extending effect of Harmane, if nematodes were fed on dead

bacteria. However, we found that Harmane was able to rescue the

nematodes on all three pathogenic strains and to promote

longevity even on heat-killed E. coli EDL933 (Figure 2). Taken

Figure 1. The effect of Harmane is dose-dependent, but
unrelated to its antimicrobial effect. (A) E. coli EDL933 infection
assay on sek-1; glp-4 nematodes with different concentrations of
Harmane compared to the solvent (DMSO). The lifespan extension is
significant for the two highest concentrations of Harmane compared to
DMSO (P,0.0001) [DMSO, n = 118; 5 mM, n = 52; 50 mM, n = 48; 150 mM,
n = 119]. (B) Growth assay on E. coli EDL933 in NGM medium with
different concentrations of Harmane or the solvent (DMSO), compared
to E. coli EDL933 grown in NGM medium with 0.1 mg/ml of the
antibiotic tetracycline. Both concentrations of Harmane affect the
growth of EDL933, but not as much as 0.1 mg/ml of tetracycline. Data
points are the average of three replicates and error bars represent SEM.
(C) E. coli EDL933 infection assay on sek-1; glp-4 nematodes with
comparable concentrations of Harmane and tetracycline, compared to
DMSO. Tetracycline, at 0.1 mg/ml, extends the lifespan significantly
(P = 0.0283) as well does 150 mM Harmane (P,0.0001). However, the
mean survival of nematodes on DMSO is 6 days, compared to 7 days for
0.1 mg/ml tetracycline and 13 days for 150 mM Harmane [DMSO, n = 108;
0.1 mg/ml Tetracycline, n = 111; 150 mM Harmane n = 117].
doi:10.1371/journal.pone.0060519.g001

Immuno-Modulating Effect of Harmane on C. elegans
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together, these data indicated that the target of Harmane was in C.

elegans, rather than in the pathogens. We had not noticed any

avoidance behavior of the worms on plates with Harmane

compared to the control plates with DMSO. However, we

considered the possibility that Harmane could be toxic to the

nematodes and alter their feeding behavior. We added Harmane

or DMSO to the centre of lawns with non-pathogenic E. coli

OP50. AU37 (sek-1; glp-4) nematodes were added to the lawns,

and after 16 hours we scored the worms as either on the lawns or

off the lawns (Figure S2 and Method S3). There was no significant

difference between plates with Harmane and control plates

(P = 0.2046). We concluded that Harmane was not toxic to C.

elegans.

Harmane does not reduce the colonization-burden of E.
coli EDL933 in the nematode intestine

We proceeded to determine whether Harmane caused a

reduction in the colonization of the intestine of the nematode. A

strong inverse correlation between the degree of bacterial

colonization and the expected lifespan of the individual worms

has recently been shown [16]. We expected that nematodes

treated with Harmane would have an overall lower colonization-

burden, compared to nematodes treated with DMSO. We used E.

coli EDL933 carrying a plasmid expressing green fluorescent

protein (GFP) [17], allowing us to visualize and quantify the

bacteria inside the intestine (Figure 3A and 3B). Contrary to what

we had expected, we found no difference in the colonization-

burden, in worms treated with DMSO, and worms treated with

Harmane. This prompted us to look for the Harmane target in the

innate immune system of the nematode. Since all infection assays

had been performed in the mutant nematode, with a defective p38

MAPK pathway; we reasoned that we should direct our attention

towards the insulin-like receptor pathway.

Harmane does not target the insulin-like receptor
pathway of C. elegans

The insulin-like receptor pathway regulates the entry of C.

elegans into the very long-lived dauer larval stage, instead of the

normal L3 larval stage. The decision to enter the dauer stage must

normally be made in the L1 larval stage. However, it has been

shown that mutations in the daf-2 gene of the pathway also can

cause fertile, active, adult nematodes to more than double their

lifespan [18]. It is therefore believed that the insulin-like receptor

pathway is responsible for regulating the nematodes basic response

to environmental stress [8,19]. This stress can be in the form of

low food resources or pathogenic bacteria. Under such unfavor-

able conditions, the insulin-like receptor pathway is activated; as a

result resources are diverged away from growth and reproduction,

and towards stress resistance and longevity. The insulin-like

receptor pathway controls the transcription of genes involved in

stress resistance via the transcription factor DAF-16. The lifespan

extending effect of daf-2 mutants has been shown to be completely

suppressed by mutations in daf-16 [18]. We reasoned therefore,

that if Harmane acted on the insulin-like receptor pathway,

Harmane would have no effect on a daf-16; glp-1 mutant

nematode. We tested the susceptibility of this strain to E. coli

EDL933, with DMSO or 150 mM Harmane. We found that the

effect of Harmane on the lifespan of daf-16; glp-1 mutants was

considerably less pronounced, than in the sek-1; glp-4 mutant,

Figure 2. Harmane rescues sek-1; glp-4 nematodes fed on
different pathogens. There was a significant extension of life span of
C. elegans feeding on bacteria grown on Harmane plates compared to
plates with DMSO. The median survival when fed on S. Typhimurium
was 8 days on DMSO and 13 days on 150 mM Harmane [P,0.0001;
DMSO, n = 113; 150 mM Harmane, n = 180]. When fed on P. aeruginosa
on DMSO, median survival was 3 days, and on 150 mM Harmane it was 5
days [P,0.0001; DMSO; n = 120; 150 mM Harmane, n = 134]. Feeding on
E. faecalis on DMSO resulted in a median survival of 12 days, compared
to 12.5 days on 150 mM Harmane [P = 0.0013; DMSO, n = 162; 150 mM
Harmane, n = 198]. When feeding on heat-killed E. coli EDL933, the
median survival was 17 days on DMSO, compared to 22 days on 150 mM
Harmane [P,0.0001; DMSO, n = 58; 150 mM Harmane, n = 61].
doi:10.1371/journal.pone.0060519.g002

Figure 3. Harmane does not reduce the colonization-burden in
C. elegans by E. coli EDL933. (A) Fluorescence microscopy pictures of
sek-1; glp-4 mutant C. elegans after feeding 4 days on GFP-expressing E.
coli EDL933, grown on either DMSO or Harmane. The pictures show
examples of strongly colonized individuals. (B) Individual nematodes in
fluorescence pictures were quantified, and data normalized to the level
of the DMSO treated nematodes. There was no significant difference
between the two samples [DMSO, n = 56; 150 mM Harmane, n = 69; error
bars indicate SEM].
doi:10.1371/journal.pone.0060519.g003

Immuno-Modulating Effect of Harmane on C. elegans
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although exposure to Harmane still resulted in significantly longer

lifespan (Figure 4A). This indicated a possible interaction between

the insulin-like receptor pathway and Harmane. In order to

investigate this possible involvement of the insulin-like receptor

pathway further, we assumed that activation of this pathway would

also negatively affect traits such as, pharyngeal activity and body

length of C. elegans. We performed the measurements of

pharyngeal activity and body length on the sek-1; glp-4 mutant

used in the first infection assay. We found no difference in the

pharyngeal activity between nematodes exposed to Harmane

compared to DMSO (Figure 4B). There was a small, but

significant, difference in body length between nematodes exposed

to Harmane for 1 day, compared to DMSO. However, such a

difference could not be detected on day 4 (Figure 4C).

As mentioned above, activation of the insulin-like receptor

pathway involves the transcription factor DAF-16. When not

activated, DAF-16 is evenly distributed in the cytoplasm of all cells

in the nematode. Upon activation DAF-16 is translocated from the

cytoplasm to the nucleus. This translocation can be visualized

using daf-16::gfp transgenic nematodes [19]. Transgenic nema-

todes were exposed to DMSO or Harmane for 1 hour or 20 hour,

and then examined by fluorescence microscopy. As a positive

control of DAF-16 translocation, we exposed the nematodes to

37uC for 30 minutes, just prior to examination. We detected no

signs of DAF-16 translocation in response to Harmane (Figure

4D–E).

These results were contradictory to our first observation, which

showed that the daf-16; glp-1 mutant was less affected by

Harmane. Hence, we decided to test the effect of Harmane on a

glp-4 nematode. We reasoned that if the results were similar to the

ones found with the sek-1; glp-4 mutant, we could confirm the

insulin-like receptor pathway as a target for Harmane. We tested

the effect of Harmane on a SS104 C. elegans strain (this carries the

glp-4 mutation conferring temperature sensitive sterility, but has

intact immune pathways) in our survival assay. Contrary to the

pronounced effect observed in sek-1; glp-4 nematodes, we found

that the response of glp-4 nematodes to Harmane mirrored the

minor response of the daf-16; glp-1 nematodes (Figure 5). There

was only a one day extension of lifespan, as a result of Harmane.

From this result we concluded that Harmane does not affect the

insulin-like receptor pathway.

Harmane induces the immune response gene F35E12.5
We wondered how it could be that Harmane had a much more

pronounced effect in the sek-1; glp-4 mutant, than in the glp-4

nematode or the daf-16; glp-1 mutant. One explanation could be

that Harmane activates the p38 MAPK pathway downstream of

the SEK-1 protein. We did not consider this as a possibility, since

this effect would probably also be seen in the glp-4 worms and the

daf-16; glp-1 mutant. Also, it was recently reported by Pukkila-

Worley et al. that activation of the p38 MAPK pathway, by the

small molecule RPW-24, resulted in a marked reduction in

Figure 4. The effect of Harmane on the insulin-like receptor pathway. (A) E. coli EDL933 infection assay on daf-16; glp-1 nematodes exposed
to Harmane and DMSO. The median survival on Harmane was 8 days, compared to 7 days on DMSO. This was lower than the lifespan extension seen
in sek-1; glp-4 nematodes, however, still significantly different (P,0.0001) [DMSO, n = 89; 150 mM Harmane, n = 99]. (B) Pharyngeal pumping activity of
sek-1; glp-4 nematodes (AU37) fed on E. coli OP50, exposed to DMSO or Harmane [DMSO, n = 10; 150 mM Harmane, n = 10; error bars indicate SEM]. (C)
Body length of sek-1; glp-4 nematodes (AU37) fed on E. coli OP50, grown on DMSO or Harmane. Day 1 data shows a significant difference between
Harmane and DMSO (P = 0.0242) [DMSO, day 1, n = 68; 150 mM Harmane, day 1, n = 72; DMSO, day 4, n = 72; 150 mM Harmane, day 4, n = 75; error bars
indicate SEM]. (D) Fluorescence microscopy pictures of daf-16::gfp transgenic C. elegans after feeding 20 hours on E. coli OP50, grown on either DMSO
or (E) 150 mSM Harmane. (F) Nematodes from a DMSO plate exposed to 37uC for 30 minutes, just prior to being analyzed (positive control of DAF-16
translocation to nucleus). We could not detect any effect of Harmane on DAF-16 in the worms, as a result of the Harmane treatment. Pictures taken
after 1 hour exposure to DMSO or Harmane (not shown), were identical to the 20-hour pictures.
doi:10.1371/journal.pone.0060519.g004

Immuno-Modulating Effect of Harmane on C. elegans
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intestinal colonization by P. aeruginosa [4]. We did not observe

such a decrease, in colonization with E. coli EDL933, with

Harmane (Figure 3).

However, we decided to test the effect of Harmane on

F35E12.5. This protein is a putative immune effector, and it has

been found to be strongly induced during infection with P.

aeruginosa [6] and Y. pestis, but not when fed on E. coli OP50 [7].

Troemel et al. and Bolz et al. found that this strong inducible

expression of F35E12.5 was mediated by the p38 MAPK immune

pathway. However, they also found weak inducible expression of

F35E12.5 in pmk-1 mutant nematodes (these are defective in the

p38 MAPK pathway, similar to sek-1 mutants). Again this

induction was only seen on P. aeruginosa and Y. pestis, not on

E. coli OP50. They proposed the existence of an immune pathway

parallel to the p38 MAPK pathway.

To determine whether Harmane could induce F35E12.5, we

exposed a wild-type C. elegans strain carrying a F35E12.5::gfp

transgene [7] to Harmane or DMSO, for 20 hours. We analyzed

the worms by fluorescence microscopy, and quantified the

expression of F35E12.5::gfp (Figure 6A and 6B). We found a

significantly stronger expression in the transgenic nematodes

treated with Harmane (P,0.0001). This result was confirmed by

qRT-PCR analysis on wild-type Bristol N2 nematodes, after

20 hours treatment with Harmane or DMSO. F35E12.5 was

significantly up-regulated in response to Harmane (P = 0.0175).

Thus, Harmane exhibits immune-inductive activity. However the

up-regulation of F35E12.5 by Harmane in AY101 (F35E12.5::gfp)

and Bristol N2 nematodes were many fold less than the up-

regulation observed by Troemel et al. and Bolz et al. in response to

P.aeruginosa and Y. pestis. This indicates that the p38 MAPK

pathway is not the main target of Harmane.

Instead we propose the hypothesis that Harmane stimulates

more than one pathway involved in pathogen resistance and

longevity. This stimulon may include the p38 MAPK pathway.

However, based on our results showing that Harmane has a much

more pronounced effect in the sek-1; glp-4 mutant, than in the glp-

4 or daf-16; glp-1 mutants, we hypothesize that Harmane targets

one or more alternative immune responses and that these are

being up-regulated in the absence of the p38 MAPK pathway.

This phenomenon of up-regulation of immune effector genes in

order to compensate for loss of genes encoding similar effectors has

recently been reported in C. elegans [20].

Conclusion

We have shown here that the alkaloid compound Harmane

increases the lifespan of nematodes infected with a human

pathogen, the Shiga toxin-producing Escherichia coli EDL933 and

several other bacterial pathogens. This was shown to be unrelated

Figure 5. The effect of Harmane in glp-4 nematodes. E. coli
EDL933 infection assay with glp-4 nematodes, exposed to DMSO or
Harmane. The lifespan extension was from 6 days on DMSO to 7 days
on Harmane [P,0.0001; DMSO, n = 141; 150 mM Harmane, n = 173].
doi:10.1371/journal.pone.0060519.g005

Figure 6. Harmane induces the immune response gene
F35E12.5. (A) Fluorescence microscopy pictures of F35E12.5::gfp
transgenic C. elegans, exposed to DMSO or Harmane for 20 hours, at
15uC (feeding on E. coli OP50). The fluorescence was always seen at the
tail end of the animals. (B) Individual nematodes in fluorescence
pictures were quantified, and data normalized to the level of the DMSO
treated nematodes. There was a significant difference between the two
samples [P,0.0001; DMSO, n = 54; 150 mM Harmane, n = 54; error bars
indicate SEM]. (C) Verification of F35E12.5 induction by Harmane by qRT-
PCR. Bar graphs represent relative expression levels normalized to the
control treatment (DMSO). 20 hours treatment with Harmane resulted
in a significant induction (P = 0.0175) of F35E12.5. Error bars indicate
SEM derived from two independent biological replicates.
doi:10.1371/journal.pone.0060519.g006

Immuno-Modulating Effect of Harmane on C. elegans
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to the weak antibiotic effect of Harmane. We found that the effect

of Harmane was more pronounced in worms deficient in the p38

MAPK pathway (sek-1; glp-4 mutants). Worms deficient in the

insulin-like receptor pathway (daf-16; glp-1 mutants) experienced

the same minor lifespan extension as glp-4 worms. We then

demonstrated that Harmane induces the immune effector gene

F35E12.5. This leads us to believe that Harmane stimulates the

innate immune response of the nematode. We hypothesize that at

least part of this stimulon involves other constituents than p38

MAPK and insulin-like signaling, however, these constituents and

their activation by Harmane remains to be elucidated. Interest-

ingly, the activity of Harmane did not lower the overall

colonization-burden of live bacteria, despite rescuing the nema-

todes. Also, Harmane treatment increased the lifespan of worms

feeding on non-viable bacteria. We therefore hypothesize that the

response induced by Harmane is likely involved in general stress

management rather than a direct antimicrobial response against

pathogens. We believe that Harmane could be used as a tool to

further investigate the complexity of the innate immune system of

C. elegans; together with other immune-stimulatory drugs [4].

It may seem strange that an organism like C. elegans, which has

evolved alongside numerous microorganisms, would benefit from

outside drug intervention, targeting host innate immunity.

However, C. elegans is not likely to meet many human pathogens

in its natural environment (in the soil). It is conceivable that many

of these pathogens do not trigger the innate immune system of the

nematode. This is similar to the situation in humans, where for

example E. coli is usually a commensal inhabitant of the large

intestine. Immunomodulating drugs have therefore been proposed

as a possible alternative to classic antibiotics [21]. Since the innate

immune system of C. elegans has a high degree of evolutionary

conservation, it is conceivable that results from the worm model

could be extended to higher organisms, including humans. C.

elegans could therefore prove useful for selection and development

of such compounds. The immuno-stimulatory effect observed for

Harmane could provide a scaffold upon which further elabora-

tions on this paradigm are possible.

Materials and Methods

C. elegans and bacterial strains used
The Caenorhabditis elegans strains used in this study were: C.

elegans N2 Bristol [22], C. elegans AU37 [sek-1(km4); glp-4(bn2)

I] (MAPK kinase deficiency and temperature-sensitive sterile) [3],

C. elegans AU147 [daf-16(mgDf47) I; glp-1(e2141) III] (transcrip-

tion factor DAF-16 deficiency and temperature-sensitive sterile),

C. elegans SS104 [glp-4(bn2) I] (temperature-sensitive sterile), C.

elegans TJ356 [zIs356 [daf-16::gfp+ rol-6(su1006)] [19] and C.

elegans AY101 [F35E12.5p::gfp+rol-6(su1006)] [7]. All C. elegans

strains were maintained and propagated on NGM media [23],

with E. coli OP50 as food source.

The bacterial strains used were: Escherichia coli OP50, E. coli

O157:H7 strain EDL933 [24] (Shiga toxin-producing E. coli

strain), Salmonella Typhimurium strain C17 [12,13], Pseudomo-

nas aeruginosa strain PA14 [14] and Enterococcus faecalis strain

OG1RF [3,15]. Bacterial strain were grown in LB media at 37uC,

except E. faecalis which was grown in brain hearth infusion media

(BHI) (OXOID Ltd.) at 37uC.

C. elegans bacterial infection assays
A synchronous population of nematodes was obtained, by

releasing worm embryos using alkaline hypochlorite treatment

[23]; followed by hatching of the eggs and L1 arrest in M9 buffer

at 15uC overnight. Synchronous L1 larvae were transferred to

nematode growth medium (NGM) agar plates [23] seeded with

OP50 and allowed to develop into sterile adult/L4 larvae, by

incubating for two days at 25uC. Hereafter they were washed three

times in M9 buffer and transferred to assay plates, with bacterial

lawns. Assay plates were prepared on 60-mm culture plates with

NGM agar supplemented with 0.3% DMSO or the indicated

concentrations of Harmane (Sigma-Aldrich, CAS Number 486-

84-0). Exceptions to this were the plates for Enterococcus faecalis,

which were BHI agar (OXOID Ltd., supplemented with 5 mg/ml

cholesterol) and the plates for heat-killed E. coli EDL933, which

were NGM agar supplemented with 25 mg/ml of chloramphenicol

(in order to inhibit any viable E. coli EDL933 or residual E. coli

OP50).

The plates were seeded with 20 ml of overnight culture, of

bacterial strains, followed by overnight incubation at 37uC. After

acclimatization of the plates to room temperature, about 50 worms

were transferred to each plate. Plates were incubated at 25uC and

scored for dead worms each day. A worm was considered dead

when it failed to respond to a touch with a platinum wire; dead

worms stuck to the wall of the plate were censored from analysis.

Survival data from duplicate or triplicate plates were pooled and

subjected to survival analysis. Results presented are representative

of repeated independent assays.

Growth assays with E. coli EDL933 subjected to Harmane
or tetracycline

The growth kinetics of E. coli EDL933 in the presence of

varying concentrations of Harmane or the antibiotic tetracycline

was determined in NGM medium. An overnight culture of E. coli

EDL933 was diluted into fresh NGM medium, supplemented with

0.3% DMSO or Harmane at the concentrations: 50 mM and

150 mM. Tetracycline was tested at a concentration of 0.1 mg/ml.

All cultures were prepared in triplicate. The cultures were

incubated at 37uC, with rigorous shaking and samples were taken

at 4, 8 and 24 hours. Samples were serially diluted and 5 ml of each

dilution spotted on an LB-agar plate. The plate was incubated

overnight at 37uC.

Visualization and quantification of bacterial intestinal
colonization

Synchronised adult/L4 stage C. elegans AU37 (sek-1; glp-4)

were transferred from lawns of E. coli OP50 to lawns of E. coli

EDL933 carrying pBAD18-GFP, on NGM plates containing

100 mg/ml ampicillin and 0.2% arabinose (in order to activate

expression of GFP from the PBAD promoter) and either 0.3%

DMSO or 150 mM Harmane. On day 4 the worms were washed

from the plates into M9 media followed by 3 further washes to

remove external bacteria. Subsequently, the worms were anaes-

thetized and immobilized, by addition of 1% NaN3, and placed on

top of a 1.5% agarose pad on a microscope slide. Worms were

examined and photographed with an Olympus BX61 microscope

and an Olympus DP71 camera using the cell̂P software (Olympus).

All photographs were acquired using the same settings and a fixed

exposure time of 50 ms. Quantitative assessment of bacterial

colonization was done by determination of fluorescence intensity

of nematodes subjected to 0.3% DMSO or 150 mM Harmane, by

analysis of individual nematodes, using ImageJ v1.45.

Analysis of pharyngeal pumping activity
About 30 synchronised L4/young adult C. elegans AU37 (sek-1;

glp-4) nematodes were transferred to lawns of E. coli OP50, on

NGM plates with either 0.3% DMSO or 150 mM Harmane. After

24 and 48 hours incubation at 25uC, the worm’s pharyngeal
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grinder activity was measured. We observed the grinder activity of

a single adult for 20 sec, using an Olympus SZX7 stereomicro-

scope. We counted the number of contractions of the terminal

bulb, of the grinder. This was done for 10 nematodes on each

plate, each day.

Measuring body length of C. elegans
Synchronised adult/L4 stage C. elegans AU37 (sek-1; glp-4)

were transferred to E. coli OP50 lawns, on NGM plates containing

either 0.3% DMSO or 150 mM Harmane. On day 1 and 4 the

worms were washed from plates into M9 media followed by a

single wash to remove external bacteria. The worms were then

anaesthetized and immobilized, by addition of 1% NaN3, and

placed on top of a 1.5% agarose pad on a microscope slide.

Worms were examined and photographed with an Olympus

SZX7 stereomicroscope and an Olympus SC30 camera, using the

Analysis getIT software (Olympus). The length of the worms was

measured using ImageJ v1.45, as described in [25]. The sample

sizes are given in the legend to figure 4.

DAF-16 translocation assay
Synchronised adult/L4 stage C. elegans TJ356 (daf-16::gfp)

were transferred to lawns of E. coli OP50 on plates with either

0.3% DMSO or 150 mM Harmane. The plates were incubated at

15uC for 1 hour or 20 hours. Then the worms were washed from

the plates into M9 media followed by a wash to remove external

bacteria. Subsequently, the worms were anaesthetized and

immobilized, by addition of 1% NaN3, and placed on top of a

1.5% agarose pad on a microscope slide. Worms were examined

and photographed with an Olympus BX61 microscope and an

Olympus DP71 camera using the cell̂P software (Olympus). In

each experiment (1-hour or 20-hour) we placed one of the DMSO

plates at 37uC for 30 minutes, just prior to the nematodes being

analysed. This served as a positive control of DAF-16 translocation

to the nucleus. We compared the nematodes treated with

Harmane to the positive control to look for signs of DAF-16

translocation.

F35E12.5-GFP visualization and quantification
Synchronised adult/L4 stage C. elegans AY101 (F35E12.5::gfp)

were transferred to lawns of E. coli OP50 on plates with either

0.3% DMSO or 150 mM Harmane. The plates were incubated at

15uC for 20 hours. The worms were then washed from the plates

into M9 media followed by a wash to remove external bacteria.

The worms were anaesthetized and immobilized, by addition of

1% NaN3, and placed on top of a 1.5% agarose pad on a

microscope slide. Worms were examined and photographed with

an Olympus BX61 microscope and an Olympus DP71 camera

using the cell̂P software (Olympus). All photographs were acquired

using the same settings and a fixed exposure time. Quantitative

assessment of GFP expression was done by determination of

fluorescence intensity of nematodes subjected to DMSO or

150 mM Harmane, by analysis of individual nematodes, using

ImageJ v1.45.

Quantitative RT-PCR
Synchronised Bristol N2 nematodes (100–200 animals) fed on

OP50 on plates with Harmane or solvent (DMSO) for 20 hours

were washed off the plates and transferred into RLT Plus Buffer

(Qiagen). Sterile RNase-free bashing beads were added, followed

by lysis and homogenization in a TissueLyser II (Qiagen) for 5

min. RNA extraction was hereafter performed with RNeasy Plus

Mini Kit (Qiagen) combined with on-column DNase treatment

(RNase-Free DNase Set, Qiagen). cDNA was synthesized by the

SuperScript III First-Strand Synthesis SuperMix (Invitrogen).

Relative expression levels of F35E12.5 was determined and

normalized to pan-actin (act-1, -3, -4) using the QuantiTect

SYBR Green PCR Kit (Qiagen), a Stratagene MX3000P qPCR

machine, and previously published primers [7].

Statistics
Differences in the survival of C. elegans, in the infection assays,

were determined using GraphPad Prism version 5.00 (www.

graphpad.com). The Kaplan-Meier method was used to calculate

survival fractions and log-rank test was used to compare survival

curves. Mean fluorescence of worms feeding on GFP expressing E.

coli EDL933 were compared by unpaired, two-tailed Students t-

test, using GraphPad Prism. Data for ‘pharyngeal pump

activity’and ‘body length’ were also analysed by unpaired, two-

tailed Students t-test in GraphPad Prism. Gene expression fold

change from qRT-PCR analysis was analysed using unpaired,

two-tailed Students t-test in GraphPad Prism. Sample sizes for the

different assays are given in the figure legends. Values of P#0.05

were considered statistically significant.
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Figure S1 The Intimin and Tir interaction only plays a minor

role in pathogenicity of E. coli EDL933 towards C. elegans.

Harmane strongly extends lifespan.

(PDF)

Figure S2 C. elegans AU37 nematodes show no avoidance

behavior against Harmane.

(PDF)

Table S1 Minimum inhibitory concentrations of tetracycline

and Harmane in NGM media towards E. coli EDL933, S.

Typhimurium C17, P. aeruginosa PA14 and E. faecalis OG1RF.
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Method S1 Two-hybrid screen for inhibitors of the Intimin and

Tir (translocated intimin receptor) interaction.

(PDF)

Method S2 Determination of minimum inhibitory concentra-

tion.
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Method S3 Avoidance assay for C. elegans.

(PDF)
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